当前位置:文档之家› 场效应管的原理和基础知识

场效应管的原理和基础知识

场效应管的原理和基础知识
场效应管的原理和基础知识

基本概念

场效应管是一种受电场控制地半导体器件(普通三极管地工作是受电流控制地器件).场效应管应具有高输入阻抗,较好地热稳定性、抗辐射性和较低地噪声.对夹断电压适中地场效应管,可以找到一个几乎不受温度影响地零温度系数工作点,利用这一特性,可使电路地温度稳定性达到最佳状态.电子电路中常用场效应管作放大电路地缓冲级、模拟开关和恒流源电路.

场效应管按结构可分为结型场效应管(缩写为)和绝缘栅场效应管(缩写为),从导电方式看,场效应管分为型沟道型与型沟道型.绝缘栅型场效应管有增强型和耗尽型两种,而只有耗尽型.

一、基本结构

场效应管是利用改变电场来控制半导体材料地导电特性,不是像三极管那样用电流控制结地电流.因此,场效应管可以工作在极高地频率和较大地功率.此外,场效应管地制作工艺简单,是集成电路地基本单元.

场效应管有结型和绝缘栅型两种主要类型.每种类型地场效应管都有栅极、源极和漏极三个工作电极,同时,每种类型地场效应管都有沟道和沟道两种导电结构.

绝缘栅型场效应管又叫做管.根据在外加电压时是否存在导电沟道,绝缘栅场效应管又可分为上增强型和耗尽型.增强型管在外加电压时不存在导电沟道,而耗尽型地氧化绝缘层中加入了大量地正离子,即使在时也存在导电沟道.

沟道绝缘栅型

为栅极为源极为漏极衬底

结型场效应管地结构与绝缘栅场效应管地结构基本相同,主要地区别在于栅极与通道半导体之间没有绝缘.

沟道和沟道结型

从场效应管地基本结构可以看出,无论是绝缘栅型还是结型,场效应管都是两个背靠背地结.电流通路不是由结形成地,而是依靠漏极和源极之间半导体地导电状态来决定地.

二、电路符号

基本参数

场效应管地主要技术参数,可分为直流参数和交流参数两大类.

一、夹断电压和开启电压

一般是对结型管而言,当栅源之间地反向电压增加到一定数以后,不管漏源电压大小都不存在漏电流.这个使开始为零地电压叫作管子地夹断电压一般是对管而言,表示开始出现时地栅源电压值.对沟道增强型、沟道耗尽型为正值,对沟道耗尽型、沟道增强型为负值.

二、饱和漏电流

当而足够大时,漏电流地饱和值,就是管子地饱和漏电流,常用符号表示.

三、栅极电流

当栅极加上一定地反向电压时,会有极小地栅极电流,用符号表示.对结型场效应管在之间;对于而言一般小于安.正是由于栅极电流极小,所以场效应管具有极高地阻抗.

四、通导电阻

五、截止漏电流

六、跨导

七、漏源动态电阻

基本特性

一、转移特性和输出特性

工程应用中最常用地是共源极电路地输入和输出关系曲线,场效应管地共源极连接是把源极作为公共端、栅极作为输入端、漏极作为输出端.由于共源极场效应管地输入电流几乎为零,因此,其输入曲线反映地是栅极电压与漏极电流地关系,叫做转移特性.反映间电压与之间关系地叫做输出曲线.

场效应管共源极电路转移特性曲线和输出特性曲线

场效应管输出特性有可变电阻(也叫夹断区)、放大(也叫恒流区)、截止区和击穿区四个工作区.这与三极管地饱和、截止、放大和击穿相似.

二、截止与电阻导通特性

场效应管间不导通状态叫做截止,此时接近,场效应管没有电流传导地能力,相当于开关断开.产生截止现象地原因,是此时场效应管没有形成导电沟道.

场效应管输出特性曲线中与之间呈线性关系地区域叫做电阻区,二者之间地关系可近似为

其中为导通电阻,一般都很小.在电阻区,场效应管地之间近似为一个不变电阻.

无论是在电阻区还是截止区,场效应管地电流控制能力很微弱,这是在应用设计中必须十分注意地问题.在设计模拟信号电路时,一定要使电路工作在场效应管地放大区,避免进入电阻区和截止区.在设计开关电路时,要使电路能很快地在电阻和截止状态之间转换,避免进入放大区.

使用场效应管时,应当注意以下几个问题:

()为了防止栅极击穿,要求一切测试仪器、电路本身、电烙铁都必须良好接地.焊接时,用小功率烙铁迅速焊接,或拔去电源用余热焊接,并应先焊源极,后焊栅极.

()场效应管输送阻抗较高,故在不使用时,必须将引出线短路,以防感应电势将栅极击穿则不可短路.

()要求高输入阻抗地线路,须采取防潮措施,以免使输入阻抗显著降低.

()场效应管栅极有地可加正压或负压,而常用地结型场效应管因是沟道耗尽型,栅极只能加负压.

()场效应管地漏极和源极通常制成对称地,除源极和衬底制造时连在一起地管子外,漏极和源极可互换使用.

场效应管工作原理 1

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场

功率场效应管原理

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

(完整版)对场效应管工作原理的理解

如何理解场效应管的原理,大多数书籍和文章都讲的晦涩难懂,给初学的人学习造成很大的难度,要深入学习就越感到困难,本人以自己的理解加以解释,希望对初学的人有帮助,即使认识可能不是很正确,但对学习肯定有很大的帮助。 场效应管的结构 场效应管是电压控制器件,功耗比较低。而三极管是电流控制器件,功耗比较高。但场效应管制作工艺比三极管复杂,不过可以做得很小,到纳米级大小。所以在大规模集成电路小信号处理方面得到广泛的应用。对大电流功率器件处理比较困难,不过目前已经有双场效应管结构增加电流负载能力,也有大功率场管出现,大有取代三极管的趋势。场效应管具有很多比三极管优越的性能。 结型场效应管的结构 结型场效应管又叫JFET,只有耗尽型。 这里以N沟道结型场效应管为例,说明结型场效应管的结构及基本工作原理。图为N沟道结型场效应管的结构示意图。在一块N型硅,材料(沟道)上引出两个电极,分别为源极(S)和漏极(D)。在它的两边各附一小片P型材料并引出一个电极,称为栅极(G)。这样在沟道和栅极间便形成了两个PN结。当栅极开路时,沟道相当于一个电阻,其阻值随型号而不同,一般为数百欧至数千欧。如果在漏极及源极之间加上电压U Ds,就有电流流过,I D将随U DS的增大而增大。如果给管子加上负偏差U GS时,PN结形成空间电荷区,其载流子很少,因而也叫耗尽区(如图a中阴影区所示)。其性能类似于绝缘体,反向偏压越大,耗尽区越宽,沟道电阻就越大,电流减小,甚至完全截止。这样就达到了利用反向偏压所产生的电场来控制N型硅片(沟道)中的电流大小的目的。 注:实际上沟道的掺杂浓度非常小,导电能力比较低,所以有几百到几千欧导通电阻。而且是PN结工作在反向偏置的状态。刚开机时,如果负偏置没有加上,此时I D是最大的。 特点:1,GS和GD有二极管特性,正向导通,反向电阻很大 2:DS也是导通特性,阻抗比较大 3:GS工作在反向偏置的状态。 4:DS极完全对称,可以反用,即D当做S,S当做D。 从以上介绍的情况看,可以把场效应管与一般半导体三极管加以对比,即栅极相当于基极,源极相当于发射极,漏极相当于集电极。如果把硅片做成P型,而栅极做成N型,则成为P沟道结型场效应管。结型场效应管的符号如图b所示。

场效应管工作原理

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP 型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点 场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。有N沟道器件和P 沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide SemIConductor FET)。 MOS场效应管 有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟 道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底(substrat),用符号B表示。 一、工作原理 1.沟道形成原理

当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着Vgs的继续增加,ID将不断增加。 在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。 转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也 称为跨导。 跨导的定义式如下: gm=△ID/△VGS| (单位mS) 2.Vds对沟道导电能力的控制 当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。Vds的不同变化对沟 道的影响如图所示。 根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,

场效应管对照表

场效应管对照表(分2页介绍了世界上场效应管的生产厂家和相关参数) 本手册由"场效应管对照表"和"外形与管脚排列图"两部分组成。 在场效应管对照表中,收编了美国、日本及欧洲等近百家半导体厂家生产的结型场效应晶体管(JFET)、金属氧化物半导体场次晶体管(MOSFET)、肖特基势垒控制栅场效应晶体管(SB)、金属半导体场效应晶体管(MES)、高电子迁移率晶体管(HEMT)、静电感应晶体管(SIT)、绝缘栅双极晶体管(IGBT)等属于场效应晶体管系列的单管、对管及组件等,型号达数万种之多。每种型号的场效应晶体管都示出其主要生产厂家、材料与极性、外型与管脚排列、用途与主要特性参数。同时还在备注栏列出世界各国可供代换的场效应晶体管型号,其中含国产场效应晶体管型号。 1."型号"栏 表中所列各种场效应晶体管型号按英文字母和阿拉伯数字顺序排列。同一类型的场效应晶体型号编为一组,处于同一格子内,不用细线分开。2."厂家"栏 为了节省篇幅,仅列入主要厂家,且厂家名称采用缩写的形式表示。) 所到厂家的英文缩写与中文全称对照如下: ADV 美国先进半导体公司 AEG 美国AEG公司 AEI 英国联合电子工业公司 AEL 英、德半导体器件股份公司 ALE 美国ALEGROMICRO 公司ALP 美国ALPHA INDNSTRLES 公司AME 挪威微电子技术公司 AMP 美国安派克斯电子公司 AMS 美国微系统公司 APT 美国先进功率技术公司 ATE 意大利米兰ATES公司 ATT 美国电话电报公司 AVA 美、德先进技术公司 BEN 美国本迪克斯有限公司 BHA 印度BHARAT电子有限公司CAL 美国CALOGIC公司 CDI 印度大陆器件公司 CEN 美国中央半导体公司 CLV 美国CLEVITE晶体管公司 COL 美国COLLMER公司 CRI 美国克里姆森半导体公司 CTR 美国通信晶体管公司 CSA 美国CSA工业公司 DIC 美国狄克逊电子公司 DIO 美国二极管公司 DIR 美国DIRECTED ENERGR公司LUC 英、德LUCCAS电气股份公司MAC 美国M/A康姆半导体产品公司MAR 英国马可尼电子器件公司 MAL 美国MALLORY国际公司DIT 德国DITRATHERM公司ETC 美国电子晶体管公司 FCH 美国范恰得公司 FER 英、德费兰蒂有限公司 FJD 日本富士电机公司 FRE 美国FEDERICK公司 FUI 日本富士通公司 FUM 美国富士通微电子公司 GEC 美国詹特朗公司 GEN 美国通用电气公司 GEU 加拿大GENNUM公司 GPD 美国锗功率器件公司 HAR 美国哈里斯半导体公司 HFO 德国VHB联合企业 HIT 日本日立公司 HSC 美国HELLOS半导体公司 IDI 美国国际器件公司 INJ 日本国际器件公司 INR 美、德国际整流器件公司 INT 美国INTER FET 公司 IPR 罗、德I P R S BANEASA公司ISI 英国英特锡尔公司 ITT 德国楞茨标准电气公司 IXY 美国电报公司半导体体部KOR 韩国电子公司 KYO 日本东光股份公司 LTT 法国电话公司 SEM 美国半导体公司 SES 法国巴黎斯公司 SGS 法、意电子元件股份公司

场效应管工作原理

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表 材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数 场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数: 1、I DSS — 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS =0时的漏源电流。 2、U P — 夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。 3、U T — 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、g M — 跨导。是表示栅源电压U GS — 对漏极电流I D 的控制能力,即漏极电流I D 变化量与栅源电压U GS 变化量的比值。g M 是衡量场效应管放大能力的重要参数。 5、BU DS — 漏源击穿电压。是指栅源电压U GS 一定时,场效应管正常工作所能承受的最大漏源电压。这是一 项极限参数,加在场效应管上的工作电压必须小于BU DS。

常用全系列场效应管MOS管型号参数封装资料

场效应管分类型号简介封装DISCRETE MOS FET 2N7000 60V,0.115A TO-92 DISCRETE MOS FET 2N7002 60V,0.2A SOT-23 DISCRETE MOS FET IRF510A 100V,5.6A TO-220 DISCRETE MOS FET IRF520A 100V,9.2A TO-220 DISCRETE MOS FET IRF530A 100V,14A TO-220 DISCRETE MOS FET IRF540A 100V,28A TO-220 DISCRETE MOS FET IRF610A 200V,3.3A TO-220 DISCRETE MOS FET IRF620A 200V,5A TO-220 DISCRETE MOS FET IRF630A 200V,9A TO-220 DISCRETE MOS FET IRF634A 250V,8.1A TO-220 DISCRETE MOS FET IRF640A 200V,18A TO-220 DISCRETE MOS FET IRF644A 250V,14A TO-220 DISCRETE MOS FET IRF650A 200V,28A TO-220 DISCRETE MOS FET IRF654A 250V,21A TO-220 DISCRETE MOS FET IRF720A 400V,3.3A TO-220 DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE

mos管基础知识

MOS管的基础知识 什么是场效应管呢?场效应管式是利用输入回路的电场效应来控制输出回路 电流的一种半导体器件,并以此命名。由于它是靠半导体中的多数载流子导电,又称单极性晶体管。它区别晶体管,晶体管是利用基极的小电流可以控制大的集电极电流。又称双极性晶体管。 一, MOS管的种类,符号。 1JFET结型场效应管----利用PN结反向电压对耗尽层厚度的控制来改变导电沟道的宽度,从而控制漏极电流的大小。结型场效应管一般是耗尽型的。 耗尽型的特点: a,PN结反向电压,这个怎么理解,就是栅极G,到漏极D和源极s有个PN吉, b,未加栅压的时候,器件已经导通。要施加一定的负压才能使器件关闭。 C,从原理上讲,漏极D和源极S不区分,即漏极也可作源极,源极也可以做 漏极。漏源之间有导通电阻。 2IGFET绝缘栅极场效应管----利用栅源电压的大小来改变半导体表面感生电荷

的多少,从而控制漏极电流的大小。 增强型效应管特点: A, 栅极和源极电压为0时,漏极电流为0的管子是增强型的。 B, 栅源电压,这个之间是个绝缘层,绝缘栅型一般用的是 SIO 2绝缘层。 耗尽 型绝缘栅场效应晶体管 的性能特点是:当栅极电压U 0 =0时有一定的漏 极电流。对于N 沟道耗尽型绝缘栅场效应晶体管,漏极加正电压,栅极电压从 0 逐渐上升时漏极电流逐渐增大,栅极电压从 0逐渐下降时漏极电流逐渐减小直至 截 止。对于P 沟道耗尽型绝缘栅场效应晶体管,漏极加负电压,栅极电压从 0逐 渐下降时漏极电流逐渐增大,栅极电压从 0逐渐上升时漏极电流逐渐减小直至截 绝缘栅型场效应 管: N 沟道增强型,P 沟道增强型,N 沟道耗尽型,P 沟道耗 尽型 MOSFET 増强型 N 沟道 二,用数字万用表测量MO 管的方法 用数字万用表判断MOS 的管脚定义。 1, 判断结型场效应管的 栅极的判断, 我们以N 沟道为例,大家知道,结型场效应管在 VGS 之间不施加反向电压 的 话,DS 之间是导通的,(沟道是以N 型半导体为导电沟道),有一定的 阻值,所以止0 1, 2, 按功率分类: A, 小信号管,一般指的是耗尽型场效应管。主要用于信号电路的控制。 B, 功率管,一般指的是增强型的场效应管,只要在电力开关电路,驱动 电路等。 按结构分类: 结型场效应管: 型) 增强型, 耗尽型 N 沟道结型场效应管 P 沟道结型场效应管(一般是耗尽 ZU 耗尽型 ZK7 工4

用场效应管参数大全.pdf2

用场效应管参数大全 宏瑞电子|家电维修|电子技术|家电维修技术2009-12-0620:30:24作者:zhangzi来源:文字大小:[大][中][小] 型号材料管脚用途参数 3DJ6NJ低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS开关600V11A150W0.36 2SJ117PMOS GDS音频功放开关400V2A40W 2SJ118PMOS GDS高速功放开关140V8A100W50/70nS0.5 2SJ122PMOS GDS高速功放开关60V10A50W60/100nS0.15 2SJ136PMOS GDS高速功放开关60V12A40W70/165nS0.3 2SJ143PMOS GDS功放开关60V16A35W90/180nS0.035 2SJ172PMOS GDS激励60V10A40W73/275nS0.18 2SJ175PMOS GDS激励60V10A25W73/275nS0.18 2SJ177PMOS GDS激励60V20A35W140/580nS0.085 2SJ201PMOS n 2SJ306PMOS GDS激励60V14A40W30/120nS0.12 2SJ312PMOS GDS激励60V14A40W30/120nS0.12 2SK30NJ SDG低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108NJ SGD音频激励开关50V1-12mA0.3W701DB 2SK118NJ SGD音频话筒放大50V0.01A0.1W0.5dB 2SK168NJ GSD高频放大30V0.01A0.2W100MHz1.7dB 2SK192NJ DSG高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193NJ GSD高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214NMOS GSD高频高速开关160V0.5A30W 2SK241NMOS DSG高频放大20V0.03A0.2W100MHz1.7dB 2SK304NJ GSD音频功放30V0.6-12mA0.15W 2SK385NMOS GDS高速开关400V10A120W100/140nS0.6 2SK386NMOS GDS高速开关450V10A120W100/140nS0.7 2SK413NMOS GDS高速功放开关140V8A100W0.5(2SJ118) 2SK423NMOS SDG高速开关100V0.5A0.9W4.5 2SK428NMOS GDS高速开关60V10A50W45/65NS0.15

场效应管工作原理

场效应管工作原理

场效应管工作原理 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

场效应管的基础知识

场效应管的基础知识 英文名称:MOSFET(简写:MOS) 中文名称:功率场效应晶体管(简称:场效应管) 场效应晶体管简称场效应管,它是由半导体材料构成的。 与普通双极型相比,场效应管具有很多特点。 场效应管是一种单极型半导体(内部只有一种载流子—多子) 分四类: N沟通增强型;P沟通增强型; N沟通耗尽型;P沟通耗尽型。 增强型MOS管的特性曲线 场效应管有四个电极,栅极G、漏极D、源极S和衬底B,通常字内部将衬底B与源极S相连。 这样,场效应管在外型上是一个三端电路元件场效管是一种 压控电流源器件,即流入的漏极电流ID栅源电压UGS控制。 1、转移特性曲线: 应注意: ①转移特性曲线反映控制电压VGS与电流ID之间的关系。 ②当VGS很小时,ID基本为零,管子截止;当VGS大于某一个电压VTN时ID随VGS的变化而变化,VTN称为开启电压,约为2V。 ③无论是在VGS 2、输出特性曲线:输出特性是在给顶VGS的条件下,ID与VDS之间的关系。可分三个区域。 ①夹断区:VGS ②可变电阻区:VGS>VTN且VDS值较小。VGS值越大,则曲线越陡,D、S极之间的等效电阻RDS值就越小。 ③恒流区:VGS>VTN且VDS值较大。这时ID只取于VGS,而与VDS无关。 3、MOS管开关条件和特点:管型状态,N-MOS,P-MOS特点 截止VTN,RDS非常大,相当与开关断开 导通VGS≥VTN,VGS≤VTN,RON很小,相当于开关闭合 4、MOS场效应管的主要参数 ①直流参数 a、开启电压VTN,当VGS>UTN时,增强型NMOS管通道。 b、输入电阻RGS,一般RGS值为109~1012Ω高值 ②极限参数 最大漏极电流IDSM击穿电压V(RB)GS,V(RB)DS 最大允许耗散功率PDSM 5、场效应的电极判别 用R×1K挡,将黑表笔接管子的一个电极,用红表笔分别接另外两个电极,如两次测得的结果阻值都很小,则黑表笔所接的电极就是栅极(G),另外两极为源(S)、漏(D)极,而且是N型沟场效应管。 在测量过程中,如出现阻值相差太大,可改换电极再测量,直到出现两阻值都很大或都小为止。 如果是P沟道场效应管,则将表笔改为红表笔,重复上述方法测量。 6、结型场效应管的性能测量 将万用表拨在R×1K或R×10K挡上,测P型沟道时,将红表笔接源极或漏极,黑表笔接栅极,测出的电阻值应很大,交换表笔测时,阻值应该很小,表明管子是好的。

场效应管工作原理

场效应管工作原理 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor (金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P 沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N 型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P 型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。 2、UP 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、gM 对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。

5、BUDS 最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。 7、IDSM UGS=0时的漏极电流。UP —夹断电压,使ID=0对应的UGS的值。P沟道场效应管的工作原理与N沟道类似。我们不再讨论。下面我们看一下各类绝缘栅场效应管(MOS场效应管)在电路中的符号。§3 场效应管的主要参数场效应管主要参数包括直流参数、交流参数、极限参数三部分。 一、直流参数 1、饱合漏极电流IDSSIDSS是耗尽型和结型场效应管的一个重要参数。定义:当栅、源极之间的电压UGS=0,而漏、源极之间的电压UDS大于夹断电压UP时对应的漏极电流。 2、夹断电压UPUP也是耗尽型和结型场效应管的重要参数。定义:当UDS一定时,使ID减小到某一个微小电流(如1μA, 50μA)时所需UGS的值。 3、开启电压UTUT是增强型场效应管的重要参数。定义:当UDS一定时,漏极电流ID达到某一数值(如10μA)时所需加的UGS 值。 4、直流输入电阻RGSRGS是栅、源之间所加电压与产生的栅极电流之比,由于栅极几乎不索取电流,因此输入电阻很高,结型为106Ω以上,MOS管可达1010Ω以上。 二、交流参数

常用场效应管参数大全 (2)

型号材料管脚用途参数 IRFP9140 PMOS GDS 开关 100V19A150W100/70nS0.2 IRFP9150 PMOS GDS 开关 100V25A150W160/70nS0.2 IRFP9240 PMOS GDS 开关 200V12A150W68/57nS0.5 IRFPF40 NMOS GDS 开关 900V4.7A150W2.5 IRFPG42 NMOS GDS 开关 1000V3.9A150W4.2 IRFPZ44 NMOS GDS 开关 1000V3.9A150W4.2 ******* IRFU020 NMOS GDS 开关 50V15A42W83/39nS0.1 IXGH20N60ANMOS GDS 600V20A150W IXGFH26N50NMOS GDS 500V26A300W0.3 IXGH30N60ANMOS GDS 600V30A200W IXGH60N60ANMOS GDS 600V60A250W IXTP2P50 PMOS GDS 开关 500V2A75W5.5 代J117 J177 PMOS SDG 开关 M75N06 NMOS GDS 音频开关 60V75A120W MTH8N100 NMOS GDS 开关 1000V8A180W175/180nS1.8 MTH10N80 NMOS GDS 开关 800V10A150W MTM30N50 NMOS 开关 (铁)500V30A250W MTM55N10 NMOS GDS 开关 (铁)100V55A250W350/400nS0.04 MTP27N10 NMOS GDS 开关 100V27A125W0.05 MTP2955 PMOS GDS 开关 60V12A75W75/50nS0.3 MTP3055 NMOS GDS 开关 60V12A75W75/50nS0.3

场效应管基础知识资料

场效应管基础知识 一、场效应管的分类 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数 1、I DSS —饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏

源电流。 2、UP —夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。 3、UT —开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、gM —跨导。是表示栅源电压U GS —对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。 5、BUDS —漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。 6、PDSM —最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。 7、IDSM —最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM 几种常用的场效应三极管的主要参数 四、场效应管的作用 2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。 3、场效应管可以用作可变电阻。

场效应管参数用途大全解析

型号材料管脚用途参数 3D J6N J低频放大20V0.35M A0.1W 4405/R9524 2E3C N M O S G D S开关600V11A150W0.36 2S J117P M O S G D S音频功放开关400V2A40W 2S J118P M O S G D S高速功放开关140V8A100W50/70n S0.5 2S J122P M O S G D S高速功放开关60V10A50W60/100n S0.15 2S J136P M O S G D S高速功放开关60V12A40W70/165n S0.3 2S J143P M O S G D S功放开关60V16A35W90/180n S0.035 2S J172P M O S G D S激励60V10A40W73/275n S0.18 2S J175P M O S G D S激励60V10A25W73/275n S0.18 2S J177P M O S G D S激励60V20A35W140/580n S0.085 2S J201P M O S n 2S J306P M O S G D S激励60V14A40W30/120n S0.12 2S J312P M O S G D S激励60V14A40W30/120n S0.12 2S K30N J S D G低放音频50V0.5m A0.1W0.5d B 2S K30A N J S D G低放低噪音频50V0.3-6.5m A0.1W0.5d B 2S K108N J S G D音频激励开关50V1-12m A0.3W701D B 2S K118N J S G D音频话筒放大50V0.01A0.1W0.5d B 2S K168N J G S D高频放大30V0.01A0.2W100M H z1.7d B 2S K192N J D S G高频低噪放大18V12-24m A0.2W100M H z1.8d B 2S K193N J G S D高频低噪放大20V0.5-8m A0.25W100M H z3d B 2S K214N M O S G S D高频高速开关160V0.5A30W 2S K241N M O S D S G高频放大20V0.03A0.2W100M H z1.7d B 2S K304N J G S D音频功放30V0.6-12m A0.15W 2S K385N M O S G D S高速开关400V10A120W100/140n S0.6 2S K386N M O S G D S高速开关450V10A120W100/140n S0.7 2S K413N M O S G D S高速功放开关140V8A100W0.5(2S J118) 2S K423N M O S S D G高速开关100V0.5A0.9W4.5 2S K428N M O S G D S高速开关60V10A50W45/65N S0.15 2S K447N M O S S D G高速低噪开关250V15A150W0.24可驱电机2S K511N M O S S D G高速功放开关250V0.3A8W5.0 2S K534N M O S G D S高速开关800V5A100W4.0 2S K539N M O S G D S开关900V5A150W2.5 2S K560N M O S G D S高速开关500V15A100W0.4 2S K623N M O S G D S高速开关250V20A120W0.15 2S K727N M O S G D S电源开关900V5A125W110/420n S2.5

结型场效应管的结构和工作原理

结型场效应管(JFET)的结构和工作原理 1. JFET的结构和符号 N沟道JFET P沟道JFET 2. 工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0,在D-S间加一个正电压——V DS>0. 栅极—沟道间的PN结反偏,栅极电流i G?0,栅极输入电阻很高(高达107W以上)。 N沟道中的多子(电子)由S向D运动,形成漏极电流i D。i D的大小取决于V DS的大小和沟道电阻。改变V GS可改变沟道电阻,从而改变i D。 主要讨论V GS对i D的控制作用以及V DS对i D的影响。 ①栅源电压V GS对i D的控制作用 当V GS<0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D≈0。这时所对应的栅源电压V GS称为夹断电压V P。 ②漏源电压V DS对i D的影响 在栅源间加电压V GS<0 ,漏源间加正电压V DS> 0。则因漏端耗尽层所受的反偏电压为V GD=V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V GS=-2V, V DS=3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。 当V DS增加到使V GD=V GS-V DS=V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。预夹断后I D基本不随V DS增大而变化。 ①V GS对沟道的控制作用 当V GS<0时,PN结反偏?耗尽层加厚?沟道变窄。V GS继续减小,沟道继续变窄。当沟道夹断时,对应的栅源电压V GS称为夹断电压V P(或V GS(off) )。对于N沟道的JFET,V P<0。

相关主题
文本预览
相关文档 最新文档