当前位置:文档之家› 甲基-2-己醇的制备

甲基-2-己醇的制备

甲基-2-己醇的制备
甲基-2-己醇的制备

2-甲基-2-己醇的制备

作者:xxx

学号:xxx

摘要:以正溴丁烷和镁屑为原料,碘单质为催化剂,在无水无氧的条件下制备格氏试剂,再将格氏试剂与丙酮进行加成,在酸解即可生成2-甲基-2-己醇。在实验过程中,要求掌握格氏试剂的制备方法和应用,同时要掌握无水无氧的操作技术。

关键词:格氏试剂、无水无氧、2-甲基-2-己醇、制备

The preparation of 2 - methyl - 2 – hexanol

Author: xxx

Student number: xxx

Abstract: Bromobutane and magnesium scrap is as raw materials and iodine elemental is as catalyst. Under the condition of no water and oxygen ,we can preparate grignard we can acetone with the grignard reagent is again in acid solution that can be generated 2 - methyl - 2 - hexanol. In the experimental process,we require the preparation method and application of grignard the same time ,it is necessary to master the operation of anaerobic technology. Keywords: grignard reagent, anhydrous anaerobic, 2 - methyl - 2 - hexanol and preparation

醇是一种重要的有机化合物,被广泛应用于医药、农药、香料等诸多领域,随着现代石油化工和精细化工的发展,一些结构更复杂的多碳醇越来越受人们的重视。例如在对乙醇柴油在柴油机上的应用研究过程中,一个最大的问题是如何解决柴油和乙醇的难互溶问题和混合互溶后的存储稳定性,经过研究,作为乙醇柴油混合燃料助溶剂使用的多碳醇类油料与柴油的互溶性更好且价格更便宜。因此对多碳醇的研究将会产生巨大的经济效益。

工业上以石油裂解气中的烯烃为原料合成醇,低级醇是某些碳水化合物和蛋白质发酵的产物。实验室制备醇的方法有很多,可以看作是在分子中引进羟基的方法。用烯烃为原料制备醇是一类常用的方法,最简单的为烯烃强酸水解,但此方法对于复杂的底物是无法应用的,目前一般是通过硼氢化反应制的相应的醇。硼氢化反应的特点是:步骤简单、副反应少,生成的醇的产率很高。醛、酮分子中的羰基,可以在催化剂Pt,Ni等存在下加氢,醛加氢后还原成伯醇,酮加氢和还原成仲醇,还原时也可用乙酸加钠、四氢铝合锂、四氢硼化钠。醛、酮与格氏试剂的反应是实验室常用的方法,也是格氏试剂的重要应用之一。醛、酮的官能团都是羰基,容易发生加成反应,与格氏试剂的加成就是醛和酮的典型反应之一。由有机卤素化合物(卤代烷、活泼卤代芳香烃)与金属镁在绝对无水无氧中反应形成有机镁试剂,称为“格林尼亚试剂”,简称“格氏试剂”。现常用卤代烃与镁粉在无水乙醚中反应制得,制备过程绝对要保证是无水无二氧化碳无乙醇等具有活泼氢的物质(如:水、醇、氨、卤化氢、末端炔等)条件下进行。格氏试剂是一种活泼的有机合成试剂,能进行多种反应,主要包括:烷基化反应、羰基加成、共轭加成及卤代烃还原等。

1.结果与讨论

①实验装置的选取

格氏试剂可以与水、二氧化碳、醇、氨、卤代烃等反应,因此在反应过程中,反应环

境应保证无水无氧无二氧化碳,因此在反应之前应对反应装置进行烘干,对反应试剂进行干燥,由于该反应不能有水存在,因此水不能作为溶剂,在该反应中无水乙醚作为溶剂,但由于乙醚的沸点很低,只有度,因此在反应装置三颈瓶上应当放置一个球型冷凝管,防止无水乙醚被蒸出反应体系外,球型冷凝管外应接一个干燥管,防止空气中的水蒸气通过球型冷凝管进入反应体系,与格氏试剂反应,影响产物2-甲基-2-己醇的产率。用恒压滴液漏斗往反应体系中滴入正溴丁烷和无水乙醚的混合溶液,不仅可以较好的控制溶液的滴加速度,还避免了与反应体系外进行气体交换。后来从恒压滴液漏斗中加入25ml的稀硫酸,对格氏试剂与丙酮的加成产物进行酸解,体系中引进了水,无水乙醚和未反应的丙酮和反应产物2-甲基-2-己醇都不能溶于水,因此在产物的提纯的过程中,使用分液漏斗将有机相和水相分离。多次萃取后,由于2-甲基-2-己醇的沸点是141-142度,正溴丁烷的沸点为度,丙酮的沸点为的沸点,无水乙醚的沸点为,因此在最后的2-甲基-2-己醇的提纯中,可以用蒸馏的方法进行提纯,收集137-142度的馏分。

②实验现象的分析

由于正溴丁烷与镁屑反应制备正丁基溴化镁的反应为放热反应,且乙醚的沸点为度,故在其反应过程中,溶液会沸腾,且乙醚会大量挥发,所以经冷凝后才会大量回流。

反应进行一段时间后,该反应较缓慢,放热也没有刚开始那么剧烈,因此,液体后来并没有明显回流。溶液变成三层,下层为水层,中间层为碘单质和正丁基溴化镁层,上层为醚层。后加入丙酮进行加成,未反应的碘单质因浓度极低故呈现棕褐色,加成后生成了格氏试剂,故有灰白色的胶状沉淀。后加入硫酸,格氏试剂水解,又因为有氢氧化镁生成,氢氧化镁与硫酸发生中和反应放出大量热,因此溶液剧烈沸腾,未反应的镁与硫酸反应生成氢气,因此反应过程中有气泡产生。后用乙醚萃取时,未反应的碘单质溶于其中,呈现紫色。后随着碘单质的浓度越来越低,醚层慢慢变成黄色,向醚层中加入碳酸钠后,中和溶液的pH值,镁离子沉淀了一部分,

因此有絮状沉淀产生。

③产物产率误差分析

产物产率为25%

几乎所有的反应都不能进行完全,所以该反应的产率本不能达到百分之百,其次在本次实验中,严格上说是没有达到完全的无水无氧的条件,反应过程中仍会混有少量的氧气,因此格氏试剂会发生与氧气的副反应,使格氏试剂与丙酮的加成减少,产物2-甲基-2-己醇的量会相应减少。同时,在反应过程中发现有未反应完的镁屑,因此在正丁基溴化镁的制备过程中,镁的量有所损失,因此正丁基溴化镁的产量也减少,2-甲基-2-己醇的产率也会减少。

2.实验部分

①仪器与试剂

仪器:三颈瓶、球型冷凝管、恒压滴液漏斗、干燥器、磁力加热搅拌器、铁架台、分液漏斗、烧杯、三角瓶、温度计、蒸馏烧瓶、直形冷凝管、尾接管

②实验方法

首先先制备正丁基溴化镁,向烧瓶中放入1g镁屑,在滴液漏斗中装入正溴丁烷溶入15ml无水乙醚中,自滴液漏斗先滴入3-5ml溶液,待反应开始后,使反应保持微沸状态,将剩余溶液缓慢滴入烧瓶中,加完后在水浴上回流10分钟,直至镁屑几乎全溶。后与丙酮进行加成,将烧瓶在冷水冷却下,自滴液漏斗中缓慢加入丙酮和5ml 无水乙醚混合。在常温下搅拌十分钟,最后瓶中析出灰白色粘稠的固体。最后对加成物进行分解及提纯,将烧瓶用冷水冷却,自滴液漏斗中加入20-25ml硫酸。分解完全后,将溶液倒入分液漏斗中,分出醚层,水层用15ml乙醚分两次萃取,合并醚层,用10ml碳酸钠溶液洗涤一次。有机层用无水碳酸钾干燥后进行蒸馏,蒸出乙醚后收集137-141度的馏分。

参考文献:

1.湖大版实验教材

2.复旦,兰州大学版实验教材

3.2-甲基-2-己醇制备实验中合成产物的GC/MS分析

4.2-甲基-2-己醇的实验改进初探

附加材料:

①实验室装置图

时间温度操作现象

10:20称取1g镁条,用砂纸打磨后,用剪刀将其

剪成镁屑

将三颈瓶和恒压滴液漏斗放在烘箱中烘干

10:40如图搭好实验装置图,向恒压滴液漏斗中加

入正溴丁烷和15ml无水乙醚

10:45向烧瓶中加入3ml左右的正溴丁烷与无水乙

醚和混合溶液

10:50反应未发生,向其中加入一小勺碘单质反应迅速剧烈发

生,溶液微沸且变

成紫黑色,镁屑逐

渐溶解

继续滴加正溴丁烷和无水乙醚的混合溶液有大量液体回流,

后无明显回流11:04恒压滴液漏斗中的

溶液滴完,溶液沸

腾变得非常缓慢

③产物红外和核磁共振谱图

2-甲基-2-己醇的制备

2甲基2己醇得制备 作者:xxx 学号:xxx 摘要:以正溴丁烷与镁屑为原料,碘单质为催化剂,在无水无氧得条件下制备格氏试剂,再将格氏试剂与丙酮进行加成,在酸解即可生成2甲基2己醇。在实验过程中,要求掌握格氏试剂得制备方法与应用,同时要掌握无水无氧得操作技术。 关键词:格氏试剂、无水无氧、2甲基2己醇、制备 The preparation of 2 methyl 2 – hexanol Author: xxx Student number: xxx Abstract: Bromobutane and magnesium scrap is as raw materials and iodine elemental is as catalyst、Under the condition of no water and oxygen ,we can preparate grignard reagent、And we can acetone with the grignard reagent addition、It is again in acid solution that can be generated 2 methyl 2 hexanol、In the experimental process,we require the preparation method and application of grignard reagent、At the same time ,it is necessary to master the operation of anaerobic technology、 Keywords: grignard reagent, anhydrous anaerobic, 2 methyl 2 hexanol and preparation 醇就是一种重要得有机化合物,被广泛应用于医药、农药、香料等诸多领域,随着现代石油化工与精细化工得发展,一些结构更复杂得多碳醇越来越受人们得重视。例如在对乙醇柴油在柴油机上得应用研究过程中,一个最大得问题就是如何解决柴油与乙醇得难互溶问题与混合互溶后得存储稳定性,经过研究,作为乙醇柴油混合燃料助溶剂使用得多碳醇类油料与柴油得互溶性更好且价格更便宜。因此对多碳醇得研究将会产生巨大得经济效益。 工业上以石油裂解气中得烯烃为原料合成醇,低级醇就是某些碳水化合物与蛋白质发酵得产物。实验室制备醇得方法有很多,可以瞧作就是在分子中引进羟基得方法。用烯烃为原料制备醇就是一类常用得方法,最简单得为烯烃强酸水解,但此方法对于复杂得底物就是无法应用得,目前一般就是通过硼氢化反应制得相应得醇。硼氢化反应得特点就是:步骤简单、副反应少,生成得醇得产率很高。醛、酮分子中得羰基,可以在催化剂Pt,Ni等存在下加氢,醛加氢后还原成伯醇,酮加氢与还原成仲醇,还原时也可用乙酸加钠、四氢铝合锂、四氢硼化钠。醛、酮与格氏试剂得反应就是实验室常用得方法,也就是格氏试剂得重要应用之一。醛、酮

木糖醇的特性及其在食品中的应用

木糖醇的特性及其在食品中的应用 摘要:木糖醇的理化性质类似于蔗糖,是一种应用广泛的甜味剂,其自身特有的功能赋予了它保健性.本文简单的介绍了木糖醇的理化性质;讨论了其在营养学、临床医学上的保健功能性;综述了其作为甜味剂在食品行业中的应用;介绍了其在食品中的检测方法;探讨了今后的研究前景;对木糖醇在食品中的应用提出了见解。 关键词:木糖醇,应用,特性,食品, 应用 木糖醇是一种白色粉末或白色晶体五碳糖醇,具有清凉甜味,甜度为蔗糖的0.65~1.05倍,入口后清凉似薄荷,没有杂味.熔点92~96摄氏度,能量低,其分子式为C5H12O5。它是联合国粮农组织和世界卫生组织食品添加剂联合专家委员会(JECFA)于上世纪七十年代批准为A类食品添加剂,并对ADI值不作规定的公认安全食品。国际食品法典委员会(CAC)于1999年6月通过为“在食品中可以按正常生产需要使用的食品添加剂”食用糖醇之一。由于它和其他糖醇比较,有较高的能量和甜度,经国内外研究证明,且具有防龋齿、改善糖尿病患者病情、消除血酮症、改善肝功能等某些特殊的生理功能。1999年,我国通过动物和人体试验,首次证明木糖醇和低聚糖一样,具有双岐杆菌的增殖功能,受到国内外各方关注。 一.木糖醇作为药物 1.木糖醇能提高肠内钙的吸收和体内钙保留率。 芬兰通过动物试验证明,木糖醇和钙的复合物,能提高肠内钙的吸收和使提高体内钙保留率。经12周研究结果确定,木糖醇和钙的最佳摩尔比为1:5。检验采用同位素45钙,来确认保留率的钙。 2.抑制和减少内耳的感染 美国小儿科医学院的一项最新医学研究表明:摄入甜味剂,可以抑制和减少内耳的感染。巳知木糖醇因能阻止突变链球茁的生长而可防龋齿,为探讨木糖醇对引起急性中耳炎的肺炎链球苗是否也有同样的作用,该研究对 857名儿童作了试验,让他们嚼服以木糖醇为基料的口香糖和胶质软糖,或服用木糖浆,结果发现减少了这类耳部感染的病例。 3.木糖醇护肤 日本报导,木糖醇作为医药制剂,和葡萄糖谷氨酸相同,能透过血脑屏障。作为降眼压常用甘露醇外,木糖醇、赤鲜醇也有此功效。日本资生堂公司宣布,经常期研究,据认为木糖醇不仅具有甘油相同的保湿和改善皮肤粗糙的效果,而且使用时不发粘,会令人奋感清爽。因此资生堂公司已开始大力研制配有木糖醇的护肤用品,准备今年生产出以爽身化妆水和乳液为基础的化妆晶。

麦芽糖醇概况

麦芽糖醇概况1.1 麦芽糖醇的基本概况 麦芽糖醇:又称氢化麦芽糖; 化学名:4-O-a-D-葡萄糖基-D-葡萄醇 英文名称:Maltitol;Hydrogenated Maltose; 分子式:C 12H 24 O 11 ; 分子量:344.31 CAS 编号:585-88-6 图1.1 麦芽糖醇分子结构图 麦芽糖醇是以淀粉为主要原料,在高麦芽糖浆生产技术基础上发展起来的,较木糖醇、山梨糖醇使用更为广泛的一种功能性甜味剂。 以往人们食用的甜味剂基本上都是热量高、甜度大的糖类,易引起糖尿病、肥胖症、动脉硬化和心脏衰弱等疾病。麦芽糖醇甜度高、热量低、安全性好,原料也比较充足,制造工艺简单,具有其它甜味料所不具备的独特性能。 麦芽糖醇是以麦芽糖为原料加氢作用还原而得的一种新糖醇类化合物,属非消化性和非发酵性甜味剂,它有液体状和结晶状两种产品。 麦芽糖醇具有甜味高、热量低、安全性好、耐酸热性好、难发酵性强、保湿性良好、产品透明度高等特点。可广泛应用于焙烤食品、糖果、水果罐头、充气饮料、乳酸饮料、冰淇淋、儿童食品、老年食品及其功能性食品的生产中。欧、美、日等

国家麦芽糖醇现大量应用于无糖糖果、食品、饮料产品的生产及开发。按我国食品添加剂使用卫生标准,麦芽糖醇的最大使用量为“正常生产需要”,不作限制。但是与其它糖醇类甜味剂一样,也应避免一次使用量过多,以免引起肠胃不适。 1.2 麦芽糖醇基本理化性质 麦芽糖醇是由淀粉水解、氢化精制而得的一种双糖醇,为白色结晶粉末或无色透明的中性粘稠液体,易溶于水,甜度略低于蔗糖,其甜味柔和可口,具有非发醇性(可防蛀牙)、低热值(可防发胖)、粘度大(可作增稠剂)、耐热耐酸性好(可作安定剂)等特点,食用后不升高血糖值,是一种新型功能性甜味剂,广泛应用于食品加工、医药、保健品等领域。广泛用于食品、医药、化工等领域。 麦芽糖醇易溶于水和乙醇等溶剂,不溶于甲醇和乙醇,黏度适中;具有耐热性、耐酸性、保湿性和非发酵性等特点,基本上不起美拉德反应。晶体形式熔点为148~151℃,甜度为蔗糖的0.8~0.9倍,液体形式的甜度为蔗糖的0.6倍,其甜味柔和可口,无余味。 纯净的麦芽糖醇呈无色透明的晶体,熔点135~140℃,对热和酸都很稳定,极易溶于水,不易溶于甲醇或乙醇。麦芽糖醇的甜度与蔗糖相当,但甜味温和,清口无余味。麦芽糖醇吸湿性强,是各种食品良好的保湿剂,麦芽糖醇很难结晶,商品多为粉剂。麦芽糖醇粘度比山梨醇大两倍,冻结温度与蔗糖相近。 麦芽糖醇的理化性质及生理功能如下:

实验十九 2-甲基-2-己醇的制备

实验十九2-甲基-2-己醇的制备 Experiment 19 Preparation of 2-methyl-2-hexanol [实验目的] 1、了解格氏试剂Grignard在有机合成中的应用及制备方法。 2、掌握制备格氏试剂的基本操作。 3、学习电动搅拌机的安装和使用方法。 4、巩固回流、萃取、蒸馏等操作技能。 [实验内容] 一、实验原理 卤代烷烃与金属镁在无水乙醚中反应生成烃基卤化镁RMgX称为Grignard reagent,Grignard试剂能与羰基化合物等发生亲核加成反应,其加成产物经水解,可得到醇类化合物。本实验的反应式为: n-C4H9Br + Mg无水乙醚n-C4H9MgBr n-C4H9MgBr + CH3COCH3无水乙醚n-C 4H9C(CH3)2 OMgBr n-C4H9C(CH3)2 + H2O H n-C 4H9C(CH3)2 OH 二、仪器及试剂 药品:镁(新制)、无水乙醚(自制)、正溴丁烷、丙酮、5%碳酸钠溶液、10%硫酸溶液、无水碳酸钾 仪器:机械搅拌装置、铁架台、恒压滴液漏斗、三口反应烧瓶、球形和直形冷凝管、干燥管、尾接管、蒸馏瓶等

实验装置图 三、实验步骤 1、正丁基溴化镁的制备 按实验装置图装配仪器(所有仪器必须干燥)。向三颈瓶内投入3.1 g镁条、15 mL无水乙醚及一小粒碘片;在恒压滴液漏斗中混合13.5 mL正溴丁烷和15 mL无水乙醚。先向瓶内滴入约5 mL混合液,数分钟后溶液呈微沸状态,碘的颜色消失。若不发生反应,可用温水浴加热。反应开始比较剧烈,必要时可用冷水浴冷却。待反应缓和后,从冷凝管上端加入25 mL无水乙醚。开动搅拌器(用手帮助旋动搅拌棒的同时启动调速旋纽,至合适转速),并滴入剩余的正溴丁烷-无水乙醚混合液,控制滴加速度以使反应液呈微沸状态。滴加完毕后,在热水浴上回流20 min,使镁条作用完全。 2、2-甲基-2-己醇的制备 将上面制好的Grignard试剂在冰水浴冷却和搅拌下,自恒压滴液漏斗中滴入10 mL 丙酮和15 mL无水乙醚的混合液,控制滴加速度,勿使反应过于猛烈。加完后,在室温下继续搅拌15 min(溶液中可能有白色粘稠状固体析出)。将反应瓶在冰水浴冷却和搅拌下,自恒压滴液漏斗中分批加入100 mL 10 %硫酸溶液,分解上述加成产物(开始滴入宜慢,以后可逐渐加快)。待分解完全后,将溶液倒入分液漏斗中,分出醚层。水层每次用25 mL乙醚萃取两次,合并乙醚层,用30 mL 5%碳酸钠溶液洗涤一次,分液后,用无水

木糖醇的特性及其应用

木糖醇的特性及其应用 食品科学与工程092班谢巧奇200916020210 摘要:本文介绍了木糖醇的化学组成、理化性质及合成方法,重点分析了木糖醇的功能特性和它在各行业中的应用,并对其在未来的发展做出了合理的展望。 关键字:木糖醇;特性;合成;应用 1前言 随着经济的发展,生活水平的提高,人们的食品消费观念发生了极大改变,越来越注重饮食对自身健康水平的影响,消费趋势逐渐从色、香、味均佳的食品转向具有合理营养和保健功能的功能性食品。由于木糖醇具有独特的生理功能——可以作为糖尿病、肥胖病、儿童龋齿、老年性缺钙、心脑血管病等病人的良好食疗添加剂,故木糖醇已被广泛应用于食品生产中,另外,由于木糖醇的各种生理功能,它在各个行业中的应用也甚为广泛。本文将阐述木糖醇的各种生理功能及其特性,分析其应用。 2木糖醇的化学组成 木糖醇(Xylitol),又称为戊五醇,是一种五碳糖醇。木糖醇的分子式为C5H12O5,分子量为152·15,外观为白色结晶状粉末,无臭味,沸点125℃(101·33 k Pa),熔点为92~96℃,易溶于水,溶解度169 g·(100 g水)-1(20℃),水解液pH=5~7[lg·(10 mL水)-1],溶解热-145·6 J·g-1,热能16.99 J·g-1[1]。 虽然早在1890年,德国科学家Fisher,Stahe和法国科学家Betrand就发现了木糖醇,然而在自然界植物中首次发现木糖醇却是在1943年。木糖醇虽广泛地存在于多种植物如草莓、李子、梨、桦树等之中,但数量却非常少,只有0.014 %~0.9 %,不能满足现代生活人们对木糖醇日益增长的需求。近年来,国内外科学工作者们对木糖醇的生产合成工艺进行了坚持不懈的研究与开发,并不断地取得突破性的进展,如采用先进的生物化学法,木糖醇收率可达80 %,纯度99 %;以麦秆为原料,采用高温水解法,收率为63 %;芬兰、瑞士等国家采用原料处理木糖醇的理化性质水解及水解产物浸渍的连续生产工艺,效率高,产品纯度高且成本低。这些日新月异的先进生产工艺技术为木糖醇得以满足不断扩大的全球市场创造了积极而主动的有利条件。 3木糖醇的理化性质 3.1 木糖醇的清凉感

2-甲基-2-己醇的制备教学资料

2-甲基-2-己醇的制 备

2-甲基-2-己醇的制备 作者:xxx 学号:xxx 摘要:以正溴丁烷和镁屑为原料,碘单质为催化剂,在无水无氧的条件下制备格氏试剂,再将格氏试剂与丙酮进行加成,在酸解即可生成2-甲基-2-己醇。在实验过程中,要求掌握格氏试剂的制备方法和应用,同时要掌握无水无氧的操作技术。 关键词:格氏试剂、无水无氧、2-甲基-2-己醇、制备 The preparation of 2 - methyl - 2 – hexanol Author: xxx Student number: xxx Abstract: Bromobutane and magnesium scrap is as raw materials and iodine elemental is as catalyst. Under the condition of no water and oxygen ,we can preparate grignard reagent.And we can acetone with the grignard reagent addition.It is again in acid solution that can be generated 2 - methyl - 2 - hexanol. In the experimental process,we require the preparation method and application of grignard reagent.At the same time ,it is necessary to master the operation of anaerobic technology. Keywords: grignard reagent, anhydrous anaerobic, 2 - methyl - 2 - hexanol and preparation

试验十二2-甲基-2-己醇的制备

实验十二 2-甲基-2-己醇的制备 计划学时:6学时 实验目的: 1、了解Grignard 试剂的制备、应用和进行Grignard 反应的条件。 2、学习电动搅拌机的安装和使用方法。 3、巩固回流、萃取、蒸馏等操作技能。 实验原理:卤代烷烃与金属镁在无水乙醚中反应生成烃基卤化镁(又称 Grignard 试剂);Grignard 试剂能与羰基化合物等发生亲核加成反应,其加成产物用水分解可得到醇类化合物: 【反应式】 【试剂】 3.1g (0.13mol )镁条,17g (13.5ml ,约0.13mol )正溴丁烷,7.9g (10ml ,0.14mol )丙酮,无水乙醚(自制),乙醚,10%硫酸溶液、5%碳酸钠溶液、无水碳酸钾 实验装置: n-C 4H 9Br + Mg 无水乙醚n-C 4H 9MgBr n-C 4H 9MgBr + CH 3COCH 3 无水乙醚n-C 4H 9C(CH 3)2 OMgBr n-C 4H 9C(CH 3)2 + H 2O OMgBr n-C 4H 9C(CH 3)2 OH

实验步骤: 1、正丁基溴化镁的制备 按实验装置图装配仪器(所有仪器必须干燥)。向三颈瓶内投入3.1g镁条、15ml无水乙醚及一小粒碘片;在恒压滴液漏斗中混合13.5ml正溴丁烷和15ml 无水乙醚。 先向瓶内滴入约5ml混合液,数分钟后溶液呈微沸状态,碘的颜色消失(见【注释】)。若不发生反应,可用温水浴加热。反应开始比较剧烈,必要时可用冷水浴冷却。 待反应缓和后,至冷凝管上端加入25ml无水乙醚。开动搅拌(用手帮助旋动搅拌棒的同时启动调速旋纽,至合适转速),并滴入其余的正溴丁烷-无水乙醚混合液,控制滴加速度维持反应液呈微沸状态。 滴加完毕后,在热水浴上回流20min,使镁条几乎作用完全。 2、2-甲基-2-己醇的制备 将上面制好的Grignard试剂在冰水浴冷却和搅拌下,自恒压滴液漏斗中滴入10ml丙酮和15ml无水乙醚的混合液,控制滴加速度,勿使反应过于猛烈。加完后,在室温下继续搅拌15min(溶液中可能有白色粘稠状固体析出)。 将反应瓶在冰水浴冷却和搅拌下,自恒压滴液漏斗中分批加入100ml10%硫酸溶液,分解上述加成产物(开始滴入宜慢,以后可逐渐加快)。待分解完全后,将溶液倒入分液漏斗中,分出醚层。水层每次用25ml乙醚萃取两次,合并醚层,用30ml5%碳酸钠溶液洗涤一次,分液后,用无水碳酸钾干燥(见【注释】)。 装配蒸馏装置。将干燥后的粗产物醚溶液分批滗入小烧瓶中,用温水浴蒸去乙醚,再在石棉网上直接加热蒸出产品,收集137-141℃馏分。 实验关键步骤: 1、严格按操作规程装配实验装置,电动搅拌棒必须垂直且转动顺畅。 2、Grignard试剂的制备所需仪器必须干燥。 3、反应的全过程应控制好滴加速度,使反应平稳进行。

麦芽糖醇功能

麦芽糖醇的应用 1、麦芽糖醇在食品工业中的应用 (1)制备无糖食品通过对糖尿病患者进行急性试验共38例, 服用麦芽糖醇餐后1h及2h的血糖和对照组相比无显著差异。4 例糖尿病患者, 每日服麦芽糖醇20g, 连续服用40d (二个疗程) , 检查血糖、血脂、肾功、肝功未见变化, 说明糖尿病患者可食用麦芽糖醇, 同时麦芽糖醇的甜度是蔗糖的80%~95% , 较其他糖醇高, 且甜昧特性接近于蔗糖,使它在无需改变传统工艺或配方的情况下, 就能直接替代蔗糖, 制造多种无糖食品。 无糖饼干在生产无糖饼干时, 它使用方便, 不用改变基于蔗糖的传统生产配方工艺,以重量比直接代替蔗糖使用, 无须改变原有的设备, 这样生产出来的饼干, 在面团黏度、烘烤参数、颜色、味道、体积及酥脆度等方面, 都与传统产品相似。 面包食品面包在人们饮食生活中占有重要地位, 深受人们的喜爱。目前, 世界各国都有以面包为主食的发展趋势, 如英国、美国、法国等发达国家, 人们的主食中2 /3 以上是面包。面包在我国也逐渐发展成为人们的主食, 当将麦芽糖醇加入面包中时, 由于麦芽糖醇难以被面包酵母、霉菌等菌类利用, 属于难发酵性糖质, 可以延长面包的保质期, 同时, 加入麦芽糖醇后,面包更加柔软, 口感细腻, 更能防止龋齿, 在肠胃内吸收缓慢, 抑制脂肪的形成, 促进钙的吸收, 非常适合肥胖和糖尿病患者等特殊人群食用, 所以无糖面包食品, 食用人群广泛, 市场潜力巨大。 (2)制备无糖糖果由于麦芽糖醇的风味口感好, 具有良好的保湿性和非结晶性, 同时甜味柔和纯正, 加热至150℃不着色, 与氨基酸一起加热不引起美拉德反应, 可用来制造各种糖果。 无糖硬糖麦芽糖醇具有抗结晶的特性, 可与结晶型糖醇如木糖醇等相配合生产无糖硬糖。无糖硬糖有水果风味型, 也有清凉薄荷型, 要求口感、甜度适中, 香味、风味突出。生产无糖硬糖不必选用结晶麦芽糖醇, 但麦芽糖醇含量不能太低, 要求在75%以上, 利用它的熬糖温度高、耐酸稳定性、抗结晶性和吸附保留香精风味能力强的特性, 可显著提高糖果质构的稳定性、光泽性, 有助糖

实验 六2甲基-2-己醇----参考

实验 2-甲基-2-己醇的合成 (2007-11-27使用) 一、实验目的 1.了解Grignard 试剂的制备、应用和进行Grignard 反应的条件。 2.学习电动搅拌机的安装和使用方法。 3.巩固回流、萃取、蒸馏等操作技能。 二、实验原理 醇的制法很多,简单和常用的醇在工业上利用水煤气合成、淀粉发酵、烯烃水合及易得的卤代烃的水解等反应来制备。实验室醇的制备,除了羰基还原(醛、酮、羧酸和羧酸酯)和烯烃的硼氢化—氧化等方法外,利用Grignard 反应是合成各种结构复杂的醇的主要方法。 卤代烷和溴代芳烃与金属镁在无水乙醚中反应生成烃基卤化镁,又称Grignard 试剂。芳香和乙烯型氯化物,则需用四氢呋喃(沸点66℃)为溶剂,才能发生反应。 RX + Mg 无水乙醚 RMgX Crignard 试剂为烃基卤化镁与二烃基镁和卤化镁的平衡混合物: 2Mg + MgX 2 乙醚在Crignard 试剂的制备中有重要作用,醚分子中氧上的非键电子可以和试剂中带部分正电荷的镁作用,生成络合物: Et Et Et Et R-Mg-X 乙醚的溶剂作用是使有机镁化合物更稳定,并能溶解于乙醚。此外,乙醚价格低廉,沸点低,反应结束后容易除去。 卤代烷生成Grignard 试剂的活性次序为:RI >RBr >RC1。实验室通常使用活性居中的溴化物,氯化物反应较难开始,碘化物价格较贵,且容易在金属表面发生偶合,产生副产物烃〔R —R )。 Grignard 试剂中,碳—金属键是极化的,带部分负电荷的碳具有显著的亲核性质,在增长碳链的方法中有重要用途,其最重要的性质是与醛、酮、羧酸衍生物、环氧化合物、二氧化碳及腈等发生反应,生成相应的醇、羧酸和酮等化合物。 RMgX R-C-OMgX R H + C=O R-C-OH R' C OCH 3 O RMgX R' C OMgX R 2H +R R' C OH R 22H 2C CH 2 RMgX RCH 2CH 2OMgX H +RCH 2CH 2OH 2

麦芽糖醇

麦芽糖醇 标签:暂无标签 顶[0]分享到发表评论(0)编辑词条开心001人人网新浪微博 麦芽糖醇 麦芽糖醇是由麦芽糖氢化而得到的糖醇,它有液体状和结晶状两种产品。液体产品是由高麦芽糖醇结晶析出,即可制得结晶产品。作为麦芽糖醇的原料,麦芽糖的含量要达到60%以上为好,否则氢化后总醇中麦芽糖醇不到50%,就不能叫麦芽糖醇。麦芽糖醇氢化的主要流程如下:备料——调pH——进料反应——过滤脱色——离子交换——蒸发浓缩——成品。 目录 ?? 简介 ?? 生理学特性 ?? 生产工艺 ?? 糖浆制备 [显示全部] 简介编辑本段回目录 麦芽糖醇 麦芽糖醇 分子式:C12H24O11 分子量:344.31 生理学特性编辑本段回目录

麦芽糖醇 非腐蚀性:麦芽糖醇不是产酸的基质,几乎完全不会导致细菌合成不溶性聚糖,所以麦芽糖醇是极难形成龋齿的非腐蚀性新糖质。 促进钙的吸收:通过动物实验表明麦芽糖醇有促进肠道对钙吸收的作用和增加骨量及提升骨强度的性能。 刺激胰岛素的分泌:麦芽糖醇由于难以消化吸收,血糖值上升少,故而对葡萄糖代谢所必须的胰岛素的分泌,没有什么刺激作用,这样一来减少了胰岛素的分泌。由此可见,麦芽糖醇可以作为供糖尿病患者食用的甜味剂。 抑制体内脂肪过多积聚:如果同时摄入高脂肪和砂糖后,由于刺激了胰岛素的分泌,脂蛋白分解酶活性提高,故而很容易增加体内脂肪的积聚。若用麦芽糖醇替代砂糖制造如冰淇淋、蛋糕、巧克力之类的高脂肪食品,由于不会刺激胰岛素分泌,因此可以期望减少体内脂肪的过度积聚。 难消化性:麦芽糖醇在人体内几乎完全不能为唾液、胃液、小肠膜酶等分解,除肠内细菌可利用一部分外,其余均无法消化而排出体外。 摄人体内的麦芽糖醇中,约10%在小肠分解吸收后作为能源利用;余下的90%在大肠内的细菌作用下分解为短链脂肪酸,其余一部分在大肠吸收后作为能源利用。因而将麦芽糖醇在小肠内的吸收量加上大肠内短链脂肪酸的吸收量,可以计算出麦芽糖醇的热量值约为2Kea l/g。 生产工艺编辑本段回目录 麦芽糖醇是由麦芽糖经氢化还原制成的双糖醇。工业上其生产工艺可分为两大部分,第一部分是将淀粉水解制成高麦芽糖浆,第二部分是将制得的麦芽糖浆加氢还原制成麦芽糖醇。 麦芽糖醇

实验六 2甲基-2-己醇的合成

实验五 2-甲基-2-己醇的合成 一、实验目的 1.通过格氏反应制备产物。 2.熟悉格氏试剂的制备、应用和进行格氏反应的条件。 3.掌握无水反应装置、机械搅拌装置和滴液漏斗的使用。 4.正确安装无水反应、并且带有滴液漏斗和回流冷凝管的机械搅拌装置。 二、实验原理 醇的制法很多,简单和常用的醇在工业上利用水煤气合成、淀粉发酵、烯烃水合及易得的卤代烃的水解等反应来制备。实验室醇的制备,除了羰基还原(醛、酮、羧酸和羧酸酯)和烯烃的硼氢化—氧化等方法外,利用Grignard 反应是合成各种结构复杂的醇的主要方法。 卤代烷和溴代芳烃与金属镁在无水乙醚中反应生成烃基卤化镁,又称Grignard试剂。芳香和乙烯型氯化物,则需用四氢呋喃(沸点66℃)为溶剂,才能发生反应。 RX + Mg 无水乙醚 RMgX Crignard试剂为烃基卤化镁与二烃基镁和卤化镁的平衡混合物: 2 Mg + MgX2 乙醚在Crignard试剂的制备中有重要作用,醚分子中氧上的非键电子可以和试剂中带部分正电荷的镁作用,生成络合物:

Et Et Et Et R-Mg-X 乙醚的溶剂作用是使有机镁化合物更稳定,并能溶解于乙醚。此外,乙醚价格低廉,沸点低,反应结束后容易除去。 卤代烷生成Grignard 试剂的活性次序为:RI >RBr >RC1。实验室通常使用活性居中的溴化物,氯化物反应较难开始,碘化物价格较 贵,且容易在金属表面发生偶合,产生副产物烃〔R —R )。 Grignard 试剂中,碳—金属键是极化的,带部分负电荷的碳具有显着的亲核性质,在增长碳链的方法中有重要用途,其最重要的性质是与醛、酮、羧酸衍生物、环氧化合物、二氧化碳及腈等发生反应,生成相应的醇、羧酸和酮等化合物。 RMgX R-C-OMgX R H + C=O R-C-OH R' C OCH 3 O RMgX R' C OMgX R 2H +R R' C OH R 22H 2C CH 2 RMgX RCH 2CH 2OMgX H + RCH 2CH 2OH 2 CO 2O R C OMgX H + O R C OH R' C N RMgX R' C NMgX H + R' C R O 2H 2O 反应所产生的卤化镁络合物,通常由冷的无机酸水解,就可使有机化合物游离出来。对强酸敏感的醇类化合物可用氯化铵溶液进行水解。 Grignard 试剂的制备必须在无水条件下进行,所用仪器和试剂均

赤藓糖醇的特性及应用

赤藓糖醇的特性及应用:摘要:赤藓糖醇是一种低热量甜味剂,具有热值低、结晶性好、口感好、 无致龋性、对糖尿病人安全等特点,其应用前景极为广泛。本文主要论述了赤藓糖醇的性质、特性、生产及在食品工业中的应用。 关键词:赤藓糖醇;性质;特性;应用;生产 赤藓糖醇是一种采用生物技术生产的新型发酵型低热量甜味剂,1999年6月国际食品添加剂专家委员会(JECFA)批准赤藓糖醇作为食用甜味剂,且无需规定ADI值。目前,赤藓糖醇在美国、日本、澳大利亚、新西兰、新加坡、韩国、墨西哥等国已用于食品生产。2007年6月19日我国卫生部公告批准赤藓糖醇作为甜味剂应用于口香糖、固体饮料、调制乳等食品中。 1 赤藓糖醇的性质 赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。 赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。 1.1 甜味纯正 赤藓糖醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的70%~80%。与其他甜味剂混合使用具有改善、协调味质作用,如赤藓糖醇与高甜味剂甜菊苷以1000:(1~7)混合使用,可有效掩盖甜菊苷的后苦味;将20%以上的赤藓糖醇与白砂糖并用,其后味和甜味比白砂糖更为理想;溶液中1%~3%的赤藓糖醇能有效掩饰刺激性口味,改善溶液的口感和风味。 1.2 稳定性高 赤藓糖醇在热、酸、碱条件下稳定,适用的酸碱范围为pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。 1.3 结晶性好 赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为20℃、相对湿度为90%的环境中,放置5d后的吸湿增重,麦芽糖约为17%,蔗糖约为10%,而赤藓糖醇仅为2%左右。 1.4 熔解热高 其溶解热为-97.4J/g,由于溶解热较大,溶于水时会吸收较多的能量,有很强的制冷作用。实验表明,将10g 赤藓糖醇溶解于90g水中,温度下降约4.8℃,用它添加生产的固体食品和糖果在食用时具有口感清凉特点。 2 赤藓糖醇的生物学特性 2.1 低能量值 赤藓糖醇分子能量值为1.67kJ/g,而木糖醇11.7 kJ/g,异麦芽酮糖醇8.36KJ/g,蔗糖16.72 kJ/g,故其热量值仅为蔗糖10%左右。同时由于赤藓糖醇分子小,被动扩散容易被小肠吸收,80%的赤藓糖醇可以进入血液循环,被人体吸收后的赤藓糖醇分子不能被机体内的酶系统分解,不为机体提供热量,不参与糖代谢引起血糖变化,只能透过肾脏从血液滤出,随尿液从人体排出。实验表明,一次性摄人赤藓糖醇25g,3h内有40%从尿液中排出,大约在24h内,有80%从尿液中排出,尿液总排出量达90%以上,没有被小肠摄入的20%赤藓糖醇进入大肠后,肠道细菌发酵成不饱和脂肪酸被机体利用的不到50%。因此被摄人赤藓糖醇中只有5%~10%能为人体提供能量,故赤藓糖醇的实际能量值仅为0.84KJ/g,是所有多元糖醇甜昧剂中能量最低的一种,也被称为“零”热值配料。 2.2 高耐受性,无毒副作用 赤藓糖醇的生物耐受性好,安全无毒,动物和临床实验中不会导致腹泻的山梨糖醇最大单次剂量是0.24g/kg 体重,而赤藓糖醇为0.80 g/kg体重,是木糖醇、麦芽糖醇、异麦芽糖醇和乳糖醇的2~3倍,甘露醇的3~4倍,与其他多元糖醇相比,赤藓糖醇在人体内的最大耐受量为50g/d。这是因为绝大部分赤藓糖醇能被小肠吸

2-甲基-2-己醇的制备

2-甲基-2-己醇的制备 作者:xxx 学号:xxx 摘要:以正溴丁烷和镁屑为原料,碘单质为催化剂,在无水无氧的条件下制备格氏试剂,再将格氏试剂与丙酮进行加成,在酸解即可生成2-甲基-2-己醇。在实验过程中,要求掌握格氏试剂的制备方法和应用,同时要掌握无水无氧的操作技术。 关键词:格氏试剂、无水无氧、2-甲基-2-己醇、制备 The preparation of 2 - methyl - 2 – hexanol Author: xxx Student number: xxx Abstract: Bromobutane and magnesium scrap is as raw materials and iodine elemental is as catalyst. Under the condition of no water and oxygen ,we can preparate grignard reagent.And we can acetone with the grignard reagent addition.It is again in acid solution that can be generated 2 - methyl - 2 - hexanol. In the experimental process,we require the preparation method and application of grignard reagent.At the same time ,it is necessary to master the operation of anaerobic technology. Keywords: grignard reagent, anhydrous anaerobic, 2 - methyl - 2 - hexanol and preparation 醇是一种重要的有机化合物,被广泛应用于医药、农药、香料等诸多领域,随着现代石油化工和精细化工的发展,一些结构更复杂的多碳醇越来越受人们的重视。例如在对乙醇柴油在柴油机上的应用研究过程中,一个最大的问题是如何解决柴油和乙醇的难互溶问题和混合互溶后的存储稳定性,经过研究,作为乙醇柴油混合燃料助溶剂使用的多碳醇类油料与柴油的互溶性更好且价格更便宜。因此对多碳醇的研究将会产生巨大的经济效益。 工业上以石油裂解气中的烯烃为原料合成醇,低级醇是某些碳水化合物和蛋白质发酵的产物。实验室制备醇的方法有很多,可以看作是在分子中引进羟基的方法。用烯烃为原料制备醇是一类常用的方法,最简单的为烯烃强酸水解,但此方法对于复杂的底物是无法应用的,目前一般是通过硼氢化反应制的相应的醇。硼氢化反应的特点是:步骤简单、副反应少,生成的醇的产率很高。醛、酮分子中的羰基,可以在催化剂Pt,Ni等存在下加氢,醛加氢后还原成伯醇,酮加氢和还原成仲醇,还原时也可用乙酸加钠、四氢铝合锂、四氢硼化钠。醛、

2-甲基-2-己醇实验

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2-甲基-2-己醇实验 实验 34 2-甲基-2-己醇实验目的 1.了解通过格剂氏反应制备二级醇的方法。 2.了解影响格氏试剂产率和稳定性的因素。 3.学习无水无氧操作的方法与技巧。 4.巩固蒸馏、萃取、干燥等操作。 实验原理醇的制法很多,简单的醇在工业上可利用水煤气合成、淀粉发酵、烯烃水合等反应来制备。 实验室制备醇的方法有羰基还原(醛、酮、羧酸和羧酸酯)、烯烃的硼氢化氧化和格氏反应等。 卤代烷和溴代芳烃与金属镁在无水乙醚中反应生成烃基卤化镁,又称格氏试剂,格氏试剂进一步与羰基反应,经水解后可以制备醇。 实验用品三颈烧瓶,滴液漏斗,球形冷凝管,干燥管,分液漏斗,蒸馏装置,氯化钙干燥管。 镁屑,正溴丁烷,丙酮,无水乙醚,硫酸( 10 %),碳酸钠( 5 %溶液),无水碳酸钾。 实验装置图实验步骤在 250 mL 三颈瓶上分别装置搅拌器、冷凝管及滴液漏斗,在冷凝管及滴液漏斗的上口装置氯化钙干燥管。 瓶内放置 1.55 g ( 0.065 mol )镁屑或除去氧化膜的镁条、 8 1 / 4

mL 无水乙醚及一小粒碘片。 在滴液漏斗中混合 6.7 mL ( 8.5 g , 0.062 mol )正溴丁烷和 8 mL 无水乙醚。 先向瓶内滴入约 3 mL 混合液,数分钟后即见溶液呈微沸状态,碘的颜色消失。 若不发生反应,可用温水浴加热。 反应开始比较剧烈,必要时可用冷水浴冷却。 待反应缓和后,自冷凝管上端加入 12 mL 无水乙醚。 开动搅拌,并滴入其余的正溴丁烷与乙醚的混合液。 控制滴加速度并维持反应液呈微沸状态。 滴加完毕后,在水浴上回流 20 min ,使镁屑几乎作用完全。 将上面制好的格氏试剂在冰水浴冷却和搅拌下,自滴液漏斗中滴入 5 mL ( 4 g , 0.069 moL )丙酮和 8 mL 无水乙醚的混合液,控制滴加速度,勿使反应过于猛烈。 加完后,在室温继续搅拌 15min 。 溶液中可能有白色粘稠状固体析出。 将反应瓶在冰水浴冷却和搅拌下,自滴液漏斗分批加入 50 mL 10 %硫酸溶液,分解产物。 开始滴入速度应较慢,以后可逐渐加快。 待分解完全后,将溶液倒入分液漏斗中,分出醚层。 水层每次用 15 mL 乙醚萃取两次,合并醚层,用 15 mL 5 %碳酸钠溶液洗涤一次,用无水碳酸钾干燥。

麦芽糖醇在食品中的应用

麦芽糖醇在食品中的应 用 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

麦芽糖醇在食品中的应用 麦芽糖醇在无糖糖果中的应用 随着人们的膳食结构向着低热量、低脂肪、低糖的转变,无糖糖果应运而生。在20世纪70年代初,一种无糖口香糖被首次推向美国市场,经过近30年的发展,无糖口香糖的销售量得到较大幅度的提高。这一成功的尝试,有力地促进了糖果无糖化的发展。从此,糖果大家族中繁衍出一个新的群体——无糖糖果。所谓无糖糖果,较为传统的说法是:用不致龋齿的糖质制成的、比常规糖果减少1/3以上热量而其他营养素相同的糖果。 无糖糖果在欧美与日本市场发展速度较快,平均销售额已达整个糖果销售总额的30%左右,品种也有丰富的变化。无糖糖果已成为当今国际糖果市场的消费热点和开发重点。其主要原料可以采用麦芽糖醇,且麦芽糖醇具有不升高血糖、热值低、防龋齿等特性,特别适合于糖尿病和肥胖患者以及儿童、妇女等广大消费者。现介绍几种无糖糖果配方:无糖硬糖参考配方:粉状麦芽糖醇98.52%、柠檬0.7%、食用香料0.6%、食用色素0.06%。 先将粉状麦芽糖醇和色素共同加热至171℃,接着把糖料置于真空装置中保持5分钟,然后将糖料冷却至具有一定的可塑性时,依次添加柠檬酸、香料并捏合均匀,最后切割成型,冷却包装,并置于密封容器中。

无糖牛乳硬糖配方:粉状麦芽糖醇63.2%、纯净水15.17%、浓缩淡牛乳17.7%、植物油脂3.8%、单甘酯0.05%、食用香精0.08%。 在熬糖过程中,先将麦芽糖醇和水加热至130℃—135℃,不断搅拌,125℃时加入牛乳,真空5分钟。出锅后糖液温度降低至90℃—100℃时,加入植物油脂、乳化剂和香精,随后进入糖果常规生产工序。应当注意,在加入牛乳和植物油脂时,要控制好熬糖时间和温度,最终产品的水分含量应小于2%。 麦芽糖醇的甜度为蔗糖的80%—90%,用麦芽糖醇制成的糖果比其他“非蔗糖”糖果的口感好。含麦芽糖醇的糖果口感清爽冰凉,其甜味纯正,无不良后味。由于其分子结构特殊,不会发生美拉德褐变反应,因此熬糖时糖体色泽稳定,能够经受熬煮时的高温,不易发生分解。麦芽糖醇不易被口腔中的链球菌突变体发酵利用,抑制了口腔中细菌的生长,有效地防止了牙齿龋变的发生。因此,麦芽糖醇作为无糖糖果的主要配料,在欧洲及美、日等国家十分畅销,是当今全球流行的健康食品之一,在国内市场更具广阔的发展前景。 麦芽糖醇在无糖蛋糕中的应用 ? ? 国外早在20世纪80年代就已开始研究低能量蛋糕。1984年,美国有两家公司联合研制出一系列使用结晶果糖的低能量蛋糕预混合粉,可

麦芽糖醇在食品中的应用

麦芽糖醇在食品中的应用 麦芽糖醇在无糖糖果中的应用 随着人们的膳食结构向着低热量、低脂肪、低糖的转变,无糖糖果应运而生。在20世纪70年代初,一种无糖口香糖被首次推向美国市场,经过近30年的发展,无糖口香糖的销售量得到较大幅度的提高。这一成功的尝试,有力地促进了糖果无糖化的发展。从此,糖果大家族中繁衍出一个新的群体——无糖糖果。所谓无糖糖果,较为传统的说法是:用不致龋齿的糖质制成的、比常规糖果减少1/3以上热量而其他营养素相同的糖果。 无糖糖果在欧美与日本市场发展速度较快,平均销售额已达整个糖果销售总额的30%左右,品种也有丰富的变化。无糖糖果已成为当今国际糖果市场的消费热点和开发重点。其主要原料可以采用麦芽糖醇,且麦芽糖醇具有不升高血糖、热值低、防龋齿等特性,特别适合于糖尿病和肥胖患者以及儿童、妇女等广大消费者。现介绍几种无糖糖果配方: 无糖硬糖参考配方:粉状麦芽糖醇98.52%、柠檬0.7%、食用香料0.6%、食用色素0.06%。 先将粉状麦芽糖醇和色素共同加热至171℃,接着把糖料置于真空装置中保持5分钟,然后将糖料冷却至具有一定的可塑性时,依次添加柠檬酸、香料并捏合均匀,最后切割成型,冷却包装,并置于密封容器中。 无糖牛乳硬糖配方:粉状麦芽糖醇63.2%、纯净水15.17%、浓缩淡牛乳17.7%、植物油脂3.8%、单甘酯0.05%、食用香精0.08%。 在熬糖过程中,先将麦芽糖醇和水加热至130℃—135℃,不断搅拌,125℃时加入牛乳,真空5分钟。出锅后糖液温度降低至90℃—100℃时,加入植物油脂、乳化剂和香精,随后进入糖果常规生产工序。应当注意,在加入牛乳和植物油脂时,要控制好熬糖时间和温度,最终产品的水分含量应小于2%。 麦芽糖醇的甜度为蔗糖的80%—90%,用麦芽糖醇制成的糖果比其他“非蔗糖”糖果的口感好。含麦芽糖醇的糖果口感清爽冰凉,其甜味纯正,无不良后味。由于其分子结构特殊,不会发生美拉德褐变反应,因此熬糖时糖体色泽稳定,能够经受熬煮时的高温,不易发生分解。麦芽糖醇不易被口腔中的链球菌突变体发酵利用,抑制了口腔中细菌的生长,有效地防止了牙齿龋变的发生。因此,麦芽糖醇作为无糖糖果的主要配料,在欧洲及美、日等国家十分畅销,是当今全球流行的健康食品之一,在国内市场更具广阔的发展前景。 麦芽糖醇在无糖蛋糕中的应用 国外早在20世纪80年代就已开始研究低能量蛋糕。1984年,美国有两家公司联合研制出一系列使用结晶果糖的低能量蛋糕预混合粉,可用于制造能量降低33%的高品质蛋糕。如今,随着人们生活水平的不断提高,无糖食品越来越受到消费者的欢迎。无糖蛋糕在制作过程中可用功能性甜味剂———麦芽糖醇替代蔗糖。麦芽糖醇作为一种无糖原料,具有以下几种功能特性: 1.口感纯正,清凉绵软,不被口腔内的链球菌转化成酸,能够预防龋齿的发生。 2.促进人体对钙的消化和吸收。 3.能量较低,在人体内很难被消化吸收,不易形成脂肪。 4.不刺激人体胰岛素分泌,在体内分解速度很慢,不会引起血糖升高,所以特别适合糖尿病患者食用。 无糖蛋糕按其熟制形式可分为无糖 烘蛋糕和蒸蛋糕两种。现介绍一种无糖烘蛋糕的配方及工艺:配方:鲜鸡蛋10千克、富强粉8千克、液体麦芽糖醇10千克、清水1.5千克、花生油1.5千克(擦模用)。 工艺流程及要求:1.打蛋浆打蛋温度一般在20℃。

实验六甲基己醇的合成

实验六甲基己醇的合成公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

实验五 2-甲基-2-己醇的合成 一、实验目的 1.通过格氏反应制备产物。 2.熟悉格氏试剂的制备、应用和进行格氏反应的条件。 3.掌握无水反应装置、机械搅拌装置和滴液漏斗的使用。 4.正确安装无水反应、并且带有滴液漏斗和回流冷凝管的机械搅拌装置。 二、实验原理 醇的制法很多,简单和常用的醇在工业上利用水煤气合成、淀粉发酵、烯烃水合及易得的卤代烃的水解等反应来制备。实验室醇的制备,除了羰基还原(醛、酮、羧酸和羧酸酯)和烯烃的硼氢化—氧化等方法外,利用Grignard 反应是合成各种结构复杂的醇的主要方法。 卤代烷和溴代芳烃与金属镁在无水乙醚中反应生成烃基卤化镁,又称Grignard试剂。芳香和乙烯型氯化物,则需用四氢呋喃(沸点66℃)为溶剂,才能发生反应。 RX + Mg 无水乙醚 RMgX Crignard试剂为烃基卤化镁与二烃基镁和卤化镁的平衡混合物: 2 Mg + MgX2 乙醚在Crignard试剂的制备中有重要作用,醚分子中氧上的非键电子可以和试剂中带部分正电荷的镁作用,生成络合物: Et Et Et Et R-Mg-X 乙醚的溶剂作用是使有机镁化合物更稳定,并能溶解于乙醚。此外,乙醚价格低廉,沸点低,反应结束后容易除去。 卤代烷生成Grignard试剂的活性次序为:RI>RBr>RC1。实验室通常使用活性居中的溴化物,氯化物反应较难开始,碘化物价格较贵,且容易在金属表面发生偶合,产生副产物烃〔R—R)。 Grignard试剂中,碳—金属键是极化的,带部分负电荷的碳具有显着的亲核性质,在增长碳链的方法中有重要用途,其最重要的性质是与醛、酮、羧酸衍生物、环氧化合物、二氧化碳及腈等发生反应,生成相应的醇、羧酸和酮等化合物。

相关主题
文本预览
相关文档 最新文档