当前位置:文档之家› 2.4 矩阵的秩

2.4 矩阵的秩

矩阵秩的研究与应用

. I 矩阵秩的研究与应用 [摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。矩阵一旦确定秩也就确定了。它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关容在高等代数中出现的极为频繁,作用较大。 本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。这里就不细说了,具体容还得从文章中来了解。[1][2][3] [关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。 矩阵秩的研究与应用

. I 1 前言 矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢? 本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。矩阵方面的理论是非常重要的容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。 理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。在前人研究的基础上,我主要是对其进行了一个归纳总结,并简单的说了些自己的感想,希望大家能够从中有所收获。

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

浅谈幂等矩阵的性质

万方数据

万方数据

浅谈幂等矩阵的性质 作者:侯君芳, 黄丽莉 作者单位:郑州旅游职业学院,河南郑州,450009 刊名: 科技风 英文刊名:TECHNOLOGY TREND 年,卷(期):2009,""(13) 被引用次数:0次 相似文献(6条) 1.期刊论文高灵芝幂等矩阵秩试题求解及其结论的推广-中国科教创新导刊2008,""(31) 本文从高等代数课本中的一道习题入手,从不同的角度给出这道习题的不同解法,并把其结论进行了推广. 2.期刊论文邹本强.ZOU Ben-qiang特殊矩阵的特征值性质-重庆职业技术学院学报2006,15(5) 在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的性质时给出了矩阵特征值的定义,但对矩阵特征值的性质研究很少,对特殊矩阵的特征值性质的研究更少,而特殊矩阵的特征值对研究特殊矩阵有很重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论一些特殊矩阵的性质.为此,本文围绕幂等矩阵、反幂等矩阵、对合矩阵、反对合矩阵、幂零矩阵、正交矩阵、对角矩阵、可逆矩阵等特殊矩阵给出了其主要性质并加以证明,为广大读者学习矩阵时提供参考. 3.期刊论文孙莉.陈传良.王品超分块矩阵的理论应用-曲阜师范大学学报(自然科学版)2002,28(1) 分块矩阵的理论在高等代数中有着广泛的应用,用这一理论解决问题简明而清晰,该文是本理论的具体应用. 4.期刊论文杨忠鹏.陈梅香.林国钦.Yang Zhongpeng.Chen Meixiang.Lin Guoqin关于三幂等矩阵的秩特征的研究-数学研究2008,41(3) 本文对已有的关于三幂等矩阵秩的等式作了进一步研究,指出其中有些可以作为判定三幂等矩阵的充要条件,即三幂等矩阵的秩特征等式.本文还证明了有无穷多种三幂等矩阵的秩特征等式形式. 5.期刊论文杨忠鹏.陈梅香.YANG Zhong-peng.CHEN Mei-xiang关于矩阵秩等式研究的注记-莆田学院学报2008,15(5) 最近一些文献应用自反广义逆和广义Schur补得到了一些重要的矩阵秩的恒等式.对这些结果,给出了只用分块初等变换的简单证法;作为应用对 k(k=2,3,4)幂等矩阵的秩等式作进一步讨论,还给出了打洞技巧在求秩上应用的例子. 6.期刊论文林志兴.杨忠鹏.LIN Zhi-xing.YANG Zhong-peng与给定矩阵A的可交换子环C(A)的一些探讨-莆田学院学报2010,17(2) 收集整理现在常用的高等代数与线性代数材料中与给定矩阵A可交换的矩阵所构成的全矩阵空间pn×n的子空间C(A)的习题.指出C(A)的交换性及用 A的多项式表示问题同C(A)的维数与n有密切关系,得到n(n≥3)阶幂等矩阵A或对合矩阵A的C(A)都是不可交换的结论. 本文链接:https://www.doczj.com/doc/628572682.html,/Periodical_kjf200913005.aspx 授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:d7e0c32f-0155-4388-9ee0-9dde00edfb00 下载时间:2010年8月26日

关于矩阵秩的证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n ×m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →? ??? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

从不同的角度看矩阵的行秩与列秩

tianpeng.72pines./ 从不同的角度看矩阵的行秩与列秩——兼论如何学好线性代数 线性代数中,有那么几个神秘又神奇的东西,总是让初学它的人琢磨不透,无法理解,其中就有矩阵的行向量和列向量的关系,为什么一个矩阵的行向量里有多少个线性无关的向量,列向量里就一定也有多少个线性无关的向量呢?或者考虑稍微简单一点的问题,一个方阵,为什么行向量线性无关或线性相关列向量就一定也线性无关或相关呢?行秩为何等于列秩? 这本来应该是一个基本又简单的事实。但是,请回忆一下你当初初学线性代数时的容编排顺序,是怎么引入这个问题的,当时又是怎样解决这个问题的? 传统的教材编写思路是从线性方程组开始整个线性代数话题的引入,这个过程中定义行列式和矩阵,用n 元数组引入向量,线性相关和无关等概念,讨论解存在的条件,解的结构,等等。总之,一切以方程组为核心,给人的感觉就是线性代数就是方程组的理论,一切讨论的目的都是为了解决小小的方程组问题。 在这个过程中,有一个矩阵行秩等于列秩的命题,此时学生只了解方程组理论和行列式,因此这时对这个问题的解释当然也无法离开方程组或行列式。下面简述两个典型的教材中的证明方法: 第一个证明来自志杰《高等代数与解析几何》。 证明:首先,矩阵的初等行变换不改变矩阵的行秩,初等列变换不改变矩阵的列秩。这是由向量组的初等变换不改变向量组的线性相关或无关性保证的,即将某个向量乘以非零的倍数、将某个向量加到另一个向量上,都不改变向量组的线性相关或无关性。 接着证明矩阵的初等行变换不改变矩阵的列秩。 设A是m*n阶矩阵,任意从A的n个列向量中选取k个列向量a1,a2,…,ak,它们线性无关的充要条件是线性方程组a1×1+a2×2+…+akxk=0只有零解。而对矩阵A进行初等行变换不改变此方程组的解,因此不改变这k个列向量的线性相关或无关性。这说明A的列向量的秩在矩阵的初等行变换中不变。同理矩阵的初等列变换不改变矩阵的行秩。 接下来,可以把A经过初等行变换和初等列变为只有对角线上有1或0,其它位置都为0的矩阵,在这个过程中行秩和列秩都不改变,从这个矩阵中看出行秩等于列秩,因此原来的矩阵行秩也等于列秩。 第二个证明来自北大数学系几何与代数教研室前代数小组编《高等代数》 证明:考虑线性方程组AX=0,首先证明如果未知数的个数超过A的行秩,那么它有非零解。设m*n阶矩阵A的行秩为r,考虑方程组AX=0,它由m个方程n个未知数组成。从A的行向量中选取r个线性无关的行向量,重新组合成矩阵B,那么方程组AX=0和BX=0同解。这时,如果B的列数大于行数,那么方程组BX=0必有非零解,从而AX=0也有非零解。 接着证明行秩等于列秩。设m*n阶矩阵A的行秩为r,列秩为s。考虑A的任意r+1个列向量组成的矩阵C,因为C的行秩不大于r(因为C的行向量都是A的行向量的一部分分量组成的),所以CX=0有非零解,这说明这r+1个列向量线性相关。所以A的列秩最大为r,即s<=r。同理可证r<=s,因此s=r。 有了行秩等于列秩的性质,完全可以用行秩或列秩定义矩阵的秩了。编写教材的人和老师们都认为,只要能够顺利定义出矩阵的秩,这个证明就足以满足初学时的需要了,既没有必要又没有条件再将它深入地挖掘下去。 但是它仍然让我困惑,即使把书上的这个证明看得明明白白,也不理解为什么行秩等于列秩。因为向量是个几何的概念,现在这个证明中看不出一点几何上向量的影子,这两个例子都依赖于线性方程组理论,都

求矩阵的秩的步骤

矩阵的秩就是指这个矩阵经过行列变换过后,化为最简式,以后非零行或者是非零列的最小的数目,这里简单介绍一下,怎样求矩阵的秩。工具/原料 ?矩阵 ?matlab 方法/步骤 1.1 启动matlab程序。 2.2 在命令窗口任意输入一个矩阵a。 >>a=rand(9,9) 3.3 调用rank函数,按一下回车键即可求得矩阵的秩=9。 4.4 再任意输入一个矩阵b。 >>b=rand(5,8) 5.5 再次调用rank函数,即可求到矩阵的秩=5。 END 注意事项 ?当一个矩阵的秩等于五的时候,就表示矩阵当中有五个飞线性 相关的向量组。

?出现的字肯定是小于行数,或者是小于列数。 r3-2r1,r4-r1~ 1 1 2 2 1 0 2 1 5 -1 0 -2 -1 -5 1 0 0 -2 2 -2 r3+r2,交换r3 r4 ~ 1 1 2 2 1 0 2 1 5 -1 0 0 -2 2 -2 0 0 0 0 0 只是求秩就不用再计算,显然矩阵的秩为3 矩阵的秩一般有2种方式定义 1.用向量组的秩定义 矩阵的秩= 行向量组的秩= 列向量组的秩 2.用非零子式定义 矩阵的秩等于矩阵的最高阶非零子式的阶 单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形 梯矩阵中非零行数就是矩阵的秩 这个定义涉及到向量的极大线性无关组.设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组.

向量组的极大线性无关组中所含向量的个数,称为向量的秩. 矩阵的行向量的秩称为行秩.列向量的秩成为列秩.

用按列选主元消元法求矩阵A的秩

一、实验名称:项目二 按列选主元消元法 二、实验题目:用按列选主元消元法求矩阵A 的秩 11230216413267111612A -????--??=??--??---?? 三、实验程序: #include #include void main() { int i,j,k,row,b,d=2,flag,rank=0; double a[4][5]={{1,1,-2,3,0},{2,1,-6,4,-1},{3,2,-6,7,-1},{1,-1,-6,-1,2}}; double l[5]={0}; double max,temp; printf("原始矩阵为:\n"); for(i=0;i<4;i++) { for(j=0;j<5;j++) { printf("%lf ",a[i][j]); } printf("\n"); } for(k=0;k<3;k++) { printf("\n 第%d 次\n",k); max=a[k][k]; //选主元 for(i=k+1;i<4;i++) { if(fabs(a[i][k])>fabs(max)) { max=a[i][k]; row=i; } } if(row!=k) { //交换第i 行和第k 行元素

for(j=0;j<5;j++) { temp=a[row][j]; a[row][j]=a[k][j]; a[k][j]=temp; } for(i=0;i<4;i++) { for(j=0;j<5;j++) { printf("%f ",a[i][j]); } printf("\n"); } } //消元 for(b=k;b<=d;b++) { for(i=0;i<5;i++) { l[i]=a[b+1][k]*a[k][i]/a[k][k]; } for(j=0;j<5;j++) a[b+1][j]=a[b+1][j]-l[j]; for(i=0;i<4;i++) { for(j=0;j<5;j++) printf("a[%d][%d]=%6.4f ",i,j,a[i][j]); printf("\n"); } printf("\n"); } } //展示 printf("矩阵为:\n"); for(i=0;i<4;i++) { for(j=0;j<5;j++) { printf("%lf ",a[i][j]); } printf("\n");

矩阵的秩的性质

矩阵的秩的性质和 矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r 的n 级矩阵(n r ≥),任意r+1阶行列式为0,并且至少有一个r 阶子式不为0. 3、)}(),(min{)(B rank A rank AB rank ≤ )'()(A r a n k A r a n k =,)()()(B rank A rank B A rank ±=± )()(A rank kA rank = 4、设A 是n s ?矩阵,B 为s n ?矩阵,则+)(A rank )}(),(min{)()(B rank A rank AB rank n B rank ≤≤- 5、设A 是n s ?矩阵,P,Q 分别是s,n 阶可逆矩阵,则 )()()(A rank AQ rank PA rank ==

6、设A 是n s ?矩阵,B 为s n ?矩阵,且AB=0,则 n B rank A rank ≤+)()( 7、设A 是n s ?矩阵,则)()'()'(A rank A A rank AA rank == 其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A ,n A rank =)( 则方程组有惟一非零解,n A rank <)(则有无穷多解,换言之,即为克莱姆法则, 非齐次线性方程组有解时,n A rank =)(惟一解,n A rank <)( 有无穷多解。 还有满秩矩阵: 9、可逆?满秩 10、行(列)向量组线性无关,即n 级矩阵化为阶梯形矩阵后非零行数目为n 。 扩展到矩阵的分块后: 11、110(A )(A )0n n A rank rank rank A ?? ?=++ ? ??? 12、()()0A C rank rank A rank B B ??≥+ ???

矩阵的秩与矩阵的运算

《高等代数与解析几何》概念复习 第一章向量代数 (向量(vector)),(向量的长度(模)),(零向量(zero vector)),(负向量),(向量的加法(addition)),(三角形法则),(平行四边形法则),(多边形法则),(减法),(向量的标量乘积(scalar multiplication)),(向量的线性运算),线性组合(linear combination),线性表示,线性相关(linearly dependent),线性无关(linearly independent),(原点(origin)),(位置向量(position vector)),(线性流形(linear manifold)),(线性子空间(linear subspace));基(basis),仿射坐标(affine coordinates),仿射标架(affine frame),仿射坐标系(affine coordinate system),(坐标轴(coordinate axis)),(坐标平面),(卦限(octant)),(右手系),(左手系),(定比分点);(线性方程组(system of linear equations)),(齐次线性方程组(system of homogeneous linear equations)),(行列式(determinant));n维向量,向量的分量(component),向量的相等,和向量,零向量,负向量,标量乘积,n维向量空间(vector space),自然基,(行向量(row vector)),(列向量(column vector));单位向量(unit vector),直角坐标系(rectangular coordinate system),直角坐标(rectangular coordinates),射影(projection),向量在某方向上的分量,(正交分解),(向量的夹角),内积(inner product),标量积(scalar product),(数量积),(方向的方向角),(方向的方向余弦);外积(exterior product),向量积(cross product),(二重外积);混合积(mixed product,scalar triple product) 第二章行列式 (映射(mapping)),(象(image)),(一个原象(preimage)),(定义域(domain)),(值域(range)),(变换(transformation)),(单射(injection)),(象集),(满射(surjection)),(一一映射,双射(bijection)),(原象),(映射的复合,映射的乘积),(恒同映射,恒同变换(identity mapping)),(逆映射(inverse mapping));(置换(permutation)),(n阶对称群(symmetric group)),(对换(transposition)),(逆序对),(逆序数),(置换的符号(sign)),(偶置换(even permutation)),(奇置换(odd permutation));行列式(determinant),矩阵(matrix),矩阵的元(entry),(方阵(square matrix)),(零矩阵(zero matrix)),(对角元),(上三角形矩阵(upper triangular matrix)),(下三角形矩阵(lower triangular matrix)),(对角矩阵(diagonal matrix)),(单位矩阵(identity matrix)),转置矩阵(transpose matrix),初等行变换(elementary row transformation),初等列变换(elementary column transformation);(反称矩阵(skew-symmetric matrix));子矩阵(submatrix),子式(minor),余子式(cofactor),代数余子式(algebraic cofactor),(范德蒙德行列式(Vandermonde determinant));(未知量),(方程的系数(coefficient)),(常数项(constant)),(线性方程组的解(solution)),(系数矩阵),(增广矩阵(augmented matrix)),(零解);子式的余子式,子式的代数余子式

(线性代数)矩阵秩的8大性质、重要定理以及关系

矩阵秩的8大性质: ①A,宀)冬mini加小I ; ③若A?叭则R(A) = K(B)j ④若可逆?则R(PAQ) = R(A), 下面再介绍几个常用的矩阵秩的性质: ⑤maxi R( A )>R(B)|^J R(A t B)^J R(A) + P (B), 特别地,当 B = b为非零列向量时,有 R(A)MR(A』)MR(A)+ 1. ⑦R(AB)^min{K(A)t K(B)|,(见下节定理7) ⑧若A…B“二0,则R(A) + R(B)Mm(见下章例13) 设AB= O■若A为列满秩矩阵,则B-0.

线性方程组的解: 定理3 H元线性方程组A x=& (i)无解的充分必要条件是K(A)CR(A』); (ii)有惟一解的充分必要条件是R(A) = R(A,b)=n; (iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?? 定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A" 定理6解方gAX=£有解的充分必要条件是R(A) = R(A,B). 定理7 ?AB = C,则R(C)Wmin|R(A),R(B)h

向量组的线性相关性: 定鰹1向跖能由向量组严心线憐示的充分必要桑件是 j£^A=(a H fl J1?

子式和秩的关系

二、矩阵的秩 1.定义2.10 m×n阶矩阵A的行秩、列秩,统称为矩阵A的秩,记作r(A) 注1°0≤r(A)≤min 2°r(A)=m称A为行满秩矩阵 r(A)=n称A为列满秩矩阵 行满秩或列满秩,统称为满秩矩阵。 3°看例1,只要将A化为阶梯形,知道行秩即可得矩阵的秩,即 由B的行向量值,知道行秩为2,∴ 2.矩阵秩的判断定理 引 n个n维向量的相关与无关,可以通过构成的n阶行列式是否为零来判断。 矩阵的秩是否也可以通过矩阵中元素构成的行列式来讨论呢?这就是下面要阐述的判断定理。 (1)矩阵A的k阶子式 行列式的k阶子式的概念同样可以运用到矩阵上来。即: 在矩阵中,任取k行,k列,位于这些行列交叉处的个元素按原来顺序组成的一个k阶行列式N,称为矩阵A的一个k阶子式。 (2)引理 矩阵A有r阶子式不为零,则r(A)≥r

证明 不妨设A的前r行、r列构成的r阶子式 则 …… 线性无关 又为,,…,增维所得。 由“无关增维仍无关”,则线性无关。 ∴ r(A)≥r (3)定理2.12 证明 1°设

∴ A的行向量中一定有r个线性无关,设为,由其构成矩阵 则的列秩为r,必有r个列向量线性无关。不妨设线性无关 所以 即至少有一个r阶子式不为0。 2°仅证 r+1阶子式都为0 设有r+1阶子式不为0,由引理r(A)=r+1,矛盾。 首先所有r+1阶子式都为0, 由行列式展开定理,任意大于r+1阶的子式也为0。 有r阶子式不为0 由引理r(A)≥r 如果,由“ ”的证明必有阶子式不为0,矛盾。 ∴ * 一个矩阵通过初等变换,化阶梯形来确定矩阵的秩的方法,可以从定理2.12处再次找到依据。 看例1

求矩阵的秩的步骤

求矩阵的秩的步骤 在学习矩阵的秩之前,首先我们要先了解矩阵A的k阶子式:即在m×n矩阵A中,任取k行k列( k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式。先在矩阵中的m行中任选k行,得到组合;再在矩阵中的n列任选k列,得到组合。将二者相乘,便是矩阵A的k阶子式计算公式。 现在我们就可以定义矩阵的秩:设在m×n矩阵A中有不为零的r阶子式D,且所有r+1阶子式(如果存在的话)均为零,那么D称为矩阵A的最高阶非零子式,阶数r称为矩阵A的秩,记作R(A)。特别地规定了零矩阵的秩等于0。举个例子,我们先假定一个3阶矩阵。由定义可得S不可能再有大于三阶的子阵,那么我们知道S的三阶子阵只有一个|S|,若计算出|S|≠0,那么S的秩就为3,记做R(S)=3;若是|S|=0,那就同理再看S的9个二阶子阵……当然,越高阶的矩阵的秩会越难计算,下面的视频来讲解行阶梯形矩阵在求解高阶矩阵的秩中的妙用。 学习矩阵的秩并归纳出矩阵秩的一些最基本的四个性质,具体证明过程详见课本,其中最主要的是第三条性质,它证明了两个等价矩阵的秩是相等的,因此将矩阵通过初等变换化为行阶梯形矩阵能大大简化矩阵秩的运算。 矩阵的子式定义:

在m×n矩阵A中,任取k行k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式。 矩阵的秩定义: 设矩阵A中有一个不等于零的r阶子式D,且所有r +1阶子式(如果存在的话)全等于零,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。 规定零矩阵的秩为零。 矩阵的秩基本性质: ①若A为m×n矩阵,则 0≤R(A)≤min(m, n) ②R(AT)=R(A)

矩阵的秩及其求法

矩阵的秩及其求法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶 子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . () n m ij a A ?= {}) ,m in 1(n m k k ≤≤????? ??----=1101456413 21 A 182423=C C 43334=C C 10122--=D 1015643 213-=D n m ?k n k m c c ()n m ij a A ?=0, r D ≠()().T R A R A =0,A ≠0. A ≠

矩阵的秩及其求法

. 第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),m in 1(n m k k ≤≤? ? ??? ??----=110145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0,r D ≠ ()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 0000E ?? ? ?= ? ? ?? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

高等代数第二次大作业 1120133839 周碧莹30011303班 矩阵的秩的性质 1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。 2.矩阵的初等行变换不改变矩阵的行秩。 证明:设矩阵A的行向量组是a 1,…,a s. 设A经过1型初等行变换变成矩阵B, 则B的行向量组是a 1,…,a i ,ka i +a j ,…,a s .显然a 1 ,…,a i ,ka i +a j ,…,a s 可以 由a 1,…,a s 线性表处。由于a j =1*(ka i +a j )-ka i ,因此a 1 ,…,a s 可以由 a 1,…,a i ,ka i +a j ,…,a s 线性表处。于是它们等价。而等价的向量组由相同的 秩,因此A的行秩等于B的行秩。 同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。 3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。 证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式? 第一个问题: 设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价! 第二个问题以一个具体例子来说明。 例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。

矩阵求秩

1. 这是一个算法的实现过程。首先需要了解什么是矩阵的秩,它的计算方法是啥。弄 清楚算法之后,用C语言实现即可。 2. 在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行 秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。 3. 算法主要就是消元法,下面是例程: /*开始输入的m为矩阵行数,输入的n为矩阵列数*/ #include #include #include #define MAX 10 //最大行(列)数 typedef struct { int m,n; int a[MAX][MAX]; } matrix; void input_matrix(matrix *dat); void output_matrix(matrix dat); void exchang_row(int *a,int *b,int n); //交换两行 void mul_row(int *a,int k,int n); //将某一行乘以k void add_row(int *a1,int *a2,int k,int n); //将a2行的k倍加到a1行上 int rank_matrix(matrix dat,matrix *res); void main() { matrix a,b; int r; input_matrix(&a); r=rank_matrix(a,&b); system("cls"); printf("The original matrix:\n"); output_matrix(a); printf("After transforming:\n"); output_matrix(b); printf("\nr(A)=%d\n",r); getch(); } void input_matrix(matrix *dat) //输入矩阵 { int i,j; do { printf("m(1-%d)=",MAX);

矩阵的秩的性质

矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r的n级矩阵(),任意r+1阶行列式为0,并且至少有一个r阶子式不为0. 3、, 4、设A是矩阵,B为矩阵,则 5、设A是矩阵,P,Q分别是s,n阶可逆矩阵,则 6、设A是矩阵,B为矩阵,且AB=0,则 7、设A是矩阵,则

其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A, 则方程组有惟一非零解,则有无穷多解,换言之,即为克莱姆法则,非齐次线性方程组有解时,惟一解, 有无穷多解。 还有满秩矩阵: 9、可逆满秩 10、行(列)向量组线性无关,即n级矩阵化为阶梯形矩阵后非零行数目为n。 扩展到矩阵的分块后: 11、 12、 证明: 1、先证明初等变换不会改变秩,就先从行秩开始。 设矩阵A的行向量组是,设A经过初等变换j+i*k变成矩阵B,则B 的行向量组是,显然, 可由线性表出,由于,因此也可由线性表出,于是它们等价,而等价向量组有相同的秩,因此A的行秩等于B的列秩。 容易证明,型和型初等变换亦使所得矩阵的行向量组与原矩阵等价,

相关主题
文本预览
相关文档 最新文档