当前位置:文档之家› 函数的连续性的例题习题(一)

函数的连续性的例题习题(一)

函数的连续性的例题习题(一)
函数的连续性的例题习题(一)

函数的连续性的例题与习题

函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。

下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。

要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间?

一.函数的连续

例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照)

设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么

在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0

lim (0)(0)x f x f ?→+?=。

证明的思路就此产生!

证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#)

对于固定的x (任意的!),若取y x =?,有

()()()y f x x f x f x ?=+?-=?, (+)

在(+)式两边取0x ?→的极限,那么

lim lim(()())lim ()x x x y f x x f x f x ?→?→?→?=+?-=? , (&)

由已知条件:()f x 在0x =连续,所以0

lim (0)(0)x f x f ?→+?=,代入(#)的结果,就有

lim (0)lim ()(0)0x x f x f x f ?→?→+?=?==,

但从(&)知,0

lim lim ()x x y f x ?→?→?=?,所以

lim 0x y ?→?=。

根据函数连续的定义E ,()f x 在任意点x 处连续。

你看,证明题并不难吧,但有个前提,必须有清晰的概念。很多同学的数学只会“代公式套题型”,所以做计算题还可能对付一下。其实计算也并不轻松。

例1.2(例1.21(一))设常数0a ≠,212(1)1()lim 1

n n n n n x a x f x x ax +→∞+--=--,求()f x 的分段表达式,欲

使()f x 连续,试确定a 的值。

分析:首先要注意,函数()f x 不是平常的形式,用一个明显的解析式表达出来,本题用一个极限形式来表示一个函数。所以它要求先写出()f x 的分段表达式,这是本题的第一个任务;第二,要确定参数a 的数值,怎么确定呢?利用函数的连续性。这里需要计算极限的基本功。 ()f x 中出现了几个幂函数 221

,,n

n

n x x x

+,根据幂函数的性质,x 的大小对幂函数的变化趋势有

根本性的影响,所以要分为||1,||1,1,1x x x x <>==-进行讨论。所以本题的第一层考核的是对幂函数的认识与理解。 (1)||1x <: 221

,,n

n

n x x x

+都趋于零(当n →∞时),所以

1

()11

f x -==-。 (2)||1x >: 此时221

,,n

n

n x x x +都将趋于无穷大。为此,要从分子,分母中提出最大项,约去相应

的部分,来简化函数()f x :

2112122(1)

11()lim

11n n n n n n n a x x x f x x a x x

x +++→∞-??++ ?

??==?

?-- ?

??。

(3)1x =: 11()a a

f x a a

--=

=

-; (4)1x =-: 1(1)(1)12(1)(1)()lim lim 1(1)1(1)n n

n n

n n a a f x a a →∞→∞-+----+--==-----, 极限不存在。 故得 ,

11,1()1,||1,

1

x x a x f x a

x x x >??-?=?

=??

欲使()f x 连续,即使()f x 在1x =连续,等价于11a a -=,故1

2

a =。

例1.3 (例1.22(一))证明连续函数的局部保号性:设()f x 在0x x =处连续,且0()0f x >,那么

存在0δ>,当0||x x δ-<时,()0f x >。

分析:这个性质公式我们一个事实,若连续函数在某点的函数值为正,那么在这个点附近的点的函数值也是正的,不会取负值。这就是说,连续函数的函数值有“惯性”。证明的过程很容易很简单,其实我们在证明极限的保号性时就已经用过。

证明:因为()f x 在0x x =处连续,所以对任给的0ε>,总存在0δ>,使得当0||x x δ-<时,恒有

0|()()|f x f x ε-<,也就是 0()()f x f x εε-<-<。(+)

若取 0()0f x ε=>,在(+)式中取左边的那个不等式,就有 ()0f x >; 若取01()02f x ε=

>,那么就有 01

()()2

f x f x >。 (不过,此时的0||x x δ-<中的δ要变小) 当然,你也可以取不同的0ε>,当然δ要变。如果我们只需要证实()f x 的值为正,那么取0()0f x ε=>就已经够了。

例1.4(例1.23(一)) 设()f x 在区间[,]a b 上连续并大于零,证明

1

()

f x 在[,]a b 也连续。 分析:我们需要证明的是:在[,]a b 上任取点0x ,对任给的0ε>,存在一个0δ>,使当0||x x δ-<时, 有

011

()()

f x f x ε-<。 直接做下去,是有困难的,所以我们需要对上述不等式做点放大(这是一个基本功!):

002000|()()|2|()()|11

()()()()()

f x f x f x f x f x f x f x f x f x ε---=<< 注意,上面第一个不等号是因为我们在例1.3中,已经证明了在0x 的一个邻域中有01

()()2

f x f x >! 至此,一个完整的证明思路就形成了。

证明:对任一0[,]x a b ∈,0()0f x >,0x 是()f x 的连续点。由局部保号性,存在0x 的邻域01(,)N x δ,使得01

()()2

f x f x >

。所以在这个邻域中,

002000|()()|2|()()|11

()()()()()

f x f x f x f x f x f x f x f x f x ---=<

; 由()f x 在区间[,]a b 上的连续性知,对于任给0ε>,存在20δ>,使得当02||x x δ-<时,有

200()

|()()|2

f x f x f x ε-<。 我们取12min(,)δδδ=,那么在这个更小的邻域中,(即0||x x δ-<)有

002000|()()|2|()()|11

()()()()()

f x f x f x f x f x f x f x f x f x ε---=<<, 则有函数的连续的定义知, 0x 是函数1()f x 的连续点;又由0x 的任意性,得1

()

f x 在区间[,]a b 也连续。

例1.5 确定,a b 之值,使函数21,0()sin(),0

x e x f x ax b x -??>=??+≤?在(,)-∞+∞内连续。 解:在0x >和0x ≤两个区间里,对应的函数均为初等函数,它们都是连续函数。所以,要使()f x 在整个实数域中连续,只需确定在0x =的连续性条件。

()f x 在0x =有定义,所以我们只需考虑它在0x =的极限。 0

lim ()lim sin()sin x x f x ax b b --

→→=+= 2

2

2

11

1

01

1

lim ()lim lim 0lim x x x x x

x x f x e e e +-

-

-

-

→→→→===

=;

由此得方程 sin 0b =, 容易解得: ,0,1,2,

b k k π==±±,

而对参数a ,连续性条件对它没有任何限制,所以a 可取任何实数。

例1.6 设,0(),0x e x f x a x x ?<=?+≥?

,,

1()1

b x g x x

域上连续。

解:两个函数的定义域不同,所以它们之和()()f x g x +这个新函数的定义域需要加以明确。显然,需要考虑3个区间:0,01,1x x x <≤<≥:

,0

()(),

01,1

x e b x f x g x a x b x a x x ?+

+=++≤

lim(()())lim()1x

x x f x g x e b b --

→→+=+=+, 0

lim(()())lim()x x f x g x a x b a b ++

→→+=++=+, 故有方程 1a b b +=+, (1) 又 1

1

lim(()())lim()1x x f x g x a x b a b --

→→+=++=++,

11

lim(()()))1x x f x g x a x +

→+

→+=+=+,

又有方程

11a b a ++=+, (2)

联立(1)(2),解得

1,a b ==。

练习题1 设()f x 满足条件:12,x x ?,有1212(

)()()f x x f x f x +=?,且()f x 在0x =处连续。求证()

f x 在整个实数域连续。

练习题2 设,1(),1x x f x a x ?

,求,a b 之值,使()()f x g x +在实数域上连

续。

二.函数的间断点

这里的基本概念是间断点的类型和分类。请自己整理整理的内容。

例2.1 考察函数 1arctan ,0

()0,

0x f x x

x ?

≠?=??=? 的间断点,判别其类型。 解: 函数在0x =有定义,但是 (0)arctan()2

f π

+=+∞=

,(0)arctan()2

f π

-=-∞=-

,所以在0

x =的左,右极限虽然存在,但不相等,故属于跳跃间断点(第一类)。

例2.2 考察函数11

sin ,0

()0,0x e x f x x

x ?≠?=??=? 的间断点,判别其类型。 解:函数在0x =有定义,但1

1(0)lim sin x

x f e x +

+

→=不存在,这是因为1,1,2,n x n n π

==时,0n x +

→,

1

sin

n

x 不存在; 又101(0)lim sin 0x

x f e x --

→==,这是因为1sin x

在极限过程中是有界量,1

0lim lim 0u x

u x e e -→-∞→==。 所以 0x =是函数的第二类间断点。

例2.3 求下列函数的间断点,确定其类型,瑞为可去间断点,则请补充定义,使它连续。

(1)2cos

2(1)x

y x x π

=-; (2)111111x x y x x

-

+=--。

解:(1) 0,1x x ==都是使函数y 没有定义的点,故是间断点。

由于 22000cos

cos

122lim lim lim (1)(1)

x x x x x

x x x x π

π

→→→==-∞--,所以0x =是函数的无穷间断点(第二类)。

又 221

11cos

sin

(1)

(1)

222lim

lim lim (1)(1)(1)2

x x x x x x x x x x x π

π

π

π→→→--=-=-=----, 是个确定的值,极限存在,所以1x =是可移去间断点,加以补充定义:

2

cos 2,1(1),

12

x x x x y x ππ

?

?≠?-=??-=??

后函数在1x =连续。

但是要注意的是,0x =仍然是函数的无穷间断点(第二类),函数在0x =仍然间断。 (2)显然,1,0,1x =-+是使函数没有定义的点,所以是间断点。

111111

(1)(1)

1lim ()lim lim lim 11(1)(1)

1x x x x x x x x x f x x x x x x

→-→-→-→--

--+====∞++--, 故 1x =-是无穷间断点(第二类)。

000011

(1)(1)

1lim ()lim lim lim 111(1)(1)

1x x x x x x x x x f x x x x x x

→→→→-

--+====-++--, 故 0x = 是可去间断点(第一类),补充定义 (0)1f =-后,函数在0x =连续。

1

1

1(1)(1)

lim ()lim

lim 0(1)(1)

x x x x x x f x x x x →→→--===++,

可见 1x = 也是可去间断点(第一类),补充定义 (1)0f =后,函数在1x =连续。

例2.4 讨论下列函数的间断点:

(1) 1111x

y e

-=

+; (2)23,0sin 3,0x x y x x x

?+

=?>?

?。

解:(1)1x = 使函数无定义(对

1

1x

-无定义,故函数本身也无定义),故为间断点。 11

11lim 01x x

e -

→-=+, (因为 111

lim x

x e -

-→=∞)

1

1

11lim 11x x e

+

→-=+, (因为1

11

lim 0x

x e e +

-∞-→=→)

左,右极限存在,却不相等,故1x =是跳跃型间断点(第一类)。

(2)0x =处没有定义,故为间断点。

2

lim lim(3)3x x y x --

→→=+=, 0

0sin 3sin 3lim lim lim 333x x x x x

y x x

++

+→→→==?=, 可见,0x =处函数的左,右极限都存在,且相等,故0x =是可去间断点(第一类)。

例2.5 根据,αβ的不同数值,讨论()f x 在0x =处的连续性,若间断,判别属于何种间断点:

1sin ,0

(),0

x x x f x x

e x α

β?>?=??+≤?。 解: 000,

01lim ()lim sin 0

x x f x x x α

αα++→→>?==?

≤?不存在,, (请你讲出理由) 0

lim ()lim()1x

x x f x e ββ--

→→=+=+, 且 (0)1f β=+

所以,当0α>,且 1β=-时,()f x 在0x =的左,有极限存在且相等,并等于函数值,故函数在0x =连续;

当0α>,且1β≠-时,()f x 在0x =间断,左,右极限存在但不相等,故属于跳跃间断点; 当0α≤时,()f x 在0x =左连续,右间断,故0x =属于第二类间断点。

例2.6 (1998年考研题数二)求函数 tan()

4

()(1)x x f x x π

-=+在区间(0,2)π内的间断点,并判别其类型。

解: 当3,

4

22x π

ππ

-

=

时,使tan()4

x π

-

成为无穷大,没有定义,故37,44

x ππ

=

是()f x 的间断点; 因为 34

lim

0tan()

4x x x ππ

=-, 故 34

lim ()1x f x π

=;

74

lim

0tan()

4

x x x ππ

=-, 故 34

lim ()1x f x π

=,

所以,在间断点37,44

x ππ

=,函数()f x 的极限存在,是第一类间断点。 又因当0,4

x π

π-

=时,tan()04

x π

-

=,使得

tan()

4

x x π

-没有定义,从而函数()f x 在这些点没有

定义,因此5,44

x ππ

=也是函数()f x 的间断点。

4

lim

tan()

4

x x x π

π

=∞-, 故 4

lim ()x f x π

=∞;

54

lim

tan()

4

x x

x ππ→

=∞-, 故 54

lim ()x f x π

=∞

所以,间断点5,

44

x ππ

=属于第二类间断点。

例2.7 (2001年考研题数二)求极限 sin sin sin lim sin x t x

t x t x -→??

???

,记此极限为()f x ,求出()f x 的间断点,并

指出其间断点的类型。

分析:本题不是单纯讨论间断问题,首先要计算一个极限,得出函数()f x 。

解: sin sin sin sin sin sin sin sin sin sin lim lim 11lim 1sin sin sin x x x

t x

t x

t x

t x t x

t x t t t x x x x ---→→→-??

????=+-=+

? ? ???

??

?

?

至此,可以看出这是一个1∞型的极限。这是我们已经很熟悉的问题了,做下去——

sin sin sin sin sin sin sin sin sin sin lim 1lim 1sin sin x

x x

t x

t x x

t x t x t x t x x x ?

--→→--????+=+ ? ??

??

?sin ()x x

e

f x ==。

所以下面我们讨论函数 sin ()x x

f x e =的间断点。

显然,使sin 0x =的点x 是使得()f x 没有定义的点,即,0,1,2,

x k k π==±±是()f x 的间断点。

因为 0

0lim ()lim

1sin x x x

f x x

→→==,

lim ()lim

,1,2,

sin x k x k x

f x k x

π

π→→==∞=±±,

所以,0x =是第一类间断点,而,1,2,

x k k π==±±是第二类间断点。

练习题3 设2tan ,01,0arcsin 2

x x

ae x e y x x ?≤??-=?>??? 在0x =处连续,求参数a 之值。

练习题4 设()bx

x

f x a e =

+在(,)-∞+∞上连续,且 lim ()0x f x →-∞=,则常数应满足( ):

A .0,0a b <<; B. 0,0a b >>; C. 0,0a b ≤>; D. 0,0a b ≥<.

练习题5 (1995年考研题数二) 设()f x 和()g x 在(,)-∞+∞上有定义,()f x 为连续函数,且()0f x ≠,

()g x 有间断点,则( ):

A . (())g f x 必定有间断点; B. 2

[()]g x 必定有间断点; B . (())f g x 必定有间断点; D.

()

()

g x f x 必定有间断点。 (请你举出例子来验证你的结论)

练习题6 (1998年考研题数四)设函数21()lim

1n

n x

f x x →∞+=+,讨论()f x 的间断点,结论为( )

A .不存在间断点; B. 存在间断点1x =; C. 存在间断点0x =; D. 存在间断点1x =-

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

一次函数经典题及答案

一次函数经典题一.定义型是一次函数,求其解析式。已知函数1. 例解:由一次函数定义知,。y=-6x+3,故一次函数的解析式为。0≠m-3。如本例中应保证 0≠k解析式时,要保证y=kx+b注意:利用定义求一次函数 . 二点斜型,求这个函数的解析式。(2, -1)的图像过点y=kx-3已知一次函数2. 例,(2, -1)解:一次函数的图像过点。y=x-3。故这个一次函数的解析式为k=1,即,求这个函数的解析式。y=-1时,x=2,当y=kx-3 变式问法:已知一次函数两点型. 三3.例,则这个函数的(0, 4)、(-2, 0)轴的交点坐标分别是y轴、x已知某个一次函数的图像与。_____解析式为,由题意得y=kx+b 解:设一次函数解析式为 y=2x+4 故这个一次函数的解析式为,图像型. 四。__________已知某个一次函数的图像如图所示,则该函数的解析式为4. 例y=kx+b解:设一次函数解析式为(0, 2) 、(1, 0)由图可知一次函数的图像过点 y=-2x+2 故这个一次函数的解析式为有斜截型. 五 ,则直线的解析式为2轴上的截距为y平行,且在y=-2x与直线y=kx+b已知直线5. 例。___________时,b≠b,=kk。当;解析:两条直线2121平行,y=-2x与直线y=kx+b直线。 y=-2x+2 ,故直线的解析式为2轴上的截距为y在y=kx+b直线又平移型. 六。___________个单位得到的图像解析式为2向下平移y=2x+1把直线6. 例,y=kx+b 解析:设函数解析式为 y=2x+1直线平行y=2x+1与直线y=kx+b个单位得到的直线2向下平移,故图像解析式为b=1-2=-1 轴上的截距为y在 y=kx+b直线七实际应用型. (升)Q则油箱中剩油量分钟,/升0.2流速为油从管道中匀速流出,升,20某油箱中存油7. 例。___________(分钟)的函数关系式为t与流出时间 Q=- 0.2t+20 ,即Q=20-0.2t 解:由题意得)(Q=-0.2t+20 故所

一次函数经典例题

类型一:正比例函数与一次函数定义 1、当m 为何值时,函数y=-(m-2)x +(m-4)是一次函数?思路点拨:某函数是一次函 数,除应符合y=kx+b 外,还要注意条件k≠0.解:∵函数y=-(m-2)x +(m-4)是一次函数, ∴∴ m=-2. ∴当m=-2 时,函数y=-(m-2)x +(m-4)是一次函数.举一反三: 【变式 1】如果函数是正比例函数,那么(). A.m=2 或m=0 B.m=2 C.m=0 D.m=1 【答案】:考虑到x 的指数为1,正比例系数k≠0,即|m-1|=1;m-2≠0,求得m=0,选C 【变式2】已知y-3 与x成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y的值; (3)当y=4时,求x的值.解析:(1)由于y-3 与x 成正比例,所以设y-3=kx. 把x=2,y=7 代入y-3=kx 中,得 7-3 =2k,∴ k =2.∴ y与x 之间的函数关系式为y-3=2x,即 y=2x+3. ( 2 )当x=4 时,y=2×4+3=11. ( 3 )当y = 4 时,4=2x+3 ,∴x= . 类型二:待定系数法求函数解析式 、求图象经过点(2,-1),且与直线y=2x+1 平行的一次函数的表达式. 思路点拨:图象与y=2x+1 平行的函数的表达式的一次项系数为2,则可设此表达式为 y=2x+b,再将点(2,-1)代入,求出b 即可. 解析:由题意可设所求函数表达式为y=2x+b,∵图象经过点( 2 ,-1 ),∴ -l=2×2+b.∴ b=-5,∴所求一次函数的表达式为y=2x-5. 总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。 举一反三: 【变式 1 】已知弹簧的长度y (cm)在一定的弹性限度内是所挂重物的质量x(kg )的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg 的重物时,弹簧的长度是7.2cm,

高一数学必修一函数经典题型复习

1集合 题型1:集合的概念,集合的表示 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( ) A .}33|{=+x x B .},,|),{(2 2 R y x x y y x ∈-= C .}0|{2 ≤x x D .},01|{2 R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( ) A .()()A C B C B .()()A B A C C .()()A B B C D .()A B C 4.下面有四个命题: (1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212 =+的解可表示为{ }1,1; 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 题型2:集合的运算 例1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为( D ) A .1 B .1- C .1或1- D .1或1-或0 例2. 已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围。 解:当121m m +>-,即2m <时,,B φ=满足B A ?,即2m <; 当121m m +=-,即2m =时,{}3,B =满足B A ?,即2m =; 当121m m +<-,即2m >时,由B A ?,得12 215m m +≥-??-≤? 即23m <≤; ∴3≤m 变式: 1.设2 2 2 {40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈, 如果A B B =,求实数a 的取值范围。 A B C

一次函数经典练习题精心整理

1.小骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线 所示,小骑摩托车匀速从乙地到甲地,比小晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示. (1)小到达甲地后,再经过___小时小到达乙地;小骑自行车的速度是___千米/小时. (2)小出发几小时与小相距15千米? (3)若小想在小休息期间与他相遇,则他出发的时间x 应在什么围?(直接写出答案) 2,甲、乙两人骑自行车前往 A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所 提供的信息解答下列问题: (1)甲、乙两人的速度各是多少?(4分) (2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个) .(3分) (3)在什么时间段乙比甲离A 地更近?(3分) 3.(2011,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如图所示, (1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时; (2)求线段CD 所表示的函敛关系式; (3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程, (第23题图) x (小时) 图13

必修一函数的单调性专题讲解(经典)

第一章 函数的基本性质之单调性 一、基本知识 1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当 21x x <时,都有 ))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 重点 2.证明方法和步骤: (1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等); (4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。 3.常见函数的单调性 时, 在R 上是增函数;k<0时, 在R 上是减函数 (2),在(—∞,0),(0,+∞)上是增函数, (k<0时),在(—∞,0),(0,+∞)上是减函数, (3)二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0

一次函数知识点总结及典型试题(用)

一次函数知识点总结及经典试题 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正

必修一函数经典例题

例4.已知log 4log 4m n <,比较m ,n 的大小。 解:∵log 4log 4m n <, ∴ 4411 log log m n < , 当1m >,1n >时,得4411 0log log m n << , ∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得4411 0log log m n <<, ∴44log log n m <, ∴01n m <<<. 当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<. 综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠). 解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令2 3t x =-,则03t <≤, ∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥, 当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6 .判断函数2()log )f x x =的奇偶性。 x 恒成立,故()f x 的定义域为(,)-∞+∞, 2()log )f x x -= 2 log =- 2 log =- 2log ()x f x =-=-, 所以,()f x 为奇函数。 例7.求函数213 2log (32)y x x =-+的单调区间。 解:令2 2 3 132()2 4u x x x =-+=-- 在3[,)2+∞上递增,在3 (,]2 -∞上递减, 又∵2 320x x -+>, ∴2x >或1x <, 故2 32u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵13 2log y u =为减函数, 所以,函数213 2log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。 例8.若函数2 2log ()y x ax a =--- 在区间(,1-∞上是增函数,a 的取值范围。 解:令2 ()u g x x ax a ==--,

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析 一、选择题 1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( ) A .甲的速度为20km/h B .甲和乙同时出发 C .甲出发1.4h 时与乙相遇 D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】 根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】 解:A .甲的速度为:60÷2=30,故A 错误; B .根据图象即可得出甲比乙早出发0.5小时,故B 错误; C .设1l 对应的函数解析式为111y k x b =+, 所以:111 60 20b k b =??+=?, 解得113060k b =-??=? 即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+, 所以:22220.503.560k b k b +=??+=?, 解得 22 20 10k b =??=-? 即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+?? =-?, 解得 1.4 18 x y =?? =? ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;

D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答. 2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( ) A .0x > B .0x < C .2x > D .2x < 【答案】C 【解析】 【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】 解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】 本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键. 3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠ 【答案】D 【解析】 【分析】 根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】

(完整版)一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结 考点1:一次函数的概念. 相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 1、已知一次函数k x k y )1(-=+3,则k = . 2、函数n m x m y n +--=+1 2)2(,当m= ,n= 时为正比例函数;当m= , n 时为一次函数. 考点2:一次函数图象与系数 相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上, 0

是 . 8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( ) A.m >0,n <2 B. m >0,n >2 C. m <0,n <2 D. m <0,n >2 9.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __. 10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。 考点3:一次函数的增减性 相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0m C. 2m 5. (2011内蒙古赤峰)已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。(填“>”、“<”或“=”号) 6.当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ). A .y ≥-7 B .y ≥9 C .y >9 D .y ≤9 7.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).

必修一函数的单调性经典易错习题

函数的单调性 一、选择题 1.下列函数中,在区间(0,2)上为增函数的是…………………………………( ) A.y =3-x B.y =x 2+1 C.y =-x 2 D.y =x 2-2x -3 2.若函数y =(a +1)x +b ,x ∈R 在其定义域上是增函数,则…………………( ) A.a >-1 B.a <-1 C.b >0 D.b <0 3.若函数y =kx +b 是R 上的减函数,那么…………………………………( ) A.k<0 B.k>0 C.k ≠0 D. 4.函数f(x)=??? 2x +6x +7 x ∈[1,2] x ∈[-1,1],则f(x)的最大值、最小值为……( ) A.10,6 B.10,8 C.8,6 D. 5.下列四个函数在()-0∞,上为增函数的有( ) (1)y x = (2)x y x = (3)2 x y x =- (4)x y x x =+ A.(1)和(2) B.(2)和(3) C.(3)和(4) D.(1)和(4) 6.设()f x 是(),-∞+∞上的减函数,则( ) .()(2)A f a f a > 2.()()B f a f a < 2.()()C f a a f a +< 2.(1)()D f a f a +< 7.设函数()()21f x a x b =-+在R 上是严格单调减函数,则( ) 1.2A a ≥ 1.2B a ≤ 1.2C a > 1 .2D a < 8.下列函数中,在区间(0,2)上为增函数的是( ) .3A y x =- 2.1B y x =+ 2.C y x =- 2.23D y x x =-+ 9.已知函数22 4,0()4,0 x x x f x x x x ?+≥?=?-,则实数a 的取值范围是( ) ()().,12,A -∞-+∞ ().1,2B - ().2,1C - ()().,21,D -∞-+∞ 10.已知()f x 为R 上的减函数,则满足()11f f x ?? > ??? 的实数x 的取值范围是( ) ().,1A -∞ ().1,B +∞ ()().,00,1C -∞ ()().,01,D -∞+∞ 11.函数 的增区间是( )。 A . B . C . D .

一次函数经典题型+习题(精华,含答案)

1 一次函数 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________; 若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第 ______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________; 到原点的距离是____________; 2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原 点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ????? ,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°, 则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2323y k x x =-++-是一次函数; 2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 题型四、函数图像及其性质 ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线相交。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线

最新一次函数的应用典型练习题

一次函数的应用典型练习题 1、若点(1,2)及(m ,3)都在正比例函数y=kx 的图象上,求m 的值. 2、已知直线y=kx+b 经过点(-2,-1)和点(2,-3),求这条直线的函数解析式. 3、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式. 4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式. 5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,求y 与x 之间的函数关系式. 6、 声音在空气中传播的速度y (米/秒)(简称音速)是气温x (℃)的一次函数,下表列出了一组不同气温时的音速: (1)求y 与x (2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,那么此人与燃放的烟花所在地约相距多远? x y 2 1

7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用 水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示: (1)分别写出x≤5和x>5时,y与x的函数解析式; (2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准. (3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨? 8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓 球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价 的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒). (1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的 付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系 式. (2)就乒乓球盒数讨论去哪家商店购买合算? 9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这 两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示. (1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系 式; (2)两种租书方式每天租书的收费分别是多少元? (3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合 算?

一次函数经典题型

一次函数经典题型 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_____,b=_____;若A,B 关于y 轴对称,则a=_____,b=_____;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第_____象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 2、 点C (0,-5)到x 轴的距离是______;到y 轴的距离是_____;到原点的距离是______; 3、 点D (a,b )到x 轴的距离是______;到y 轴的距离是______;到原点的距离是______ 4、 已知点P (3,0),Q(-2,0),则PQ=_____,已知点110,,0,22M N ? ??? - ? ????? ,则MQ=_____; ()()2,1,2,8E F --,则EF 两点之间的距离是_______;已知点G (2,-3) 、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为_________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次 函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2 323y k x x =-++-是一次函数; 2、当m_____________时,()21 345m y m x x +=-+-是一次函数; 3、当m_____________时,()21 445m y m x x +=-+-是一次函数;

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

高一数学必修一知识点总结及经典例题分析

高一数学必修1 1.知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性, 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或 N+整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1) 有限集含有有限个元素的集合 (2) 无限集含有无限个元素的集合 (3) 空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.?包含关系—子集 注意:B包含A有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A不属于B或B不属于A 2.相等?关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} ?元素相同则两集合相等?即:①即任何一个集合是它本身的子集。 ②真子集:如果A属于B,且A不属于B那就说集合A是集合B的真子集。 ③如果 A属于B, B属于C ,那么 A属于C ④如果A属于B 同时 B属于A ,那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 1.规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 2.特点有n个元素的集合,含有2n个子集,2n-1个真子集

一次函数经典试题及答案

一次函数经典试题及答案 10.(2010年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是() 【关键词】函数的意义 【答案】A 1、(2010年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料, 学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题: (1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。 (A) (B) (C) (D) s(千米) t(分钟) A B D C 30 45 15 O 2 4 小聪 小明 第1题

(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米? 【关键词】函数与实际问题 【答案】解:(1)15,15 4 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:45 4=k ∴s 与t 的函数关系式t s 454= (450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内 s 是t 的一次函数,设函数解析式为n mt s +=(0≠m ) 代入(30,4),(45,0)得:? ??=+=+045430n m n m 解得:?????=-=12 154n m ∴1215 4+-=t s (4530≤≤t ) 令t t 45 412154=+-,解得4135=t 当4135=t 时,34 135454=?=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。

相关主题
文本预览
相关文档 最新文档