当前位置:文档之家› Gaussian中分子的几何构型.

Gaussian中分子的几何构型.

Gaussian中分子的几何构型.
Gaussian中分子的几何构型.

Gaussian中分子的几何构型

分子的几何构型

************************************

分子的几何构型(Molecular Geometry)

************************************

分子的平衡构型(molecular equilibrium geometry)是分子电子能量和核间排斥能

量最小时分子的核排列。

分子势能

一个含有N个原子核的非线性分子的几何构型可以用3N-6个独立的核坐标决定,分子

的电子能量,U(q1,q2,…,q3N-6)是这些坐标的函数。

U = Ee +VNN

注意到3个平移和3个转动自由度(线性分子的转动自由度为2)对U是没有贡献的,因

此对一个双原子分子,U的表达式中仅仅保护一个变量,即两个核之间的距离,U?。

对一个多原子分子,U是每两个原子核之间距离的函数,是分子势能面(potential

energy surface, PES)的一部分。对某一特定的分子核排列下U的计算被成为单点

(single-point)计算,因为这一计算仅仅涉及到分子PES上的一个点。

一个大分子可能在其PES上有多个极小点,对应于不同的平衡构象和鞍点。

分子构象(molecular conformation)可以通过指定围绕单键的二面角的指得到。在

能量极小点处的分子构象称为构型(conformer)。

几何构型优化

从初始几何构型出发寻找U的极小值的过程称几何构型优化(geometry optimization)

或者能量极小化(energy minimization)。极小化的算法同时计算U和U梯度。

在一个局部最小点,U的3N-6个偏微分都是0。PES上▽U = 0的点称为稳定点(statio

nary point)或者判据点(critical point),它可以是极小点,极大点或者鞍点。

除了▽U之外,一些最小化方法使用到U的二阶偏微分,从而生成Hessian矩阵,又称为

力常数(force constant)矩阵,因为d^2U/Qi^2 = fi为力常数。

如果一个稳定点是电子能量面上的一个极小点,其力常数矩阵的所有特征值都是正值

。然而,若一个稳定点是过渡态(transition state, TS),其中一个特征值是负值。

Newton-Rapson

Newton-Rapson方法是一种非常有效的寻找多变量函数的局部极小点的算法,它将函

数用Taylor展开到二次项,包括函数的一次和二次微分,并以此作为函数的近似。

Quasi-Newton-Rapson

计算自洽场(self consistent field, SCF)能量的二阶微分是非常耗时的,因此在

优化时经常使用一种修正的方法,即quasi-Newton(或quasi-Newton-Rapson)方法。

这种方法在每一步优化中通过计算梯度对Hessian值进行初始估算。

优化方法

为了优化几何构型,要先对平衡构型做一个估算,通常使用键长和键角的经验值。此外,我们还要选择

好适当的方法和基组,然后就可以在所估算的平衡构型附近进行极小点的搜索了。软件对电子Schrodinge r方程进行求解并得到U及其在初始构型处的梯度。通过这些数值对Hessian矩阵进行估算,并调整3N-6个核坐标以得到在初始构型附近但能量更低的新的分子构型。对新构型的U和▽U进行计算以继续改进分子坐标使分子构型更接近于极小点。SCF计算对新的分子构型不断重复,直到▽U和0之间的差足够小能满足对极小点的判据(critia)。

一般而言,需要进行3N-6至两倍的SCF循环次数以找到一个极小点。(Gaussian默认的

循环次数为两倍要优化的变量,有时候对OPT=Tight/Vtight需要增大循环次数)。

[Schafer, J. Mol. Struct., 100, 51 (1983)]

中间体

局域最小点代表反应物,产物或者一个中间体(Intermediate),该中间体在多步反

应中是既是一个反应的产物,同时又是另一个反应的反应物。因为反应中间体通常很

快被反应掉或者其寿命很短而不能被光谱仪器检测到,中间体结构和能量的计算是计

算化学中一个重要的应用。

反应表面

为了得到一个完整的反应表面U,假设我们需要在解电子Schrodinger方程时在反应

面上对3N-6个变量各取约10个点,这样一共要进行103N-6个计算。实际上并非如此,

我们利用反应面别的重要性质来得到局部最小点和过渡态。

对于利用U表面特征的分析算法可以参照Szabo & Ostlund, Modern Quantum

Chemistry, pp. 437 - 458.

TS计算算法

为寻找过渡态,在Gaussian程序中有几种方法可供选择。

TS

在Gaussian中的OPT=(TS,CalcFC)算法,需要输入一个估计的过渡态结构,该过渡态

是反应物和产物之间的一个中间体。

CalcFC指定对初始结构进行Hessian数值计算(用Newton-Rapson方法),而不是默认

地对其二阶微分进行估算(用quasi-Newton-Rapson方法)。这一步骤增加了计算时

间,但增大了TS寻找地成功率。

QST2

另一个Gaussian TS搜索算法,由OPT=QST2指定,让程序自己通过反应物和产物的结

构计算一个TS的初始结构。然后Gaussian用这一初始TS作为TS搜索的起始点。

QST3

第三种Gaussian TS搜索方法,用OPT=QST3指定,在反应物,产物和用户给定的初始

TS基础上进行搜索。

判断一个鞍点和TS构型,我们需要进行频率计算。如果我们想知道一个鞍点是否是TS

构型,并要研究反应机理,需要从鞍点出发,沿U表面的反应路径分别得到反应物和

产物。

对一个TS,其虚频所对应的简振模式下的原子位移方向分别指象反应物和产物。

当计算出TS构型和振动频率以及能垒高度后,就可以通过过渡态理论(Transition

State Theory)对反应速率进行计算了。

一阶鞍点

如果一个稳定点,即电子能量面上的一个极小点,是一个过渡态TS,其Hessian矩阵

有且仅有一个负特征值。

这个一阶鞍点条件意味着TS的能量在一个方向(负特征值)取得最大值,这一方向即反应坐标方向;而在其它方向上能量都是最小值(正特征值)。

TS振动模式

一个TS有3N-7(线性分子为3N-6)个标准振动,比正常的分子少一个。

负的力常数的物理意义在于,与Hooke定律所定义的力不同,与TS虚频v#相关的力沿反应坐标,指向相反的,朝着产物的方向。

频率v#,沿着反应坐标,是一个虚数。

分子的几何构型优化计算

分子的几何构型优化计算(2)Molecular Modelling Experiments (2) (Gaussian98) 1.优化目的: 对分子性质的研究是从优化而不是单点能计算开始。这是因为我们认为在自然情况下分子主要以能量最低的形式存在。只有能量最低的构型才能具有代表性,其性质才能代表所研究体系的性质。在建模过程中,我们无法保证所建立的模型有最低的能量,所以所有研究工作的起点都是构型优化,要将所建立的模型优化到一个能量的极小点上。只有找到合理的能够代表所研究体系的构型,才能保证其后所得到的研究结果有意义。 分子性质研究的一般模式: 2 高斯中所用到的一些术语的介绍 Gaussian98的界面

2.1势能面 在不分解的前提下,分子可以有很多个可能的构型,每个构型都有一个能量值,所有这些可能的结构所对应的能量值的图形表示就是一个势能面,势能面描述的是分子结构和其能量之间的关系,以能量和坐标作图。根据分子中的原子数和相互作用形式,有可能是二维的,也有可能是多维的。势能面上的每一个点对应一个具有一个能量的结构。能量最低的点叫全局最小点,局域最小点是在势能面上某一区域内能量最小的点,一般对应着可能存在的异构体。鞍点是势能面上在一个方向有极大值而在其他方向上有极小值的点,通常对应的都是过渡态。优化的目的就是找到势能面上的最小点,因为这个点所对应的构型能量最低,是最稳定的。 2.2确定能量最小值 构型优化就是找体系的最小点或鞍点。能量的一阶导(也就是梯度,注意在数学中,一阶导表示着函数的变化趋势,一阶导为零就表明找到了极值点,这是确定最小值的数学基础)是零,这表明在这个点上的力也是零(因为梯度的负值是力)。我们把势能面上这样的点称为静态点(也就是上面所说的极小点)。所有成功的优化都会找到一个静态点,虽然有时找到的静态点并不是想要的静态点。 程序从输入的分子构型开始沿势能面进行优化计算,其目的是要找到一个梯度为零的点。计算过程中,程序根据上一个点的能量和梯度来确定下一步计算的方向和步幅。梯度其实就是我们所说的斜率,表示从当前点开始能量下降最快的方向。以这种方式,程序

第二章 共价键理论和分子结构

第二章 分子结构 一、 填空题 1、C 2+的分子轨道为_________________,键级___________________; HCl 的分子轨道为________________,键级__________ 。 2、OF, OF +, OF -三个分子中, 键级顺序为________________。 3、HBr 分子基态价层轨道上的电子排布是 _________________________ 。 4、对称元素C 2与σh 组合,得到___________________;C n 次轴与垂直它的C 2组合,得到______________。 5、有一个 AB 3分子,实验测得其偶极矩为零且有一个三重轴,则此分子所属点群是_______________________。 6、判别分子有无旋光性的标准是__________。 7、既具有偶极矩,又具有旋光性的分子必属于_________点群。 二、选择题 1、 H 2+的H ?= 21?2- a r 1 - b r 1 +R 1, 此种形式已采用了下列哪几种方法: (A) 波恩-奥本海默近似 (B) 单电子近似 (C) 原子单位制 (D) 中心力场近似 2、对于"分子轨道"的定义,下列叙述中正确的是: (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动)

(D) 原子轨道线性组合成的新轨道 3、含奇数个电子的分子或自由基在磁性上: (A) 一定是顺磁性 (B) 一定是反磁性 (C) 可为顺磁性或反磁性 (D )没有磁性 4、下列分子的键长次序正确的是 (A) OF -> OF > OF + (B) OF > OF -> OF + (C) OF +> OF > OF - (D) OF - > OF +> OF 5、若以x 轴为键轴,下列何种轨道能与p y 轨道最大重叠? (A) s (B) d xy (C) p z (D) d xz 6、Cr 与 CO 形成羰基化合物 Cr(CO)6,其分子点群为 (A) D 4h (B) T d (C) O h (D) D 6h 7、2,4,6-三硝基苯酚是平面分子,存在离域π键,它是: (A) (B) (C) (D) 1612 Π1814Π1816Π1616Π三、简答题 1、在有机化合物中,C ═O(羰基)的偶极距很大(μ=7.67×10-30C ·m),而CO 分子的偶极距却很小,解释原因。 2、SO 42-中S —O 键长为149?pm ,比共价单键半径加和值(175?pm)短,说明原因。说明SiF 62-能稳定存在而SiCl 62-不稳定的原因。 判断 NO 和 CO 哪一个的第一电离能小,原因是什么? 3、CO 是一个极性较小的分子还是极性较大的分子? 其偶极矩的方向如何?为什么? 4、写出N 2基态时的价层电子组态, 并解N 2的键长(109.8?pm)特别短、

判断分子的构型

二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

2-2-1 共价键与分子的立体结构

编号:15 第二节共价键与分子的立体结构 (第1课时) 2010年3月29日 班级__________ 姓名__________ 【学习目标】 1、理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型; 2、学会用杂化轨道原理解释常见分子的成键情况与空间构型 【学习重难点】 重点:杂化轨道类型难点:杂化轨道类型 【学案导学过程】 活动·探究原理 规律 方法 技巧(一)甲烷分子的形成及立体构型 联想质疑:1、共价键决定原子的结合方式,决定分子的空间构型吗? 2、利用电子配对理论能解释甲烷的空间构型吗 3、为了解释甲烷的空间构型鲍林提出了什么理论? 4、甲烷分子形成过程:C: 2s22p x12p y13p z 观察左 图你能 用语言 描述一 下甲烷 的空间 构型的 形成过 程吗? 思考:1原子轨道为什么可以进行杂化?(提示从共价键键能大小和体系能量 变化来分析)

2、轨道杂化后在数目,形状,能量上是否发生变化? 3、轨道杂化的结果是什么? 4、尝试解释轨道杂化 (二)常见的SP杂化过程活动探究:SP杂化: 2、sp2杂化型 直线型 (BeCl 2 ) 交流与 讨论: 用杂化 轨道理 论分析 乙炔分 子的成 键情况 平面正 三角形 (BF3) 交流与 讨论: 用杂化 轨道理 论分析 乙烯分 子的成 键情况【当堂检测】

(A)1.在外界条件的影响下,原子内部______________________________的过程叫做轨道杂化,组合后形成的新的、____________________的一组原子轨道,叫杂化轨道。2.甲烷分子中碳原子的杂化轨道是由一个__________轨道和三个__________轨道重新组合而成的,这种杂化叫_____________________。 3.乙烯分子中碳原子的原子轨道采用sp2杂化。形成乙烯分子时,两个碳原子各用__________的电子相互配对,形成一个σ键,每个碳原子的另外_____________分别与两个氢原子的_______________的电子配对形成共价键;每个碳原子剩下的一个未参与杂化的__________的未成对电子相互配对形成一个__________键。 (B)4.下列分子的中心原子形成sp2杂化轨道的是() A.H2O B.NH3 C.C2H4D.CH4 5.在乙烯分子中有5个σ键、一个π键,它们分别是() A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键 B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键 C.C-H之间是sp2形成的σ键,C-C之间是未参加杂化的2p轨道形成的π键 D.C-C之间是sp2形成的σ键,C-H之间是未参加杂化的2p轨道形成的π键

共价键及分子结构知识梳理

共价键及分子结构知识梳理】 一、共价键 1-1共价键的实质、特征和存在实质:原子间形成共用电子对特征:a.共价键的饱和性,共价键的饱和性决定共价分子的。 b共价键的方向性,共价键的方向性决定分子的。 1-2共价键的类型 b键:S-Sb键、S-p c键、p-p b键,特征:轴对称。 n键:p-p n键,特征:镜像对称 【方法引领】b键和n键的存在规律b键成单键;n键成双键、三键。 共价单键为b键;共价双键中有1个b键、1个n键;共价三键中有1个b键、2个n 键。 对于开链有机分子:b键数=原子总数-1 ; n键数=各原子成键数之和- b键数(环 状有机分子,b键数要根据环的数目确定) 原子形成共价分子时,首先形成b键,两原子之间必有且只有1个b键;b键一般比n 键牢固,n键是化学反应的积极参与者。 形成稳定的n键要求原子半径比较小,所以多数情况是在第二周期元素原子间形成。如 C02分子中碳、氧原子之间以p-p b键和p-p n键相连,而SiO2的硅、氧原子之间就没有p-p n键。 【课堂练习1】 (1)下列说法不正确的是 A .乙烷分子中的6个C —H和1个C —C键都为b键,不存在n键 B ?气体单质中,一定有b键,可能有n键 C.两个原子间共价键时,最多有一个b键 D . b键与n键重叠程度不同,形成的共价键强度不同 (2)有机物CH2= CH —CH2—C三CH分子中,C—H b键与C —C b键的数目之比为;b键与n 键的数目之比为。 二、键参数一一键能、键长与键角 2-1键能的意义和应用 a.判断共价键的强弱 b.判断分子的稳定性 c.判断物质的反应活性 d.通过键能大小比较,判断化学反应中的能量变化 【思考】 比较C —C和C= C的键能,分析为什么乙烯的化学性质比乙烷活跃,容易发生加成反 应? 2-2键长的意义和应用 键长越短,往往键能越大,表明共价越稳定。(键长的长短可以通过成键原子半径大小 来判断) 2个原子间的叁键键长v双键键长v单键键长 2-3键角的意义 键角决定分子的空间构型,是共价键具有方向性的具体表现。 【典例分析】碳、氮两种元素都能形成单键、双键和叁键。测得二者键能有如下规律: 3 E N> 2 E N =N > E N—N; -3E C V E c= c< E C—C 试分析为什么氮分子不易发生加成反应,而乙烯和乙炔容易发生加成反应?

结构的几何构造分析概念

结构的几何构造分析概念 1-1 1、几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。 几何可变体系:不考虑材料应变条件下,体系的位置和形状可以改变的体系。几何不变体系:不考虑材料应变条件下,体系的位置和形状保持不变的体系。 2、自由度:描述几何体系运动时,所需独立坐标的数目。 平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的自由度等于2。平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定,所以一个刚片在平面内的自由度等于3。 3、刚片:平面体系作几何组成分析时,不考虑材料应变,所以认为构件没有变形。可以把一根杆、巳知是几何不变的某个部分、地基等看作一个平面刚体,简称刚片。 4、约束:如果体系有了自由度,必须消除,消除的办法是增加约束。约束有三种: 5、多余约束:减少体系独立运动参数的装置称为约束,被约束的物体称为对象。使体系减少一个独立运动参数的装置称为一个约束。例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n 个刚片的复刚性节点相当于n—1个单刚性节点。如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。

6、瞬变体系及常变体系:常变体系概念:体系可发生大量的变形,位移。区别于瞬变体系:瞬变体系概念:体系可发生微小的变形,位移。 7、瞬铰:两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰。 2-2平面杆件体系的计算自由度 1、体系是由部件(刚片或结点)加上约束组成的。 2、刚片内部:是否有多余约束。内部有多余约束时应把它变成内部无多余约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。 3、复铰:连接两个以上刚片的铰结点。连接n个刚片的铰相当于(n-1)个单铰。 4、单链杆:连接两个铰结点的链杆。 5、连接两个以上铰结点的链杆。 连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。 6、平面体系的计算自由度 W :W=3m-(2n+r) m:钢片数 n:单绞数 r:支座链杆数上面的公式是通用的。 W=2J-(b+r) J:结点个数 b:链杆数 r:支座链杆数上面的公式用于完全由铰接的连杆组成的结构体系。 7、自由度与几何体系构造特点: 静定结构的受力分析

Gaussian中分子的几何构型.

Gaussian中分子的几何构型 分子的几何构型 ************************************ 分子的几何构型(Molecular Geometry) ************************************ 分子的平衡构型(molecular equilibrium geometry)是分子电子能量和核间排斥能 量最小时分子的核排列。 分子势能 一个含有N个原子核的非线性分子的几何构型可以用3N-6个独立的核坐标决定,分子 的电子能量,U(q1,q2,…,q3N-6)是这些坐标的函数。 U = Ee +VNN 注意到3个平移和3个转动自由度(线性分子的转动自由度为2)对U是没有贡献的,因 此对一个双原子分子,U的表达式中仅仅保护一个变量,即两个核之间的距离,U?。 对一个多原子分子,U是每两个原子核之间距离的函数,是分子势能面(potential energy surface, PES)的一部分。对某一特定的分子核排列下U的计算被成为单点 (single-point)计算,因为这一计算仅仅涉及到分子PES上的一个点。 一个大分子可能在其PES上有多个极小点,对应于不同的平衡构象和鞍点。 分子构象(molecular conformation)可以通过指定围绕单键的二面角的指得到。在 能量极小点处的分子构象称为构型(conformer)。 几何构型优化 从初始几何构型出发寻找U的极小值的过程称几何构型优化(geometry optimization) 或者能量极小化(energy minimization)。极小化的算法同时计算U和U梯度。 在一个局部最小点,U的3N-6个偏微分都是0。PES上▽U = 0的点称为稳定点(statio nary point)或者判据点(critical point),它可以是极小点,极大点或者鞍点。 除了▽U之外,一些最小化方法使用到U的二阶偏微分,从而生成Hessian矩阵,又称为 力常数(force constant)矩阵,因为d^2U/Qi^2 = fi为力常数。 如果一个稳定点是电子能量面上的一个极小点,其力常数矩阵的所有特征值都是正值 。然而,若一个稳定点是过渡态(transition state, TS),其中一个特征值是负值。 Newton-Rapson Newton-Rapson方法是一种非常有效的寻找多变量函数的局部极小点的算法,它将函 数用Taylor展开到二次项,包括函数的一次和二次微分,并以此作为函数的近似。 Quasi-Newton-Rapson 计算自洽场(self consistent field, SCF)能量的二阶微分是非常耗时的,因此在 优化时经常使用一种修正的方法,即quasi-Newton(或quasi-Newton-Rapson)方法。 这种方法在每一步优化中通过计算梯度对Hessian值进行初始估算。 优化方法 为了优化几何构型,要先对平衡构型做一个估算,通常使用键长和键角的经验值。此外,我们还要选择

四化学键理论与分子几何构型

四、化学键理论与分子几何构型 1. (1) ,(I)的稳定性大于(Ⅱ)。 (2) C O O O N O C O O O N O O (I) O C O O N O O C O O O N O O (II) O N O O C O O O N O O C O O (III) O N O O C O N O O C O O (IV) 第(III)式最稳定。 (3) Cu + + NO 2–+ 2H + Cu 2+ + NO + H 2O (4) 若压强降到原来的2/3,则说明3 mol NO 变成2 mol 气态物质: 3NO NO 2 + N 2O ,又由于2NO 2N 2O 4,所以最后的气体总压还要略小于原压的2/3。 2. N N N N N N N N N (IV) (V) (II)、(V)不稳定,舍去,(I)比(III)、(IV)稳定。 N (a)N (b)N (c) N (d)N (e) N (a)—N (b)的键级为5/2~3, N (b)—N (c)的键级为1~3/2, N (c)—N (d)的键级为1~3/2,N (d)—N (e)的键级为5/2~3。 N 5+有极强的氧化性。应在液态HF 中制备N 5+。 3. ArCl + OF + NO + PS + SCl + 键级: 1 2 3 3 2 ArCl +键级最小,最不稳定;虽然NO +与PS +的键级都是3,但NO +是2p —2p 轨道重叠的π键,而PS +是3p —3p 轨道重叠的π键。前者重叠程度大,E π大,所以NO +比PS +稳定,即NO +离子最稳定。 4. (1) B 3N 3H 6 N H H H H H N B N B B H H H H H H N B B H N B N O N O O O N O O (I)(II) N N N N N N N N N N (I) (II) N N N N N (III)

几何结构之折叠、旋转(讲义及答案).

几何结构之折叠、旋转(讲义) ?知识点睛 1.折叠(轴对称)的思考层次 (1)全等变换:对应边相等、对应角相等. (2)对应点与对称轴:对称轴所在直线是对应点连线的垂直平分线.(对应点所连线段被对称轴垂直平分,对称轴上的点到对应点的距离相等) (3)常见组合搭配 ①矩形背景下的折叠常出现等腰三角形; ②两次折叠往往会出现特殊角:45°,60°,90°等. (4)应用,作图(构造) 核心是确定对称轴和对应点,一般先确定对应点和对称轴,然后再补全图形. 特征举例: ①折痕运动但过定点,则折叠后的对应点在圆上; ②对应点确定,折痕为对应点连线的垂直平分线. 2.旋转思考层次 (1)全等变换:对应边相等、对应角相等. (2)对应点与旋转中心 旋转会出现等线段共端点(对应点到旋转中心的距离相等); 对应点与旋转中心的连线所夹的角等于旋转角; 对应点所连线段的垂直平分线都经过旋转中心;

旋转会产生圆(圆弧). (3)常见组合搭配 旋转会出现相似的等腰三角形; 旋转60°会出现等边三角形;旋转90°会出现等腰直角三角形; 相似三角形对应点重合时会出现旋转放缩模型. (4)应用,作图(构造) 当题目(背景)中出现等线段共端点时,会考虑补全旋转构 造全等.(常见背景有正方形、等边三角形、等腰三角形)注:读题标注时,往往要弄清楚旋转三要素; 旋转方向不确定需要分类讨论; 常将图形的旋转转化为点、线段的旋转进行操作.(有时 只需保留研究目标即可)

?精讲精练 1.小明用不同的方式来折叠一个边长为8 的正方形纸片ABCD, 折痕MN 分别与边AD,BC 交于点M,N,沿MN 将四边形ABNM 折叠,点A,B 的对应点分别为点A′,B′.他得到了以下结论:①如图1,当点B′落在DC 的中点处时,BN=5. ②如图2,当点B′落在CD 上时,延长NB′交AD 的延长线于 点E,△NEM 为等腰三角形.③如图2,当点B′落在CD 上时,连接BB′,此时BB′=MN,BB′⊥MN.④如图3,先将正方形沿MN 对折,使AB 与DC 重合,再将AB 沿过点A 的直线折叠,使点B′落在MN 上,则∠MAB′=60°.其中正确结论的序号是. 图1 图2 图 3 2.如图,在△ABC 中,∠ACB=90°,点D,E 分别在AC,BC 上,且∠CDE=∠B,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.若AC=8,AB=10,则CD 的长为.

化学键理论与分子几何构型例题

170℃ 四、化学键理论与分子几何构型 1. NO 的生物活性已引起科学家高度重视,它与O 2- 反应,生成A 。在生理pH 条件下, A 的t 1/2= 1~2秒。 (1) 写出A 的可能的Lewis 结构式,标出形式电荷。判断它们的稳定性。 (2) A 与水中的CO 2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示 出形式电荷,判断其稳定性。 (3) 含Cu +的酶可把NO 2- 转化为NO ,写出此反应方程式。 (4) 在固定器皿中,把NO 压缩到100atm ,发现气体压强迅速降至略小于原压强的 2/3,写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。 2. 试画出N 5+离子的Lewis 所有可能结构式,标出形式电荷,讨论各自稳定性,写出各 氮原子之间的键级。你认为N 5+的性质如何?它应在什么溶剂中制得。 3. 在地球的电离层中,可能存在下列离子:ArCl +、OF +、NO +、PS +、SCl +。请你预测 哪一种离子最稳定?哪一种离子最不稳定?说明理由。 4. 硼与氮形成类似苯的化合物,俗称无机苯。它是无色液体,具有芳香性。 (1) 写出其分子式,画出其结构式并标出形式电荷。 (2) 写出无机苯与HCl 发生加成反应的方程式 (3) 无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式, 并以此判断取代物可能的结构式。 (4) 硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具 有导电性。 (5) 画出Ca 2(B 5O 9)Cl·2H 2O 中聚硼阴离子单元的结构示意图,指明阴离子单元的电 荷与硼的哪种结构式有关。 5. 用VSEPR 理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。 (1)IF 3 (2)ClO 3- (3)AsCl 3(CF 3)2 (4)SnCl 2 (5)TeCl 4 (6)GaF 63 - 6. 试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子 (1) 画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πm n ) (2) 估计分子中碳—氧键的键长变化规律 7. 近期报导了用二聚三甲基铝[Al(CH 3)3]2 (A)和2, 6—二异丙基苯胺(B)为原料,通过 两步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH 4 第二步:□C □D + □CH 4(□中填入适当系数)请回答下列问题: (1) 分别写出两步反应配平的化学方程式(A 、B 、C 、D 要用结构简式表示 (2) 写出D 的结构式 (3) 设在第一步反应中,A 与过量B 完全反应,产物中的甲烷又全部挥发,对反应后

分子的几何构型和分子的极性及其强化练习

分子的几何构型和分子的极性 一、杂化轨道理论 1、概念:同一原子中能量接近的不同轨道,在成键过程中,为了发挥更高的 成键效能,可 以重新组合,进行杂化,成为一组能量相同的新轨道。 2、意义:杂化轨道理论证明了共价键的饱和性和方向性,主要用于解释分子 的空间几何构型。 3、类型: 杂化类型杂化轨道数轨道夹角空间构型实例 sp杂化 2 180 直线形HCN、BeCl2、C2H2、CO2 sp2杂化 3 120 平面三角形BF3、CO32-、C2H4、HCHO sp3杂化 4 109°28' 正四面体CH4、CCl4、SO42-、PO43- 4、说明:NH3也采用sp3杂化,但成键后,存在一个孤电子对,对周围的键 产生排斥,使键角不等于109°28',而为107°;H2O也采用sp3杂化,但成键后,存在2个孤电子对,对周围的键产生排斥,使键角不等于109°28',而为104.5°;因为存在2个孤电子对,对周围的键产生排斥加大,因而键角比NH3的更小。CH3Cl也采用sp3杂化,但成键后,不存在孤电子对,键角依旧为 109°28',但因为C—H键长小于C—Cl键长,分子不再是正四面体,而是四面体。 二、价电子互斥理论

1、概念:分子或离子的几何构型主要决定于与中心原子相关的价电子对之间 的排斥作用。价电子对数由成键电子对数和孤电子对数组成。价电子对的排斥作用 孤电子对与孤电子对的排斥,有成键电子对和孤电子对的排斥,还有成键电子对与 成键电子对的排斥,孤对电子间的排斥被认为大于孤对电子和成键电子对之间的排 斥,后者又大于成键电子对之间的排斥。分子会尽力避免这些排斥来保持稳定。当 排斥不能避免时,整个分子倾向于形成排斥最弱的结构(与理想形状有最小差异的 方式)。分子更倾向于最弱的成键电子对与成键电子对的排斥。配体较多的分子中,电子对间甚至无法保持90°的夹角,因此它们的电子对更倾向于分布在多个 平面上。 2、意义:用于预测和分析分子或离子的空间构型。 3、模型:计算中心原子的价电子对数= 注:氧族元素作配位原子认为不提供电子,σ键数为“0”. 孤电子对数=中心原子的价电子对数-σ键数 价电子对成键对数孤电子对杂化类型电子对构型几何构型实例 2 2 0 sp 直线形直线形CO2 3 3 0 sp2 三角形三角形BF3 3 2 1 sp3 三角形V形SO2 4 4 0 sp3 四面体正四面体CH4 4 3 1 sp3 四面体三角锥NH3 4 2 2 sp3 四面体V形H2O 5 5 0 三角双锥三角双锥PCl5 6 6 0 八面体正八面体SF6

判断分子空间几何构型的简单方法

判断分子空间几何构型的简单方法 电子对数目成键电子对 数目孤电子对数 目 分子的空间 构型 实例 2 2 0 直线型二氧化碳 3 3 0 三角形三氟化硼 2 1 V型二溴化锌4 4 0 四面体甲烷 3 1 三角锥氨气 2 2 V型水 5 5 0 三角双锥五氯化磷 4 1 变形四面体四氟化硫 3 2 T型三氟化溴 2 3 直线型二氟化氙6 6 0 八面体六氟化硫 5 1 四角锥五氟化碘 4 2 正方形四氟化氙以下用G表示电子对数目,V表示分子中所有原子最外层电子数的和,n表示配位原子中除了氢原子以外的其它原子的个数,m表示孤电子对数目,r表示配

位原子中氢原子的个数。 当配位原子中没有氢原子且V≥16时:V=8n+2m,G=m+n 例:CO2分子构型的判断 V=4+6×2=8n+2m,这里n=2,∴m=0, ∴G=m+n=0+2=2,所以CO2的分子构型为直线型 BF3分子构型的判断 V=3+7×3=8n+2m,这里n=3,∴m=0, ∴G=m+n=0+3=3,所以BF3的分子构型为三角形 PCl5分子构型的判断 V=5+7×5=8n+2m,这里n=5,∴m=0, ∴G=m+n=0+5=5,所以PCl5的分子构型为三角双锥 SF4分子构型的判断 V=6+7×4=8n+2m,这里n=4,∴m=1, ∴G=m+n=1+4=5,所以SF4的分子构型为变形四面体 BrF3分子构型的判断 V=7+7×3=8n+2m,这里n=3,∴m=2, ∴G=m+n=2+3=5,所以BrF3的分子构型为T型 SF6分子构型的判断 V=6+7×6=8n+2m,这里n=6,∴m=0, ∴G=m+n=0+6=6,所以SF6的分子构型为八面体 XeF4分子构型的判断

四、化学键理论与分子几何构型.

170℃四、化学键理论与分子几何构型 1.NO的生物活性已引起科学家高度重视,它与O2-反应,生成A。在生理pH条件下,A 的t1/2= 1~2秒。 (1)写出A的可能的Lewis结构式,标出形式电荷。判断它们的稳定性。 (2)A与水中的CO2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示出形 式电荷,判断其稳定性。 (3)含Cu+的酶可把NO2-转化为NO,写出此反应方程式。 (4)在固定器皿中,把NO压缩到100atm,发现气体压强迅速降至略小于原压强的2/3, 写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。 2.试画出N5+离子的Lewis所有可能结构式,标出形式电荷,讨论各自稳定性,写出各氮 原子之间的键级。你认为N5+的性质如何?它应在什么溶剂中制得。 3.在地球的电离层中,可能存在下列离子:ArCl+、OF+、NO+、PS+、SCl+。请你预测哪一 种离子最稳定?哪一种离子最不稳定?说明理由。 4.硼与氮形成类似苯的化合物,俗称无机苯。它是无色液体,具有芳香性。 (1)写出其分子式,画出其结构式并标出形式电荷。 (2)写出无机苯与HCl发生加成反应的方程式 (3)无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式,并 以此判断取代物可能的结构式。 (4)硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具有 导电性。 (5)画出Ca2(B5O9)Cl·2H2O中聚硼阴离子单元的结构示意图,指明阴离子单元的电荷 与硼的哪种结构式有关。 5.用VSEPR理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。 (1)IF3(2)ClO3-(3)AsCl3(CF3)2(4)SnCl2(5)TeCl4(6)GaF63- 6.试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子 (1)画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πm n ) (2)估计分子中碳—氧键的键长变化规律 7.近期报导了用二聚三甲基铝[Al(CH3)3]2(A)和2, 6—二异丙基苯胺(B)为原料,通过两 步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH4 第二步:□C □D + □CH4(□中填入适当系数) 请回答下列问题: (1)分别写出两步反应配平的化学方程式(A、B、C、D要用结构简式表示 (2)写出D的结构式 (3)设在第一步反应中,A与过量B完全反应,产物中的甲烷又全部挥发,对反应后的 混合物进行元素分析,得到其质量分数如下: C (碳):73.71% ,N (氮):6.34% 试求混合物中B和C的质量分数(%) (已知相对原子量:Al:26.98、C:12.01、N:14.01、H:1.01) 8.四氨合铜(II)离子在微酸性条件下,与二氧化硫反应生成一种沉淀物(A),该沉淀物中Cu:N:S(原子个数比)=1:1:1,结构分析证实:存在一种正四面体和一种三角锥型的分

分子的几何构型优化计算.doc

分子的几何构型优化计算(2) m ents (2) a n98) 1.优化目的: 对分子性质的研究是从优化而不是单点能计算开始。这是因为我们认为在自然情况下分子主要以能量最低的形式存在。只有能量最低的构型才能具有代表性,其性质才能代表所研究体系的性质。在建模过程中,我们无法保证所建立的模型有最低的能量,所以所有研究工作的起点都是构型优化,要将所建立的模型优化到一个能量的极小点上。只有找到合理的能够代表所研究体系的构型,才能保证其后所得到的研究结果有意义。 分子性质研究的一般模式: 2 高斯中所用到的一些术语的介绍 a n98的界面

2.1势能面 在不分解的前提下,分子可以有很多个可能的构型,每个构型都有一个能量值,所有这些可能的结构所对应的能量值的图形表示就是一个势能面,势能面描述的是分子结构和其能量之间的关系,以能量和坐标作图。根据分子中的原子数和相互作用形式,有可能是二维的,也有可能是多维的。势能面上的每一个点对应一个具有一个能量的结构。能量最低的点叫全局最小点,局域最小点是在势能面上某一区域内能量最小的点,一般对应着可能存在的异构体。鞍点是势能面上在一个方向有极大值而在其他方向上有极小值的点,通常对应的都是过渡态。优化的目的就是找到势能面上的最小点,因为这个点所对应的构型能量最低,是最稳定的。 2.2确定能量最小值 构型优化就是找体系的最小点或鞍点。能量的一阶导(也就是梯度,注意在数学中,一阶导表示着函数的变化趋势,一阶导为零就表明找到了极值点,这是确定最小值的数学基础)是零,这表明在这个点上的力也是零(因为梯度的负值是力)。我们把势能面上这样的点称为静态点(也就是上面所说的极小点)。所有成功的优化都会找到一个静态点,虽然有时找到的静态点并不是想要的静态点。 程序从输入的分子构型开始沿势能面进行优化计算,其目的是要找到一个梯度为零的点。计算过程中,程序根据上一个点的能量和梯度来确定下一步计算的方向和步幅。梯度其实就是我们所说的斜率,表示从当前点开始能量下降最快的方向。以这种方式,程序

Gaussian中分子的几何构型.doc

Gaussian中分子的几何构型 分子的儿何构型 木*********************************** 分子的几何构型(Molecular Geometry) ************************************ 分子-的平衡构烈(molecular equilibrium geometry)是分子电子能最和核间排斥能 量戢小时分子的核排列。 分子势能 一个含有N个原了核的非线性分了的几何构型可以用3N-6个独立的核坐标决定,分了的电子能屋,U(ql,q2,- ,q3N-6)是这些坐标的函数。 U = Ee +VNN 注意到3个平移和3个转动口由度(线性分子的转动口由度为2)对U是没有贡献的,因 此对一个双原子分子,U的表达式屮仅仅保护一个变量,即两个核之间的距离,U?o 对一个多原了分了,U是每两个原子核Z间距离的两数,是分子势能面(potential energy surface, PES)的一部分。对某特定的分子核排列下U的计算被成为单点 (single-point)计算,因为这一计算仅仅涉及到分子PES ±的一个点。 一个大分子可能在其PES上有多个极小点,对应于不同的平衡构象和鞍点。 分子构線(molecular conformation) 口J以通过指定围绕单键的二面角的指得到。在 能量极小点处的分子构彖称为构型(conformer)。 几何构型优化 从初始儿何构型出发寻找U的极小值的过程称儿何构型优化(geometry optimization) 或者能量极小化(energy minimization)。极小化的算法同时计算U和U梯度。 在一个局部最小点,U的3N-6个偏微分都是0。PES±VU = 0的点称为稳定点(statio nary point)或者判据点(critical point),它可以是极小点,极大点或者鞍点。 除了^UZ外,一些最小化方法使用到U的二阶偏微分,从而生成Hessian矩阵,又称为 力常数(force constant)矩阵,因为d A2U/Qi A2 =五为力常数。 如果--个稳定点是电子能量而上的一个极小点,英力常数矩阵的所有特征值都是正值 。然而,若一个稳定点是过渡态(transition state, TS),其中一个特征值是负值。 Newton-Rapson Newton-Rapson方法是一种非常有效的寻找多变量函数的局部极小点的算法,它将函数用Taylor展开到二次项,包括函数的一次和二次微分,并以此作为函数的近似。Quasi-Ncwton-Rapson 计算自洽场(self consistent field, SCF)能量的二阶微分是非常耗时的,因此在 优化时经常使用一种修正的方法,即quasi-Newton (或quasi-Newton-Rapson)方法。 这种方法在每一步优化中通过计算梯度对Hessian值进行初始估算。 优化方法 为了优化儿何构型,要先对平衡构型做-个估算,通常使川键长和键角的经验值。此夕卜,我们还要选择好适当

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力, 体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

无机化学第10章共价键与分子结构习题全解答.doc--12-19

第10章共价键与分子结构 1.写出下列物质的Lewis结构式并说明每个原子如何达到八电子结构:HF,H2Se, H2C2O4(草酸),CH3OCH3(甲醚),H2CO3,HClO,H2SO4,H3PO4。 解: ,,,, ,,。 上述分子中的原子除H原子外,其他原子通过所形成的共价键共有电子和价电子层孤对电子共同构成8电子结构。 2、用杂化轨道理论说明下列化合物由基态原子形成分子的过程(图示法)并判断分子的空间构型和分子极性:HgCl2,BF3,SiCl4,CO2,COCl2,NCl3,H2S,PCl5。 解: ①HgCl2 HgCl2分子的中心原子为Hg原子。基态时Hg原子的价电子构型为6s2。当Hg 原子与Cl原子相遇形成HgCl2时,Hg的6s轨道中的1个电子激发到1个6p轨道,然后6s轨道和该6p轨道采用sp杂化形成2个等同的sp杂化轨道: 并分别与两个Cl原子的3p单电子轨道重叠形成2个Hg-Cl σ键。HgCl2分子构型是直线形,为非极性分子。 ②BF3 BF3分子的中心原子是B原子。基态时B原子的价电子构型为2s22p1。当B原子与F原子相遇形成BF3分子时,B原子2s轨道中的1个电子激发到1个空的2p 轨道,然后采用sp2杂化形成3个等同的sp2杂化轨道: 并分别与3个F原子2p单电子轨道重叠形成3个B-F σ键。BF3分子构型是平面三角形,为非极性分子。 ③SiCl4 Si原子为SiCl4的中心原子,基态时价电子构型为3s23p2,当Si原子与Cl原子相遇形成SiCl4分子时,Si原子3s轨道的1个电子激发到一个空的3p轨道,然后

采用sp3杂化形成4个等同的sp3杂化轨道: 并分别与4个Cl原子3p单电子轨道重叠形成4个Si-Cl σ键。SiCl4分子构型是正四面体,为非极性分子。 ④CO2 C原子为CO2的中心原子。基态时C原子价电子构型为2s22p2,当C原子与O 原子相遇形成CO2分子时,C原子2s轨道的1个电子激发到一个空的2p轨道,然后采用sp杂化形成2个等同的sp杂化轨道: 并分别与2个O原子的2p单电子轨道重叠形成2个σ键,两个O原子的一个2p 单电子轨道与C原子未参与杂化的2p轨道肩并肩重叠形成π键。CO2分子构型是直线形,为非极性分子。 ⑤COCl2 C原子为COCl2的中心原子。基态时C原子价电子构型为2s22p2,当C原子与O 原子、Cl原子相遇形成COCl2分子时,C原子2s轨道的1个电子激发到一个空的2p轨道,然后采用sp2杂化形成3个sp2杂化轨道: 其中2个sp2杂化轨道分别与2个Cl原子的3p单电子轨道重叠形成2个C-Clσ键,另一个sp2杂化轨道和O原子的2p单电子轨道形成C-Oσ键,O原子另一个2p单电子轨道与C原子未参加杂化的2p轨道肩并肩重叠形成π键。COCl2分子构型是三角形,为极性分子。 ⑥NCl3 N原子为NCl3的中心原子。基态时N原子价电子构型为2s22p3, 当N原子与Cl 原子相遇形成NCl3分子时,N原子采取sp3杂化形成4个sp3杂化轨道: 其中3个sp3杂化轨道分别与3个Cl原子的3p单电子轨道重叠形成3个C-Clσ键,另一个sp3轨道被孤对电子占据。NCl3分子构型是三角锥,为极性分子。 ⑦H2S S原子为H2S的中心原子。基态时S原子价电子构型为3s23p4, 当S原子与H 原子相遇形成H2S分子时,S原子采取sp3杂化形成4个sp3杂化轨道: 其中2个sp3杂化轨道分别与2个H原子的1s单电子轨道重叠形成2个H-Sσ键,另外2个sp3杂化轨道被孤对电子占据。H2S分子构型是V形,为极性分子。

相关主题
文本预览
相关文档 最新文档