当前位置:文档之家› 上覆岩层结构及运动规律

上覆岩层结构及运动规律

1.2. 2上覆岩层结构及运动规律研究现状

自采用长壁开采技术以来,回采工作面上覆岩层的结构及运动规律一直是采矿学科研究的核心问题之一。许多学者结合现场实测,通过理论分析、实验室模拟和数值分析等方法研究了上覆岩层的结构及运动规律,提出了许多有价值的理论和围岩控制技术。由于地质条件的差异较大、研究人员切入点的不同,形成了许多的假说和理论体系。这些研究成果都以不同方式回答了上覆岩层结构的形式问题,用以解释采场各种矿山压力现象,因此,这些假说和理论研究成果对岩层控制都具有一定的指导意义。

1916年德国的K. Stock提出悬臂梁假说,假说认为:工作面和采空区上方的顶板可被视为梁,它是一端固定于岩体内,另一端则处于悬升状态,当顶板由几个岩层组成时,形成组合悬臂梁,弯曲下沉后,受已垮落岩石的支撑,当组合悬臂梁的悬臂长度达到某个极限时,发生有规律的周期性折断,从而引起周期来压。此假说可以很好地解释工作面顶板下沉量和支架载荷随煤壁由近及远逐渐增大,同时还可以解释工作面的周期来压现象。该假说不足之处是计算的顶板下沉量和支架载荷与实际相差较大。

1928年,德国人哈克(w. Hack)和吉果策尔(G. Gilicer)提出了压力拱假说,假说认为:长壁工作面自开切眼起形成了压力拱,前拱脚位于煤壁前方,后拱脚位于采空区,在拱脚处形成应力增高区,拱内为应力降低区。压力拱随着工作面的推进而向前移动。压力拱假说能很好的解释围岩的卸载过程和原因,但不能解释上覆岩层的运动、变形

和破坏过程。

原苏联的r. H.库兹涅佐夫于1950--1954年提出了铰接岩块假说。此假说认为:上覆岩层的破坏可分为垮落带和规则移动带。垮落带又可分为整齐排列的上部分和杂乱无章的下部分,并且垮落带无水平方向有规律的挤压力。岩块之间相互铰合形成了一个多环节的铰链,并且有规则地在采空区上方逐渐下沉。该假说认为:工作面支架处于“给定载荷状态”和“给定变形状态”两种工作状态。所谓“给定载荷状态”就是当规则移动带下部岩层变形较小且未折断时,垮落带岩层和规则移动带可能发生离层,支架承受折断的垮落带岩层的全部重量的状态;所谓“给定变形状态”就是当直接顶受基本顶影响折断时,随着岩块的下沉支架所受的载荷和变形逐渐增大,直至岩块受到已垮落岩石的支承达到平衡为止,支架所的处的状态。该假说的不足之处是缺乏岩块间的力学分析。

50年代比利时学者A.拉巴斯提出了预成裂隙假说,该假说认为:回采工作面上覆岩层的连续性遭到破坏而成为非连续体,在工作面周围出现了应力降低区,应力增加区和采动影响区。随着工作面推进,三个区域相应的向前推移。由于上覆岩层内存在着各种裂隙,使岩体的变形类似于塑性体,这些岩石处于相互挤紧的状态形成了类似梁的平衡。在自重和上覆岩层作用下发生假塑性弯曲,当下部岩层下沉量大于上部岩层时便出现了离层。

70-80年代初,钱鸣高院士提出了岩体结构的“砌体梁”力学模型。该模型认为:回采工作面上覆岩层形成了垮落带、规则移动带、

弯曲下沉带。当规则移动带和其上部断裂的岩块相互咬合时,采场上覆岩层形成了外形如梁实质为拱的砌体构,故称之为砌体梁。此结构由煤壁、支架、采空区已垮落研石所支撑,沿开采方向,上覆岩层可分为:煤壁支撑影响区,离层区和重新压实区。“砌体梁”理论是预成裂隙假说与铰接岩块假说的发展。1994年,钱鸣高院士又建立了“砌体梁”结构的“s一R"稳定理论,1995年钱鸣高院士给出了砌体梁结构受力的理论解和岩层内部移动曲线定量解,实现了定量分析。

另外,国内众多学者也提出了自己的理论和观点。宋振骥院士提出的“传递岩梁”的理论。靳钟铭教授提出的坚硬顶的“悬梁结构”。贾喜荣教授提出的“薄板矿压理论”。石平五教授运用能量原理分析了矿山压力相关问题。这些理论和观点都丰富了矿山压力假说,对深入研究上覆岩层的结构及运动规律,解决支护问题起到了推动作用。

同时,国内外诸多学者就大采高围岩控制技术也进行了大量的研究。前苏联全苏矿山测量科学研究院对大采高采场的围岩运动规律及控制原理进了初步研究,研究结果表明:工作面初次来压和周期来压的步距取决于上覆岩层的特性及其结构;随着煤层开采厚度的增加,顶板坚硬岩层的支点向煤体的深部转移,煤壁边缘部分的变形较大;工作面的顶板下沉量增大;上覆岩层周期性折断的岩块很厚,回采空间上覆岩层的急剧下沉,来压强度增大;上覆岩层垮落高度增大,垮落岩层的松散系数增加;支承压力范围扩大。

郝海金博士对大采高综采工作面上覆岩层破断位置、破断后岩层的平衡结构进行了研究,结果表明:基本顶通常是超前工作面断裂

的,岩梁超前断裂后的受力状态、运动状态和支承压力的分布影响采场矿山压力的控制。大采高综采工作面与综采放顶煤工作面相比,其周期来压的强度、支架载荷、动载系数均有所增大。

弓培林教授运用关键层理论研究了采场覆岩结构特征及运动规律,研究表明:上覆岩层的垮落、断裂受关键层的特征、层位及分布等因素的控制。随着采高的增大,上覆岩层中的厚硬关键层产生断裂下沉,造成其上覆岩层的大规模运动。采高大于5. 0m后,断裂带高度大于相同煤层厚度分层开采的断裂带高度,并且随着采高增大上升的幅度较大。

目前我国大采高综采工作面的采高一般在5m以下,通常按普通采高的上覆岩层结构分析是可行的。但采高超过5m,甚至6m以上的研究相对较少,其上覆岩层结构发生了根本的变化。因此,对5m以上甚至6m以上工作面上覆岩层的结构和运动规律进行详细的分析与研究是解决大采高支护问题、指导大采高综采实践的关键,是大采高综采工作面上覆岩层结构及运动规律研究的进一步完善、丰富、发展。

地壳的结构与物质组成

地壳的结构与物质组成 2 地壳的结构与物质组成 2(1 地壳元素组合与矿物形成 (1)地壳元素组成和分类 地壳元素丰度的总特征可大致归纳如下:地壳中已发现的化学元素有92种,即元素周期表中1至92号元素。地壳中不同元素的含量差别很大, -16含量最高的元素氧(47,)与含量最低的氡(10)差1017倍。含量最高的三个元素氧、硅、铝的总量占地壳元素总量的84.6,。若加上含量大于1,的元素铁、钙、钠、钾、镁,总和达98,,剩余的84个元素重量的百分含量之和仅为2,。总体上,元素的原子丰度随元素的原子序数增大而降低,偶数原子序数的元素比相邻的奇数原子序数的元素丰度值高。惰性元素丰度偏低。 按化学计量比计算,地壳中阴离子的总数大大低于阳离子总数,阳离子与阴离子结合能力的大小和倾向性决定了元素的地球化学行为。地壳中元素的地球化学行为与元素的化学和晶体化学性质有关,也与地壳中元素的丰度和物理化学条件有关。 元素的地球化学分类方案较多,以下从地壳化学组成的角度出发,结合元素的地球化学行为将地壳中元素的丰度分为主量元素、微量元素、硫(硒、碲)和卤族元素、金属成矿元素、亲生物元素和亲气元素、放射性元素。 主量元素: 主量元素有时也称为常量元素,是指那些在岩石中(?地壳中)含量大于1,(或0.1,)的元素,在地壳中大于1,的8种元素都是主量元素,除氧以外的7种元素在地壳中都以阳离子形式存在,它们与氧结合形成的氧化物(或氧的化合物),是构成三大类岩石的主体,因此又常被称为造岩元素。

地壳中重量百分比最大的10个元素的顺序是:O,Si,Al,Fe,Ca,Na,K,Mg,Ti,H,若按元素的原子克拉克值(原子个数),则原子个数最多的元素 是:O,Si,H,Al,Na,Mg,Ca,Fe,K,Ti。Ti、H在地壳中的重量百分比虽不足1,,但在各大类岩石中频繁出现,也常被称为造岩元素。 上述地壳中含量最高的十种元素,在各类岩石化学组成中都占重要地位。虽然不同类型岩石的矿物成分有差异,但主要矿物都是氧化物和含氧盐,尤其是各种类型的硅酸盐,因此可将整个地壳看成一个硅酸盐矿物集合体。 岩浆岩是地壳中分布最广的岩石大类,从酸性岩直到超基性岩,主要矿物都是硅酸盐。不同的是,超基性岩和基性岩主要由镁、铁(钙)的硅酸盐组成,中、酸性岩主要由钾、钠的铝硅酸盐和氧化物组成。大陆地壳中上部中酸性岩石占主导地位,下部中基性岩为主体。大洋地壳以基性岩石为主。因此地球科学家常称地壳为硅酸盐岩壳。也有的学者将以中酸性岩为主的部分称为硅铝质地壳,将以基性岩为主的部分称为硅镁质地壳。 由此可知,地壳中主量元素的种类(化学成分)决定了地壳中天然化合物(矿物)的类型。主要矿物种类及组合关系决定了其集合体(岩石)的分类。而地壳中主要岩石类型决定了地壳的基本面貌。 微量元素: 在地壳(岩石)中含量低于0.1,的元素,一般来说不易形成自己的独立矿物,多以类质同象的形式存在于其他元素组成的矿物中,这样的元 ,,属主要元素,在素被称为微量元素。比如钾、钠的克拉克值都是2.5 自然界可形成多种独立矿物。与钾、钠同属第一主族的铷、铯,由于在地壳中的含量低,在各种地质体中的浓度亦低,难以形成自己的独立矿物,主要呈分散状态存在于钾、钠的矿物中。 硫(硒、碲)和卤族元素:

上覆岩层运动与矿山压力及其显现的关系

第三章上覆岩层运动与矿山压力及其显现的关系 采场矿山压力研究的基本任务,一是为回采工作面顶板控制服务,解决顶板控制方案及支护选型计算等方面的问题,二是为回采工作面周围巷道矿山压力控制服务,解决巷道布置和维护方面的问题。 除直接顶外,其它岩层的运动很难在井下直接看到,但是可以通过回采工作面和采场周围巷道中比较容易观测到的顶底板位移和支架承载等压力显现,根据矿压显现,可以推断矿山压力的分布、上覆岩层运动,为采场矿山压力控制设计提供基础。因此,“上覆岩层运动与矿山压力及其显现的关系”是“反演”和“正演”岩层运动及其运动结果的理论基础。 第一节矿山压力与矿山压力显现[2] 正确地建立“矿山压力”及“矿山压力显现”的基本概念,弄清它们之间的联系及区别,是正确进行矿山压力控制研究和实践的基础。 一、矿山压力 在煤或岩层中开掘巷道和进行回采工作称为对煤(或岩)层的“采动”。采动后在煤(或岩)层中形成的空间称为“采动空间”。采动空间周围岩体(包括顶板、底板及两帮的岩层),统称为“围岩”。 煤及岩层采动前,一般都在覆盖重力、构造运动作用力等作用下,处于三向受力的原始平衡状态。煤及岩层采动后,由于支承条件的改变,其原始平衡即遭破坏,各岩层边界上的作用力及分布在各点的应力(包括大小及方向)随之改变。采动后重新分布于围岩各个层面边界上的力及岩层中各点的应力将促使该部分岩体产生变形或遭到破坏,从而向已采空间运动。采动后作用于岩层边界上或存在于岩层之中的这种促使围岩向已采空间运动的力(采动后促使围岩运动的力),称为矿山压力。 二、矿山压力显现 (一)矿山压力显现的概念 采动后,在矿山压力的作用下通过围岩运动与支架受力等形式所表现出来的矿山压力现象,称为“矿山压力显现”。 (二)矿山压力与矿山压力显现间的关系[2] 研究与实践充分证明,矿山压力的存在是客观的、绝对的,它存在于采动空间的周围岩体中。但矿山压力显现则是相对的、有条件的,它是矿山压力作用的结果。然而围岩中有

3采煤工作面上覆岩层移动规律讲解

第三章采煤工作面上覆岩层移动规律 第一节概述 一、煤层顶底板岩层的构成 煤层处于各种岩层的包围之中。处于煤层之上的岩层称为煤层的顶扳;处于煤层之下的岩层称为煤层的底板。 根据顶、底板岩层离煤层的距离及对开采工作的影响程度不同,煤层的顶、底板岩层可分为: (l)伪顶。紧贴在煤层之上,极易垮落的薄岩层称为伪顶。通常由炭质页岩等软弱岩层组成,厚度一般小于0.5m,随采随冒。 (2)直接顶。位于伪顶或煤层之上,具有一定的稳定性,移架或回柱后能自行垮落的岩层称为直接顶。通常由泥质页岩、页岩、砂质页岩等不稳定岩层组成,具有随回柱放顶而垮落的特征。直接顶的厚度一般相当于冒落带内的岩层的厚度。 (3)老顶。位于直接顶或煤层之上坚硬而难垮落的岩层称为老顶。常由砂岩、石灰岩、砂砾岩等坚硬岩石组成。 (4)直接底。直接位于煤层下面的岩层。如为较坚硬的岩石时,可作为采煤工作面支柱的良好支座;如为泥质页岩等松软岩层时,则常造成底臌和支柱插入底板等现象。 二、采煤工作面上覆岩层移动及其破坏 在采用长壁采煤法时,随着采工作面的不断向前推进,暴露出来的上覆岩层在矿山压力的作用下,将产生变形、移动和破坏。根据破坏状态不同,上覆岩层可划分为三个带(图3-l)。 冒落带。指采用全部垮落法管理顶板时,采煤工作面放顶后引起的煤层直接顶的破坏范围(图3-l,Ⅰ)。该部分岩层在采空区内已经垮落,而且越靠近煤层的岩石就越紊乱、破碎。在采煤工作面内这部分岩层由支架暂时支撑。 裂隙带。指位于冒落带之上、弯曲带之下的岩层。这部分岩层的特点是岩层产生垂直于层面的裂缝或断开,但仍能整齐排列(图3-l,Ⅱ)。 弯曲下沉带。一般是指位于裂隙带之上的岩层,向上可发展到地表。此带内

机械设计基础习题答案第4章

4-1试述凸轮机构的工作过程? 答:1.推程凸轮转过推程运动角δt。从动件在推程做功,称为工作行程。 2.静止在最远点凸轮继续转动,从动件停留在远离凸轮轴心的位置,称为远休止,凸轮转过远休止角。 3.回程凸轮继续转动,从动件在其重力或弹簧力作用下由最远点回到最近点,这一行程称为回程,凸轮转过回程运动角。从动件在回程中不作功,称为空回行程。 4.静止在最远点凸轮继续转动,从动件停留在离凸轮轴心最近位置A,称为近休止,凸轮转过近休止角。 4-2 凸轮机构常用的从动件运动规律中,哪些产生刚性冲击?哪些产生柔性冲击?如何选择? 答:等速运动规律产生刚性冲击,这种运动规律不宜单独使用。 等加速等减速运动规律和简谐运动规律产生柔性冲击,这种运动规律适用于中速凸轮机构。 4-3 已知凸轮机构从动件的运动规律,如表题4-3所示,绘制从动件的位移线图。解:1.将横坐标代表δh的线段分为若干等份,等分点为3、4、5、6、7、8、9、10。 2.在δh/2处作横坐标的垂线,按一定比例取升程h,将h也分成与横坐标相同的等份,等分点为、3'、4'、5'、6'、7'、8'、9'、10'。 3.分别由始点和终点向3'、4'、5'、6'、7'、8'、9'、10'联斜线,这些斜线与横坐标各等分点的垂线的交点,即为位移线图的点。 4.将这些交点连成圆滑的曲线,即得位移线图。 4-4 已知从动件位移线图如图,设计一对心直动尖顶从动件盘形凸轮的轮廓曲线。已知其基圆半径r min=40 mm,凸轮顺时针转动。 解:1.选取适当的比例尺υ,以r min为半径作基圆。基圆与导路的交点B0为从动件尖顶的起始位置。 2.在基圆上,自开始沿的相反方向依次取推程运动角β1、远休止角β'、回程运动角β及近休止角β'',并将β1和β2各分成与位移线图对应的若干等分,得基圆上各点B‘1、2 B‘2、B‘3…。连接各径向线O B‘1、O B‘2…得到从动件导路反转后的位置。

理论力学运动学习题课

1. 图示的曲柄滑道机构中,曲柄长OA =10cm ,绕O 轴转动。当?=30°时,其角速度ω=1rad/s ,角加速度α=1rad/s 2,求导杆BC 的加速度和滑块A 在滑道中的相对加速度。 解 取滑块A 为动点,动坐标系固连于导杆上。 切向加速度a a τ和法向加速度a a n ,其大小分别为 a a τ=OA ·ε=10cm/s 2 a a n =OA ·ω2=10cm/s 2 牵连运动为平动的加速度合成定理为 a a = a a τ+ a a n = a e + a r 将上式各矢量分别投影在x 轴和y 轴上,解得 a r ==3.66cm/s 2 a e =13.66cm/s 2 a e 即为导杆在此瞬时的平动加速度。 2. 滚压机构的滚子沿水平地面作纯滚动。已知曲柄OA 长r ,以匀角速度ω转动。连杆AB 长r L 3=, 滚子半径为R 。求图示位置滚子的角速度和角加速度。 解 (1)分析运动,先选AB 杆为研究对象 (2)根据瞬心法求v B 先找到速度瞬心C v B = ωr 3 3 2 (3)利用加速度公式求a B n BA t BA A B a a a a ρρρρ++= ωAB = v A /AC = rω/3r = ω/3

a BA n = ABωAB 2= 3rω2/9 a B = 2 rω2/9 (4)再取滚子为研究对象,求ωB 和αB ωB = v B /R = ωr R 33 2 αB = dωB /dt =1/R ·dv B /dt = a B /R = 2 rω2/9R 3. 图示的四连杆机构中,O 1A =r , AB =O 2B =3r ,曲柄以等角速度ω1绕O 1轴转动。在图示位置时,O 1A ⊥AB ,∠O 2BA =60°。求此瞬时杆O 2B 的角速度ω2和角加速度2α。 解 (1)先计算杆O 2B 的角速度 杆O 1A 和O 2B 作定轴转动,连杆AB 作平面运动。过A 、B 两点作A v ρ、B v ρ 的垂线,其交点C 就是连杆AB 的瞬心。 根据瞬心法或者速度投影法可以求得 ο30cos B A v v = 于是 ωr v v A B 3 230 cos = =ο

上覆岩层结构及运动规律

1.2. 2上覆岩层结构及运动规律研究现状 自采用长壁开采技术以来,回采工作面上覆岩层的结构及运动规律一直是采矿学科研究的核心问题之一。许多学者结合现场实测,通过理论分析、实验室模拟和数值分析等方法研究了上覆岩层的结构及运动规律,提出了许多有价值的理论和围岩控制技术。由于地质条件的差异较大、研究人员切入点的不同,形成了许多的假说和理论体系。这些研究成果都以不同方式回答了上覆岩层结构的形式问题,用以解释采场各种矿山压力现象,因此,这些假说和理论研究成果对岩层控制都具有一定的指导意义。 1916年德国的K. Stock提出悬臂梁假说,假说认为:工作面和采空区上方的顶板可被视为梁,它是一端固定于岩体内,另一端则处于悬升状态,当顶板由几个岩层组成时,形成组合悬臂梁,弯曲下沉后,受已垮落岩石的支撑,当组合悬臂梁的悬臂长度达到某个极限时,发生有规律的周期性折断,从而引起周期来压。此假说可以很好地解释工作面顶板下沉量和支架载荷随煤壁由近及远逐渐增大,同时还可以解释工作面的周期来压现象。该假说不足之处是计算的顶板下沉量和支架载荷与实际相差较大。 1928年,德国人哈克(w. Hack)和吉果策尔(G. Gilicer)提出了压力拱假说,假说认为:长壁工作面自开切眼起形成了压力拱,前拱脚位于煤壁前方,后拱脚位于采空区,在拱脚处形成应力增高区,拱内为应力降低区。压力拱随着工作面的推进而向前移动。压力拱假说能很好的解释围岩的卸载过程和原因,但不能解释上覆岩层的运动、变形

和破坏过程。 原苏联的r. H.库兹涅佐夫于1950--1954年提出了铰接岩块假说。此假说认为:上覆岩层的破坏可分为垮落带和规则移动带。垮落带又可分为整齐排列的上部分和杂乱无章的下部分,并且垮落带无水平方向有规律的挤压力。岩块之间相互铰合形成了一个多环节的铰链,并且有规则地在采空区上方逐渐下沉。该假说认为:工作面支架处于“给定载荷状态”和“给定变形状态”两种工作状态。所谓“给定载荷状态”就是当规则移动带下部岩层变形较小且未折断时,垮落带岩层和规则移动带可能发生离层,支架承受折断的垮落带岩层的全部重量的状态;所谓“给定变形状态”就是当直接顶受基本顶影响折断时,随着岩块的下沉支架所受的载荷和变形逐渐增大,直至岩块受到已垮落岩石的支承达到平衡为止,支架所的处的状态。该假说的不足之处是缺乏岩块间的力学分析。 50年代比利时学者A.拉巴斯提出了预成裂隙假说,该假说认为:回采工作面上覆岩层的连续性遭到破坏而成为非连续体,在工作面周围出现了应力降低区,应力增加区和采动影响区。随着工作面推进,三个区域相应的向前推移。由于上覆岩层内存在着各种裂隙,使岩体的变形类似于塑性体,这些岩石处于相互挤紧的状态形成了类似梁的平衡。在自重和上覆岩层作用下发生假塑性弯曲,当下部岩层下沉量大于上部岩层时便出现了离层。 70-80年代初,钱鸣高院士提出了岩体结构的“砌体梁”力学模型。该模型认为:回采工作面上覆岩层形成了垮落带、规则移动带、

组成地壳的岩石

浙教版科学七上3.3.1组成地壳的岩石 教学目标:知道岩石的类型。 教学重点:掌握不同种类的岩石。 教学难点:理解集中常见的岩石;岩石的应用。 教学过程: 引入:不论是城市中雄伟的建筑,还是风景如画的黄山,我们都可以看到各种各样的岩石。地壳是由岩石组成的,你能认识不同种类的岩石吗?岩石是构成地貌,形成土塘的物质基础,也为人类提供了各种矿产资源。 一岩石的类型 1岩石圈 地壳+上地幔顶部,也就是软流层(位于上地幔)以上部分,由岩石组成。岩石圈不包含软流层(可提问)。岩石圈包括地壳和上地幔顶部。岩石圈厚度不一,大陆较厚,海洋较薄,但海洋部分的岩石圈并不缺失,缺失的只是硅铝层。//岩石圈的主要物质成分由表及里,铁镁成分增多。全球岩石圈不是一块整体,而是被一些构造带分割成许多板块。 2矿物:由地质作用形成的天然单质或化合物。它们具有相对固定的化学组成,呈固态者还具有确定的内部结构;它们在一定的物理化学条件范围内稳定,是组成岩石和矿石的基本单元。 3岩石:岩石是构成地貌、形成土壤的物质基础。岩石是组成岩石圈的基本单位。是固态矿物或矿物的混合物。其中海面下的岩石称为礁、暗礁及暗沙,是由一种或多种矿物组成的,具有一定结构构造的集合体,也有少数包含有生物的遗骸或遗迹(即化石)。 4岩石的类型:复杂多样。 通过根据岩石的成因把岩石分为岩浆岩、沉积岩和变质岩三种类型。 ⑴岩浆岩。如花岗岩、玄武岩、流纹岩、安山岩。 *岩浆:由软流层喷出的熔融物。高温、液态。 #成因:由岩浆喷出地表或侵入地壳冷却凝固后形成的。分为侵入岩和喷出岩两类。是岩浆喷发后形成,属于地球的内力作用。 *注意。只有岩浆能形成岩浆岩。变质岩能形成新的岩浆。不能说各类岩石都能形成岩浆岩。 #特点:有明显的矿物晶体颗粒和气孔,或柱状结构。 #有明显气孔的岩石在成因分类中属于岩浆岩中的喷出岩(喷出岩有气孔、疏松;侵入岩无孔隙、致密)。分析:因为岩浆岩是岩浆喷出地表后,在温度、压力骤然降低的条件下冷却凝固形成的,造成溶解在岩浆中的挥发性成分以气体形式大量逸出,形成气孔状构造。 *玄武岩最主要的特征是有气孔构造。由火山喷发冷凝而形成的玄武岩多气孔构造。 #岩浆岩形成气孔的原因:含有大量气体的岩浆在喷出地表后,气体大量逸出,在岩石中残留气孔。如玄武岩是喷出岩。 #有用成分举例:花岗岩是坚固、美观的建筑材料;多种金属矿是工业生产的原料。 ⑵沉积岩。常见的沉积岩有砾岩、砂岩、页岩和石灰岩等。 #成因:是地表的碎屑物一层层堆积、压实、固化形成的。各类岩石都能形成沉积岩。是地球外力作用形成。 #特点:由于沉积岩的生成是一层一层地沉积下来的,所以常能明显地看出层次,叫做层理构造。有明显的层状结构特征(但不能说都是层状分布)或化石,这是区别于其他岩石的主要特征,有些可以看到明显的砂粒或砾石,有化石存在。具有层理构造和常含有化石(有的含砂粒)是沉积岩的两个重要特征。 #有用成分举例:石灰岩是建筑材料和化工原料,钾盐是化工原料;煤、石油是当前世界最重要的能源。 #化石存在于沉积岩中。沉积岩中一般含有化石。砾石层形成年代很晚,不可能形成化石。 *贮煤地层的岩石类型一般是沉积岩。煤、石油、天然气是三大化石(矿物)燃料。 #沉积岩从下到上的顺序是砾岩砂岩页岩。 ⑶变质岩。如大理岩、板岩、片麻岩。 #成因:地壳中已生成的岩石,在岩浆活动、地壳运动产生的高温、高压条件下,原来岩石的成分和结构发生变化而形成的新岩石。如大理岩是石灰岩变质而成。(石灰岩能变质成大理岩)板岩是页岩变质而成(板岩是由页岩受挤压变质而成的)。石英岩是由砂岩变质而来的。各类岩石都能形成变质岩。是地球内力作用形成。 #特点:常有片状结构。

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

采场上覆岩层垮落步距计算方法

采场上覆岩层垮落步距计算方法 摘要:影响采场的运动岩层由直接顶和老顶组成。本文主要利用“板”模型和“梁”模型对直接顶初次垮落步距、老顶初次来压步距和老顶周期来压步距进行推算,为工作面顶板管理提供技术支持,确保采煤工作面安全生产。 关键词:板模型;梁模型;直接顶初次垮落步距;老顶初次来压步距;老顶中期来压步距 1 直接顶初次垮落步距 初次运动阶段,直接顶将首先垮落。工作面从开切眼开始推进,直接顶悬露跨度增大,当达到其极限跨度时直接顶将垮落。直接顶初次垮落标志是:直接顶垮落长度达工作面长度一半,垮落高度达1m 以上。直接顶初次垮落时,从开切眼到支架后排放顶线的距离叫做直接顶初次垮落步距。 直接顶初次垮落又称工作面初次放顶。直接顶初次垮落步距是衡量顶板完整程度的重要指标。直接顶的初次垮落现象是一种典型的矿压显现。 1.1 利用“板”模型计算 将直接顶视为工作面上方的“板”,利用弹性力学理论推导得到的“板”极限破坏步距公式进行计算求解。 b L oz /23ββ -= ,α γσβcos 3.14km t = (1) 式中,oz L 为直接顶初次垮落步距;t σ为岩层抗拉强度;k 为岩层的龟裂系数,k =0.25~0.75;m 为岩层厚度;b 为工作面斜长,;γ为岩层容重;α为工作面倾角。根据具体工作面几何尺寸、直接顶厚度以及岩性,取得式中参数,计算出结果。 1.2 利用“砌体梁”结构模型计算 1.2.1 按固支梁计算 q R h L t 21= (2) 1.2.2 按简支梁计算 q R h L t 321= (3)

1.2.3 考虑最大剪应力计算 q hR L s 341= (4) 式中,1L 为直接顶初次垮落步距;h 为直接顶厚度;t R 为岩层抗拉强度;s R 为岩层抗剪强度;q 为直接顶所承受的载荷。 采场覆岩中的任一岩层所承受载荷除自重外,一般还受上覆临近岩层的相互作用所产生的载荷。一般来说,采动岩层的载荷是非均匀分布的,但为了分析问题的方便,假设岩层载荷为均匀分布。 假设煤层上方共有m 层岩层,如图1所示。 考虑第n 层对第1层影响形成的载荷,按下式计算: () ()3 32 23 1 122113111 n n n n n h E h E h E h h h h E q +?+++?++= γγγ (5) 式中,i E 为岩层的弹性模量;i h 为岩层的厚度;i γ为岩层的容重。 当()11+n q <()1n q 时,说明第n+1层对第1层载荷不起作用。此时,直接顶所承受载荷为q =1q +()1n q 。 q m n 21 …… 图1 岩层载荷计算图 显然,在同样的条件下,由简支梁计算所得直接顶初次垮落步距要比由固支梁计算所得的小。在一般情况下,由于弯矩形成的极限跨度要比剪切应力形成的极限跨度小,因此常按弯矩来计算直接顶初次垮落步距。在什么条件下应按简支梁或按固支梁计算,需根据煤层赋存深度及边界煤柱两侧采空的情况来定。 1.3 利用“传递岩梁”理论计算

凸轮机构工作过程及从动件运动规律

教案 课次 19 课时 1 执行 日期 班级15机电1 周次 5 课型新授日期2017.3.16 课 题 §4—1 凸轮机构(2) 教 学 目 标 知识与技能 1.理解凸轮机构的工作过程; 2.掌握凸轮机构的从动件运动规律; 过程与方法 1.通过PPT的讲解过程,从而理解凸轮机构的工作过程,掌握凸 轮机构的从动件运动规律; 情感态度与价值观 1.通过复习旧知,明确本课的学习目的,并快速进入到最佳学习 状态; 教学 难点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学 重点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学 方法 讲授教学方法 教学过程: 复习、导入: 1.复习回顾上节课所学内容: (1)凸轮机构的分类与特点; 2.通过上节课的学习我们对凸轮机构有了一定的理解,那么它是怎么工作的?其从动件的运动规律有是怎样的呢?引出本课学习任务: (1)凸轮机构的工作过程; (2)凸轮机构的从动件运动规律; 知识点/任务/环节一: 一、凸轮机构的工作过程 1.凸轮机构中最常用的运动形式为凸轮作等速回转运动,从动件作往复移动,凸轮回转时,从动件作“升→停→降→停”的运动循环。 推程远停程回程近停程 δ0δ1δ2δ3 升停降停 教师活动和意图学生活动

1.请同学观看动画,凸轮做什么运动?从动件 做什么运动? 2.提问:从动件上下运动的原因?引出基圆概 念。 3.根据PPT讲解推程,提问推程过程中从动件 的运动,并请同学指出推程运动角; 4.根据PPT讲解远停程,提问远停程过程中从 动件的运动,并请同学指出远停程运动角; 5.请同学根据前面所讲的推程,讨论讲解回 程; 6.请同学根据前面所讲的远停程,讨论讲解近 停程; 7.讲解行程的概念; 8.根据讲的凸轮过程,请同学上来填表格; 9.请同学做练习。 设计意图:动画演示直观易于理解,分组讨 论总结凸轮机构工作过程,加深理解,易于 掌握。 1.观看动画,说明凸轮做什么运动?从动件做什 么运动? 2.回答从动件上下运动的原因。 3.回答推程过程中从动件的运动,并指出推程运 动角; 4.回答远停程过程中从动件的运动,并指出远停 程角; 5.讨论讲解回程; 6.讨论讲解近停程; 7.理解行程的概念; 8.填表格; 9.做练习。 目标达成情况(手写): 学生理解了凸轮机构的工作过程。 知识点/任务/环节二: 二、从动件的运动规律 1.等速运动规律 2.等加速、等减速运动规律 教师活动和意图学生活动 1.根据位移线图,分析从动件的运动规律; 2.请同学根据推程阶段位移线图,讨论绘制等 速运动过程中速度、加速度线图,并请同学上 来绘制; 3.提出等加速等减速的概念,让同学绘制等加 速等减速运动过程中速度、加速度、位移线图; 4.讲解冲击概念; 5.请同学做练习; 1.理解从动件的运动规律; 2.讨论绘制等速运动过程中速度、加速度线图, 并请同学上来绘制; 3.绘制等加速等减速运动过程中速度、加速度、 位移线图; 4.理解冲击概念; 5.做练习;

理论力学-点的合成运动

第六章点的合成运动 一、是非题 1、不论牵连运动的何种运动,点的速度合成定理v a=v e+v r皆成立。() 2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。() 3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。() 4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。() 5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。() 6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。() 7、当牵连运动定轴转动时一定有科氏加速度。() 8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。() 二、选择题 1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰 接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴 转动。今以圆盘边缘上的一点M为动点,OA为动坐标,当AM 垂直OA时,点M的相对速度为。 ①υr=Lωr,方向沿AM; ②υr=r(ωr-ω),方向垂直AM,指向左下方; ③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方; ④υr=rωr,方向垂直AM,指向在左下方。 2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小α r= ;牵连加速度的大小αe = ;科氏 加速度的大小αk = 。方向均需在图中画出。 ①Lω2; ②0; ③3Lω2;

地下结构设计

2.1 静止土压力如何确定。 当挡土结构在土压力作用下,结构不发生变形和任何位移时,背后填土处于弹性平衡状态,则作用于结构上的侧向土压力称为静止土压力。其值可根据弹性变形体无侧限变形理论或近似方法求得。 2.2 库伦理论的基本假定: 1挡土墙后土体为均质各向同性的无粘性土; 2挡土墙是刚性的且长度很长,属于平面应变问题; 3挡土墙后产生主动、被动土压力时,土体形成滑动楔体,滑裂面通过墙踵的平面; 4墙顶处的土体表面可以是水平面也可以是倾斜面; 5在滑裂面和墙背面上的切向力分别满足极限平衡条件 2.3 朗肯土压力的基本假定: 1挡土墙背竖直,墙面光滑,不计墙面与土层之间的摩擦力; 2挡土墙后填土的表面水平,为半无限空间; 3挡土墙后填土处于极限平衡状态 2.4 围岩压力概念:位于地下结构周围变形或破坏的岩层,作用在衬砌结构或支撑结构上的压力。影响因素:岩体结构、岩石的强度、地下水的作用、洞室的尺寸及形状、支护的类型及刚度、支护结构上的压力 2.5 围岩压力计算的两种理论方法:按松散体理论计算围岩压力,按弹塑性体理论计算围岩压力。前者考虑到了岩体裂隙和节理的存在,岩体被切割为互不联系的独立块体,将真正的岩体代之以某种具有一定特性的特殊松散体。 2.6 弹性抗力的概念:在靠近拱脚和边墙部位,结构产生压向底层的变形,由于结构与岩土体紧密接触,则岩土体将制止结构变形从而产生对结构的反作用力。影响因素:结构的变形、地层的物理力学性质。 2.7 弹性抗力的确定:目前采取两种理论。一为局部变形理论,认为弹性地基某点上施加的外力只会引起改点的沉陷;另一种为共同变性理论,认为弹性地基上的一点外力,不仅引起该点发生沉陷,而且还会引起附近一定范围的地基沉陷。 2.8 温克尔假定:把地基模拟为刚性支座上一系列的弹簧,当地及表面上某一点受压力P时,由于弹簧是彼此独立的,故只在局部产生沉陷y,而在其他地方不产生任何沉陷。 3.1 弹性地基梁两种计算模型的区别:局部弹性地基模型没有考虑地基的连续性,不能全面的反映地基梁的实际情况。半无限弹性体地基模型把低级看做均质、连续、弹性的半无限体,反映可地基的连续整体性,从几何、物理上对地基进行了简化,但这个模型没有反映土壤的非弹性性质、不均匀性、分层特点等。 3.2 弹性地基梁与普通梁的区别:弹性地基梁是指搁置在具有一定弹性地基上,各点与地基紧密相贴的梁,通过这种梁,将作用在它上面的荷载,分布到较大面积的地基上,既能使承载能力较低的地基承受较大的荷载,又能使梁的变形减少,提高刚度、降低内力。普通梁失静定的或有限次超静定结构,弹性地基梁是无限次超静定结构:普通梁只考虑梁的变形略去了低级的变形,弹性地基梁须同时考虑梁与地基的变形 3.3 弹性地基短梁(换算长度1<λ<2..75)、长梁(λ≥2.75)、刚性梁(λ≤1) 4.1地下建筑结构计算理论的发展过程:早年的地下建筑结构的建设完全依据经验,19世纪初才形成计算理论,最先出现的是将地下结构视为刚性结构的计算理论,直到19世纪后期,地下结构开始按弹性连续拱形框架计算内力,并据以

近水平煤层开采上覆岩层运动与沉陷规律相关研究_王崇革

2004年8月 Rock and Soil Mechanics Aug. 2004 收稿日期:2003-06-09 修改稿收到日期:2003-09-28 基金项目:国家自然科学基金资助项目(No. 50028403)。 作者简介:王崇革,男,1970年生,博士研究生,副教授,目前从事岩土工程的教学和科研工作。E-mail: chgewang@https://www.doczj.com/doc/6318102830.html, 文章编号:1000-7598-(2004) 08-1343-04 近水平煤层开采上覆岩层运动与沉陷规律相关研究 王崇革1,宋振骐2,石永奎2,郑文华2 (1.山东科技大学 力学教研室, 山东 泰安 271019;2.山东科技大学 资源与环境工程学院, 山东 泰安 271019) 摘 要:将近水平煤层开采的上覆岩层运动与地表沉陷作为一个整体系统进行研究,论述了采场上覆岩层的运动规律和裂隙拱的形成及发展变化过程。并结合地表沉陷的GPS 观测,确定了针对具体地质条件的地表移动变形边界角、移动角,找到了井下工作面推进位置与地表下沉速度之间的关系。 关 键 词:矿山压力;岩层运动;地表沉陷 中图分类号:TO 82 文献标识码:A Study on the relation between stratum movement and subsidence of flat seam mining WANG Chong-ge 1 , SONG Zhen-qi 2 , SHI Yong-kui 2, ZHENG Wen-hua 2 (1. Mechanics Teaching and Research Section, Shandong University of Science and Technology, Tai’an 271019, China; 2. College of Resources and Environmental Engineering, Shandong University of Science and Technology, Tai’an 271019, China ) Abstract: We can look the stratum movement and subsidence as a whole system to study. The common nature of stratum movement and the development procedure of crack arch are described. Meanwhile, based on the ground observation by the global positioning system (GPS), the boundary angle and the motion angle, which aim at special geologic conditions, are determined. The relation between the position of underground working face and ground subsidence velocity are found. Key words: rock pressure in mine; stratum movement; ground subsidence 1 引 言 地下开采所引起的上覆岩层运动与地表沉陷是一个十分复杂的力学变化过程[1]。地下煤层开采、采场顶板垮落、覆岩沉降和破坏乃至地表沉陷变形,是一个开挖、应力重分布、变形和破坏的整体全过程。当地下煤层被采出后,采空区直接顶在重力应力场及其上覆岩层的作用下,产生向下的移动和弯曲、断裂直至垮落。而老顶则以梁或悬臂梁弯曲的形式沿层理面法线方向运动,产生断裂、离层。由于岩层运动引起采场周围岩体内的应力重新分布,成层状弯曲岩层的下沉,使垮落破碎的岩块逐渐被压实。随着工作面的向前推进,当开采范围足够大时,成层状弯曲岩层将传至地表,在地表形成一个比采空区大得多的沉陷变形盆地。因此,地下开采过程中的采场矿山压力、上覆岩层运动,直至 引起地表沉陷变形,它们之间存在着必然的联系,是一个统一体的变化、运动过程(见图1)。将采场岩层运动与地表沉陷作为整体体系进行研究具有十分重要的意义。本文以近水平煤层开采为例,研究上覆岩层运动规律与地表变形之间的关系。 Fig. 1 Cross section perpendicular to the advance direction of working face

采场与支护设计思考题

第一章绪论 1.采场与巷道支护的必要性? 采场支护的必要性:采场支护的基本目的是要保证采场有足够的工作空间。支护应由采场上覆岩层运动规律来确定。 巷道支护的必要性:巷道开挖后围岩应力重新分布,引起围岩持续变形,如不及时支护,围岩将出现破碎、离层及至失稳、塌垮。巷道支护的目的是为了保证围岩的稳定性,使巷道在服务期间能够保持良好的工作环境。 2.采场与巷道支护要求和支护效果的评价? 要求:①适宜的刚度要求——即能顶得住,又能让的下。 ②支架支护力大小要合适 ③要能护得住顶板。防止直接顶和老顶动层,及直接顶下沉面破碎;天然破碎的顶板, 要有较好的防护措施,防止顶板和采空区冒落矸石冲入工作面。 评价:采场与巷道支护的根本目的是保证采场与巷道有安全稳定的工作空间。合理的支护除了要与采场和巷道工序要求匹配,应满足高产高效和煤巷掘进的基本要求,合理的支护成本外,在围岩控制方面尚有其特殊的要求。 ①最大限度的预防顶板事故的发生。 ②足量的工作空间保证,支护工作期间围岩移近量可控 ③维护良好的工作环境,保证对水、瓦斯的有效控制,有良好的通风条件等。3.长壁采煤工作面支护形式? (1)单体支柱(架)支护 (2)简易支架支护 (3)自移液压支架支护 4. 巷道支护的主要形式? (1)被动支护形式。包括各类木棚支架、钢筋混凝土支架、金属型钢筋支架,料石碹、混凝土及钢筋混凝土碹等。 (2)普通锚杆支护形式(主动支护)。 (3)高强预应力锚杆和注浆加固为主积极主动加固形式。锚注支护。 5. 采场与巷道支护设计的意义?略 第二章单体支架工作面支护 1单体支架工作面支护设计的主要内容; 1)顶板处理方法的选择 2)合理支护方式的选择 3)采场控顶距的选择 4)支柱实际支撑能力评价 5)合理支护密度的计算 6)顶板事故的预测与防治 2徐州矿务局张集矿第7501工作面单体支架工作支护设计?略

地层结构法命令流

finish /clear /prep7 !----------------------------------------------------------------------------------------------------------------------------- !隧道轮廓 k,1001,,, k,1002,0,2.217 k,1,0,10.258 k,2,-5.832,6.629 larc,1,2,1001,6.5 !创建圆弧,第一端点,第二端点,圆心所在一侧任一关键点,半径k,3,-6.5,3.758 larc,2,3,1001,6.5 k,4,-6.429,2.629 larc,3,4,1001,9 k,5,-6.367,2.217 larc,4,5,1001,9 k,6,-6.179,1.134 l,5,6 k,7,-5.617,1.134 l,6,7 k,8,-5.174,0.874 larc,7,8,1001,1.802 larc,8,1001,1002,15.75 lcomb,2,3 !合并线 ! LCOMB, NL1, NL2, KEEP--------其中:NL1,NL2---拟合并的两条线号。NL1可为ALL,或元件名。 ! KEEP---是否保留输入的线及其公共关键点控制参数。 ! KEEP=0则删除NL1和NL2及其公共关键点,如果已经划分网格则不能删除,或者依附于其它图素也不能删除 ! KEEP=1则保留线及其公共关键点,但公共关键点不依附于新创建的线。 !该命令可以合并独立线或依附于同面上的线,合并后便于网格划分。 !可合并的线可为直线或曲线,以及直线与曲线,可共线或不共线。 !当为多条时,应为多条首尾相连的线。 !无论在何种坐标系下执行合并,合并后的线不改变合并前的空间位置。 lcomb,4,5 lcomb,7,8

地壳运动与地质构造

第八章地壳运动与地质构造 §1 概念 大家已有了岩石的概念:岩浆、沉积岩、变质岩,它们是不同的地质作用下形成的,岩浆岩中的侵入岩应地下形成,地表看不见。但现在大量突出地表,甚至形成高山,如五台山等由侵入岩或其变质岩组成;沉积岩,原始应水平沉积,地表大量倾斜、弯曲、断开。这些说明地壳上岩石发生运动,发生机械运动。 一、地壳运动(构造运动)——地壳的机械运动。 引起运动的原因,将在本章最后一节讲述 运动的结果为岩石变形、变位 岩石变形——地壳中岩石变改了原有的空间位置和形态。 地质构造——岩石变形的产物包括褶皱、断裂两大类。 二、岩石变形的力学原理:(岩土力学中细讲,简单地说) 同样,岩石在受构造运动(地壳运动)力的作用下,亦会发生类似的变形。 由于弹性变形不被保留,对地质构造无意义。 岩石的变形状态与岩石性质有关(成份、结构)与岩石所处的环境有关。 地表常温、常压下:页岩、泥岩、粘土岩(细、软)———塑性变形。

粗砂岩、石灰岩————脆性大,断裂。 地下高温、高压下:各类岩石都具有一定塑性(柔性)均可发生塑性变形。 这就是为什么我们在野外能够看到砾岩、灰岩、石英砂岩等通常认为脆性很大的岩层同样有褶皱弯曲现象。 §2.褶皱和断裂 我们讲了褶皱和断裂是由于岩石的运动改变了原有空间位置和形态。 一、岩层空间位置的测定 地质上以岩层的产状来描述其空间位置,包括岩层的走向、倾向、倾角。称产状三要素。 (一)产状三要素: 1.走向:走向线———岩层面同任意水平面的交线(岩层层面上的任意一条水平线)。 注意:我们强调了两端所指的方向,因此走向的方位角有2个,相差1800 2. 倾向 最大倾斜线———岩层面上与走向线垂上的向下延伸的线。 倾向———最大倾斜线的水平投影所指的方向,以方位角表示。倾向只有一个方向,且与走向垂直。 走向= 倾向+ 90° 3.倾角:岩层面与水平面之间的夹角。 最大倾斜线与其在水平面上投影线之间的夹角。0°—90°变化。 (二)产状的表示:走向/倾向<倾角125°/ NE <65° S29°/ NW <18° 倾向<倾角35°< 65°

第五章 结构力学的方法

第五章结构力学的方法 1、常用的计算模型与计算方法 (1)常用的计算模型 ①主动荷载模型:当地层较为软弱,或地层相对结构的刚度较小,不足以约束结构茂变形时,可以不考虑围岩对结构的弹性反力,称为主动荷载模型。 ②假定弹性反力模型:先假定弹性反力的作用范围和分布规律、然后再计算,得到结构的内力和变位,验证弹性反力图形分布范围的正确性。 ③计算弹性反力模型:将弹性反力作用范围内围岩对衬砌的连续约束离散为有限个作用在衬砌节点巨的弹性支承,而弹性支承的弹性特性即为所代表地层范围内围岩的弹性特性,根据结构变形计算弹性反力作用范围和大小的计算方法。 (2)与结构形式相适应的计算方法 ①矩形框架结构:多用于浅埋、明挖法施工的地下结构。 关于基底反力的分布规律通常可以有不同假定: a.当底面宽度较小、结构底板相对地层刚度较大时假设底板结构是刚性体,则基底反力的大小和分布即可根据静力平衡条件按直线分布假定求得(参见图5.2.1 ( b )。 b.当底面宽度较大、结构底板相对地层刚度较小时,底板的反力与地基变形的沉降量成正比。若用温克尔局部变形理论,可采用弹性支承法;若用共同变形理论可采用弹性地基上的闭合框架模型进行计算。此时假定地基为半无限弹性体,按弹性理论计算地基反力。 矩形框架结构是超静定结构,其内力解法较多,主要有力法和位移法,并由此法派生了许多方法如混合法、三弯矩法、挠角法。在不考虑线位移的影响时,则力矩分配法较为简便。由于施工方法的可能性与使用需要,矩形框架结构的内部常常设有梁、板和柱,将其分为多层多跨的形式,其内部结构的计算如同地面结构一样,只是要根据其与框架结构的连接方式(支承条件),选择相应的计算图式。 ②装配式衬砌 根据接头的刚度,常常将结构假定为整体结构或是多铰结构。根据结构周围的地层情况,可以采用不同的计算方法。松软含水地层中,隧道衬砌朝地层方向变形时,地层不会产生很大的弹性反力,可按自由变形圆环计算。若以地层的标准贯入度N来评价是否会对结构的变形产生约束作用时,当标准贯入度N>4时可以考虑弹性反力对衬砌结构变形的约束作用。此时可以用假定弹性反力图形或性约束法计算圆环内力。当N<2时,弹性反力几乎等于零,此时可以采用白由变形圆环的计算方法。 接头的刚度对内力有较大影响,但是由于影响因素复杂,与实际往往存在较大差距,采用整体式圆形衬砌训算方法是近似可行的。此外,计算表明,若将接头的位置设于弯矩较小处,接头刚度的变化对结构内力的影响不超过5%。 目前,对于圆形结构较为适用的方法有: a.按整体结构计算。对接头的刚度或计算弯矩进行修正;

相关主题
文本预览
相关文档 最新文档