当前位置:文档之家› 基于Bloch球面坐标编码的量子粒子群算法及应用

基于Bloch球面坐标编码的量子粒子群算法及应用

基于Bloch球面坐标编码的量子粒子群算法及应用
基于Bloch球面坐标编码的量子粒子群算法及应用

粒子群优化算法综述

粒子群优化算法综述 摘要:本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述。侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题和实际工业对象中的应用,并给出了粒子群算三个重要的网址,最后对粒子群算做了进一步展望。 关键词;粒子群算法;应用;电子资源;综述 0.引言 粒子群优化算法]1[(Particle Swarm Optimization ,PSO)是由美国的Kenned 和Eberhar 于1995年提出的一种优化算法,该算法通过模拟鸟群觅食行为的规律和过程,建立了一种基于群智能方法的演化计算技术。由于此算法在多维空间函数寻优、动态目标寻优时有实现容易,鲁棒性好,收敛快等优点在科学和工程领域已取得很好的研究成果。 1. 基本粒子群算法]41[- 假设在一个D 维目标搜索空间中,有m 个粒子组成一个群落,其中地i 个粒子组成一个D 维向量,),,,(21iD i i i x x x x =,m i ,2,1=,即第i 个粒子在D 维目标搜索空间中的位置是i x 。换言之,每个粒子 的位置就是一个潜在的解。将i x 带入一个目标函数就可以计算出其适 应值,根据适应值得大小衡量i x 的优劣。第i 个粒子的飞翔速度也是一个D 维向量,记为),,,(21iD i i i v v v v =。记第i 个粒子迄今为止搜索到的最优位置为),,,(21iD i i i p p p p =,整个粒子群迄今为止搜索到的最优位置为),,,(21gD gi g g p p p p =。 粒子群优化算法一般采用下面的公式对粒子进行操作

)()(22111t id t gd t id t id t id t id x p r c x p r c v v -+-+=+ω (1) 11+++=t id t id t id v x x (2) 式中,m i ,,2,1 =;D d ,,2,1 =;ω是惯性权重, 1c 和2c 是非负常数, 称为学习因子, 1r 和2r 是介于]1,0[间的随机数;],[max max v v v id -∈,max v 是常数,由用户设定。 2. 粒子群算法的改进 与其它优化算法一样PSO 也存在早熟收敛问题。随着人们对算 法搜索速度和精度的不断追求,大量的学者对该算法进行了改进,大致可分为以下两类:一类是提高算法的收敛速度;一类是增加种群多样性以防止算法陷入局部最优。以下是对最新的这两类改进的总结。 2.1.1 改进收敛速度 量子粒子群优化算法]5[:在量子系统中,粒子能够以某一确定的 概率出现在可行解空间中的任意位置,因此,有更大的搜索范围,与传统PSO 法相比,更有可能避免粒子陷入局部最优。虽然量子有更大的搜索空间,但是在粒子进化过程中,缺乏很好的方向指导。针对这个缺陷,对进化过程中的粒子进行有效疫苗接种,使它们朝着更好的进化方向发展,从而提高量子粒子群的收敛速度和寻优能力。 文化粒子群算法]6[:自适应指导文化PSO 由种群空间和信念空间 两部分组成。前者是基于PSO 的进化,而后者是基于信念文化的进化。两个空间通过一组由接受函数和影响函数组成的通信协议联系在一起,接受函数用来收集群体空间中优秀个体的经验知识;影响函数利用解决问题的知识指导种群空间进化;更新函数用于更新信念空间;

粒子群优化算法及其应用研究

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

量子粒子群算法 程序

%---------程序正文------------------- clear all; close all; %---------变量部分------------------- popsize=50; %种群规模 vartotal=2; %变量个数 inertia=0.5; %惯性因子 selfw=2.0; %自身因子 globalw=2.0; %全局因子 mutatep=0.05; %变异概率 maxgen=500; %限定代数 %---------数组部分----------------------- varrange(1,1)=-512; %第一变量最小值 varrange(1,2)=512; %第一变量最大值 varrange(2,1)=-512; %第二变量最小值 varrange(2,2)=512; %第二变量最大值 %---------粒子位置初始化----------------- for i=1:1:popsize for j=1:1:vartotal angle(i,j)=2*pi*rand; chrom(i,1,j)=cos(angle(i,j)); %第i个粒子(量子染色体)的幅角余弦 chrom(i,2,j)=sin(angle(i,j)); %第i个粒子(量子染色体)的幅角正弦 selfangle(i,j)=2*pi*rand; selfchrom(i,1,j)=cos(angle(i,j));%第i个粒子自身最优位置的幅角余弦 selfchrom(i,2,j)=sin(angle(i,j));%第i个粒子自身最优位置的幅角正弦 dangle(i,j)=0; end end 1 %---------解空间变换------------------------ for i=1:1:popsize for j=1:1:2 for k=1:1:vartotal chromx(i,j,k)=0.5*(varrange(k,2)*(1+chrom(i,j,k))+varrange(k,1)*(1-chrom(i,j,k))); selfchromx(i,j,k)=0.5*(varrange(k,2)*(1+selfchrom(i,j,k))+varrange(k,1)*(1-selfchrom(i,j,k))); end end end 1 %---------计算适应度---------------------------- for i=1:1:popsize for j=1:1:2

量子粒子群算法_程序

%---------程序正文------------ ------- clear all; close all; %---------变量部分------------ ------- popsize=50; vartotal=2; %种群规模 %变量个数 %惯性因子 %自身因子 %全局因子 %变异概率 %限定代数 inertia=; selfw=; globalw=; mutatep=; maxgen=500; %---------数组部分------------------ ----- varrange(1,1)=-512; %第一变量最小值 varrange(1,2)=512; %第一变量最大值 varrange(2,1)=-512; %第二变量最小值 %第二变量最大值 varrange(2,2)=512; %---------粒子位置初始化------------ ----- for i=1:1:popsize for j=1:1:vartotal angle(i,j)=2*pi*ran d; chrom(i,1,j)=cos(angle(i,j)); chrom(i,2,j)=sin(angle(i, j)); selfangle(i,j)=2*pi*rand; %第 i 个粒子(量子染色体)的幅角余弦 %第 i 个粒子(量子染色体)的幅角正弦 selfchrom(i,1,j)=cos(angle(i,j));%第 i 个粒子自身最优位置的幅角余弦 selfchrom(i,2,j)=sin(angle(i,j));%第 i 个粒子自身最优位置的幅角正弦 dangle(i,j)=0; end end 1 %---------解空间变换---------------- -------- for i=1:1:popsize for j=1:1:2 for k=1:1:vartotal chromx(i,j,k)=*(varrange(k,2)*(1+chrom(i,j,k))+varrange(k,1)*(1- chrom(i,j,k))); selfchromx(i,j,k)=*(varrange(k,2)*(1+selfchrom(i,j,k))+varrange(k,1)*(1-selfchrom(i,j,k))); end end end 1 %---------计算适应度------------------- --------- for i=1:1:popsize for j=1:1:2

粒子群算法

中文翻译 用于电磁运用的量子粒子群优化算法 摘要---一种新的用于电磁运用的粒子群优化(PSO)的技术被提出来了,该技术是基于量子力学提出的,而不是以前版本中我们所指的经典粒子群算法的假设的牛顿定律。提出一个通用的程序是衍生许多不同版本的量子粒子群优化算法(算法)。粒子群算法首次运用于线性排列和阵列天线的合体。这是在天线工程师使用以前的一个标准难题,该粒子群算法性能和优化版的经典算法进行比较,优于经典算法的地方体现在收敛速度的时间上和更好的取得成本花费。作为另一个应用程序,该算法用于寻找一个集合中的无穷小的介质,制造出相同远近不同的领域循环介质谐振器天线(DRA)。此外采用粒子群算法的方法是要为DRA找到一种等效电路模型,这个DRA,可以用来预测一些如同Q-factor一样的有趣参数。粒子群算法只包含一个控制参数,这个参数很容易随着反复试验或者简单的线性变异而调整。基于我们对物理知识的理解,不同算法理论方面的阐释呈现出来。 索引词---天线阵列、电介质指数,粒子群优化,量子力学。

一介绍 粒子群算法的进化是一种全局搜索策略,它能有效地处理任意的优化问题。在1995年,肯尼迪和埃伯哈特首次介绍了粒子群优化算法。后来,它引起了相当大的反响并且证明能够处理困难的优化问题。粒子群算法的基本思想是模拟生物群之间的相互作用。能阐明这个概念的一个很好的例子就是一大群蜜蜂的类比。蜜蜂(候选方案)允许在一个特定的领域飞行寻找食物,人们相信经过一段时间(世代沿袭,更替),蜜蜂会聚集在食物集中的地区(总体最优值)。在每一代中,每一只蜜蜂都会通过采集局部和全局中好的信息来跟新自己目前的住所,达到目前,达到所有蜜蜂中名列前茅的位置。如此的相互作用和连续的更新会保证达到全局最优!这个方法由于在全局优化困难中简单和高能力的搜索通过电磁团体得到了相当高的重视。经典粒子群算法最近被用于电磁学上,而且证明,相对于其他得到认可了的进化技术算法是相当有竞争力的。比如遗传算法。新近提议了一种官方量子计算法则版本。粒子群算法允许所有粒子有一个量子反应而不是到目前为止在所有粒子群算法中假设存在的传统牛顿动力学。这样,代替牛顿学说,某种“量子运动”在搜索过程中被运用。当粒子群算法针对一套基准函数测试时,在庞大的粒子群的状况下,相相比较于传统粒子群算法,它显示了优良的性能。新算法最吸引人的特点之一是减少的控制参数数量。严格地说,在粒子群优化中,只有一个参数要求。在这篇文章中,一种广义框架被提出来,它允许用户获得许多版本的算法,明显优于经典的算法体现出来了。算法的一个物理解释是通过讨论不同的可能势阱得到的。基于我们对物理根源的新战略的理解,我们提出的指导方针以控制算法的调整参数参数。我们首先通过说明其应用线性阵列天线的综合问题来介绍量子粒子群优化。通过进行一些电脑实验以及两种算法性能的比较,证明量子粒子群优化优于传统的粒子群算法。然后,该新算法用于研究天线模型用一套无穷小偶极子的运用。通过建立循环介质谐振器天线(DRA)作为优化问题中,量子粒子群优化算法能够找到一个10个偶极子,能准确预测近和远的领域的模型。最后,本文提出的方法是用于寻找一个等效电路以便研究天线的共鸣。

关于量子粒子群算法(QPSO)

关于量子粒子群算法的杂七杂八 1 关于PSO 说到GPSO,必须要说到它的源头,也就是PSO,也就是粒子群算法 按照北京航空航天大学的王小川老师说法,粒子群优化算法(Particle swarm optimization,PSO)是模拟鸟群捕食行为的优化算法。不同于遗传算法(Genetic Alogrithm,GA),粒子群算法是有记忆的,之前迭代过程中的最优位置和最优方向都会保留下来并作用于粒子群的更新。这个算法的应用太广了,如果学习了一段时间的机器学习,即将迈入深度学习的阶段,一定要迈过去的两个坎,一个是RBM,就是受限玻尔兹曼机,另一个就是PSO 1.1相关的名词解释 粒子群长度:粒子群长度等于每一个参数取值范围的大小。 粒子群维度:粒子群维度等于待寻优参数的数量。这个根据项目的具体要求可以十分容易的敲定 粒子群位置:粒子群位置包含参数取值的具体数值。 粒子群方向:粒子群方向表示参数取值的变化方向。 个人感觉这里也可以理解成想原本的粒子(或者是cluster中的拥有实际含义的矩阵)的方向向量进行进一步的分解,从某种意义上说,其实它加大了分解出来的向量之间的联系,算是在某种程度上对于数据的维度进行了一定的扩充。 适应度函数:表征粒子对应的模型评价指标。关于适应度函数的取值其实不止一个算法或者是模型中提到了关于适应度函数的具体含义与在具有特定条件与背景之下可能有效的适应度函数的取法,经典的如北京航空航天大学的王小川老师在他的著作中认为可以将适应度函数的取值设定为cluster中的单个样本的值对应的总的cluster的mean值的均方差的倒数,当然这个说法并不唯一,而且是在不同的条件下取值并不完全相同。《43个案例分析》中单只要是涉及到函数的拟合的,适应度函数的取值都为待拟合的函数的取值的倒数。目前尚无较为肯定的经验公式或者是对应的参照物图表可以归纳所有情况。 pbest:(局部最优)pbest的长度等于粒子群长度,表示每一个参数取值的变化过程中,到目前为止最优适应度函数值对应的取值。 gbest:(全局最优)gbest的长度为1,表示到目前为止所有适应度函数值中最优的那个对应的参数取值。 1.2关于粒子的更新 在对于具有实际含义的矢量进行了分解之后,使用不同的矢量表示出原本的矢量,写成坐标

相关主题
文本预览
相关文档 最新文档