当前位置:文档之家› 2011高考物理金牌复习第七章机械振动和机械波§1机械振动

2011高考物理金牌复习第七章机械振动和机械波§1机械振动

2011高考物理金牌复习第七章机械振动和机械波§1机械振动
2011高考物理金牌复习第七章机械振动和机械波§1机械振动

第七章 机械振动和机械波

考纲要求

1、弹簧振子,简谐运动,简谐运动的振幅,周期和频率,简谐运动的振动图象 Ⅱ

2、单摆,在小振幅条件下单摆作简谐运动,周期公式 Ⅱ

3、振动中的能量转化 Ⅰ

4、自由振动和受迫振动,受迫振动的振动频率,共振及其常见的应用 Ⅰ

5、振动在介质中的传播——波,横波和纵波,横波的图象,波长,频率和波速的关系 Ⅱ

6、波的叠加,波的干涉,衍射现象 Ⅰ

7、声波,超声波及其应用 Ⅰ

8、多普勒效应 Ⅰ

知识网络:

单元切块:

按照考纲的要求,本章内容可以分成两部分,即:机械振动;机械波。其中重点是简谐运动和波的传播的规律。难点是对振动图象和波动图象的理解及应用。

§1 机械振动

教学目标:

周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 无阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F -= 受迫振动 共振 在介质中 的传播 机械波 形成和传播特点 类型 横波 纵波 描述方法

波的图象 波的公式:vT =λ x=vt 特性 声波,超声波及其应用 波的叠加 干涉 衍射

多普勒效应 实例

1.掌握简谐运动的动力学特征和描述简谐运动的物理量;掌握两种典型的简谐运动模型——弹簧振子和单摆。掌握单摆的周期公式;了解受迫振动、共振及常见的应用2.理解简谐运动图象的物理意义并会利用简谐运动图象求振动的振幅、周期及任意时刻的位移。

3.会利用振动图象确定振动质点任意时刻的速度、加速度、位移及回复力的方向。

教学重点:简谐运动的特点和规律

教学难点:谐运动的动力学特征、振动图象

教学方法:讲练结合,计算机辅助教学

教学过程:

一、简谐运动的基本概念

1.定义

物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F= -kx

(1)简谐运动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。

(2)回复力是一种效果力。是振动物体在沿振动方向上所受的合力。

(3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)

(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

2.几个重要的物理量间的关系

要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。

(1)由定义知:F∝x,方向相反。

(2)由牛顿第二定律知:F∝a,方向相同。

(3)由以上两条可知:a∝x,方向相反。

(4)v和x、F、a之间的关系最复杂:当v、a同向(即v、F同向,也就是v、x反向)时v一定增大;当v、a反向(即v、F反向,也就是v、x同向)时,v一定减小。

3.从总体上描述简谐运动的物理量

振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。

(1)振幅A 是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)

(2)周期T 是描述振动快慢的物理量。(频率f =1/T 也是描述振动快慢的物理量)周

期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:k

m T π2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。

二、典型的简谐运动

1.弹簧振子

(1)周期k

m T π2=,与振幅无关,只由振子质量和弹簧的劲度决定。 (2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是k m T π2=。这个结论可以直接使用。

(3)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。

【例1】 有一弹簧振子做简谐运动,则 ( )

A .加速度最大时,速度最大

B .速度最大时,位移最大

C .位移最大时,回复力最大

D .回复力最大时,加速度最大

解析:振子加速度最大时,处在最大位移处,此时振子的速度为零,由F = - kx 知道,此时振子所受回复力最大,所以选项A 错,C 、D 对.振子速度最大时,是经过平衡位置时,此时位移为零,所以选项B 错.故正确选项为C 、D

点评:分析振动过程中各物理量如何变化时,一定要以位移为桥梁理清各物理量间的关系:位移增大时,回复力、加速度、势能均增大,速度、动量、动能均减小;位移减小时,回复力、加速度、势能均减小,速度、动量、动能均增大.各矢量均在其值为零时改变方向,如速度、动量均在最大位移处改变方向,位移、回复力、加速度均在平衡位置改变方向.

【例2】 试证明竖直方向的弹簧振子的振动是简谐运动.

解析:如图所示,设振子的平衡位置为O ,向下方向为正方向,此时弹

簧的形变为0x ,根据胡克定律及平衡条件有

00mg kx -= ①

当振子向下偏离平衡位置为x 时,回复力(即合外力)为

0()F mg k x x =-+回 ②

将①代人②得:F kx =-回,可见,重物振动时的受力符合简谐运动的条件.

点评:(1)分析一个振动是否为简谐运动,关键是判断它的回复力是否满足其大小与位移成正比,方向总与位移方向相反.证明思路为:确定物体静止时的位置——即为平衡位置,考查振动物体在任一点受到回复力的特点是否满足F kx =-。(2)还要知道F kx =-中的k 是个比例系数,是由振动系统本身决定的,不仅仅是指弹簧的劲度系数.关于这点,在这里应理解为是简谐运动回复力的定义式.而且产生简谐运动的回复力可以是一个力,也可以是某个力的分力或几个力的合力.此题中的回复力为弹力和重力的合力.

【例3】 如图所示,质量为m 的小球放在劲度为k 的轻弹簧上,使小球上下振动而又始终未脱离弹簧。(1)最大振幅A 是多大?(2)在这个振幅下弹簧对小球的最大弹力F m 是多大?

解析:该振动的回复力是弹簧弹力和重力的合力。在平衡位置弹力和重力等大反向,合力为零;在平衡位置以下,弹力大于重力,F - mg =ma ,越往下弹力越大;在平衡位置以上,弹力小于重力,mg-F=ma ,越往上弹力越小。平衡位置和振动的振幅大小无关。因此振幅越大,在最高点处小球所受的弹力越小。极端情况是在最高点处小球刚好未离开弹簧,弹力为零,合力就是重力。这时弹簧恰好为原长。

(1)最大振幅应满足kA=mg , A =k

mg (2)小球在最高点和最低点所受回复力大小相同,所以有:F m -mg=mg ,F m =2mg

【例4】弹簧振子以O 点为平衡位置在B 、C 两点之间做简谐运动.B 、C 相距20 cm .某时刻振子处于B 点.经过0.5 s ,振子首次到达C 点.求:

(1)振动的周期和频率;

(2)振子在5 s 内通过的路程及位移大小;

(3)振子在B 点的加速度大小跟它距O 点4 cm 处P 点的加速度大小的比值.

解析:(1)设振幅为A ,由题意BC =2A =10 cm ,所以A =10 cm .振子从B 到C 所用时间t =0.5s .为周期T 的一半,所以T =1.0s ;f =1/T =1.0Hz .

(2)振子在1个周期内通过的路程为4A 。故在t =5s =5T 内通过的路程s =t/T ×4A =200cm .5 s 内振子振动了5个周期,5s 末振子仍处在B 点,所以它偏离平衡位置的位移大小为10cm .

(3)振子加速度x m

k a -=.a ∝x ,所以a B :a P =x B :x p =10:4=5:2. 【例5】一弹簧振子做简谐运动.周期为T

A .若t 时刻和(t +△t )时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍

D .若t 时刻和(t+△t )时刻振子运动位移的大小相等、方向相同,则△t 一定等于T 的整数倍

C .若△t =T /2,则在t 时刻和(t -△t )时刻弹簧的长度一定相等

D .若△t =T ,则在t 时刻和(t -△t )时刻振子运动的加速度一定相同

解析:若△t =T /2或△t =nT -T /2,(n =1,2,3....),则在t 和(t +△t )两时刻振子必在关于干衡位置对称的两位置(包括平衡位置),这两时刻.振子的位移、回复力、加速度、速度等均大小相等,方向相反.但在这两时刻弹簧的长度并不一定相等(只有当振子在t 和(t -△t )两时刻均在平衡位置时,弹簧长度才相等).反过来.若在t 和(t -△t ),两时刻振子的位移(回复力、加速度)和速度(动量)均大小相等.方向相反,则△t 一定等于△t =T /2的奇数倍.即△t =(2n -1)T /2(n =1,2,3…).如果仅仅是振子的速度在t 和(t +△t ),两时刻大小相等方向相反,那么不能得出△t =(2n 一1)T /2,更不能得出△t =nT /2(n =1,2,3…).根据以上分析.A 、C 选项均错.

若t 和(t +△t )时刻,振子的位移(回复力、加速度)、速度(动量)等均相同,则△t =nT (n =1,2,,3…),但仅仅根据两时刻振子的位移相同,不能得出△t =nT .所以B 这项错.若△t =T ,在t 和(t +△t )两时刻,振子的位移、回复力、加速度、速度等均大 小相等方向相同,D 选项正确。

2.单摆。

(1)单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。

(2)当单摆的摆角很小时(小于5°)时,单摆的周期g

l T π2=,与

摆球质量m 、振幅A 都无关。其中l 为摆长,表示从悬点到摆球质心的距离,要区分摆长和摆线长。

(3)小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l 应该是圆弧半径R 和小球半径r 的差。

(4)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n 与频率f 成正比(n 可以是分钟数,也可以是秒数、小时数……),再由频率公式可以得到:

l

l g f n 121

∝=∝π 【例6】 已知单摆摆长为L ,悬点正下方3L /4处有一个钉子。让摆球做小角度

摆动,其周期将是多大? 解析:该摆在通过悬点的竖直线两边的运动都可以看作简谐运动,周期分别为

g l T π21=和g l T π=2,因此该摆的周期为 :g

l T T T 232221π=+= 【例7】 固定圆弧轨道弧AB 所含度数小于5°,末端切线水平。两个相同的小球a 、b 分别从轨道的顶端和正中由静止开始下滑,比较它们到达轨道底端所用的时间和动能:t a __t b ,E a __2E b 。

解析:两小球的运动都可看作简谐运动的一部分,时间都等于四分之一周期,而周期与振幅无关,所以t a = t b ;从图中可以看出b 小球的下落高度小于a 小球下落高度的一半,所以E a >2E b 。

【例8】 将一个力电传感器接到计算机上,可以测量

快速变化的力。用这种方法测得的某单摆摆动过程中悬线

上拉力大小随时间变化的曲线如右图所示。由此图线提供

的信息做出下列判断:①t =0.2s 时刻摆球正经过最低点;

②t =1.1s 时摆球正处于最高点;③摆球摆动过程中机械

能时而增大时而减小;④摆球摆动的周期约是T =0.6s 。

上述判断中正确的是

A .①③

B .②④

C .①②

D .③④ 解析:注意这是悬线上的拉力图象,

而不是振动图象。当摆球到达最高点时,悬线上的

0 0.4 0.8 1.2 1.6 2.0

拉力最小;当摆球到达最低点时,悬线上的拉力最大。因此①②正确。从图象中看出摆球到达最低点时的拉力一次比一次小,说明速率一次比一次小,反映出振动过程摆球一定受到阻力作用,因此机械能应该一直减小。在一个周期内,摆球应该经过两次最高点,两次最低点,因此周期应该约是T=1.2s。因此答案③④错误。本题应选C。

三、简谐运动的图象

1.简谐运动的图象:以横轴表示时间t,以纵轴表示位移x,建立坐标系,画出的简谐运动的位移——时间图象都是正弦或余弦曲线.

2.振动图象的含义:振动图象表示了振动物体的位移随时间变化的规律.

3.图象的用途:从图象中可以知道:

(1)任一个时刻质点的位移(2)振幅A.(3)周期T

(4)速度方向:由图线随时间的延伸就可以直接看出

(5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反.只要从振动图象中认清位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了

点评:关于振动图象的讨论

(1)简谐运动的图象不是振动质点的轨迹.做简谐运动质点的轨迹是质点往复运动的那一段线段(如弹簧振子)或那一段圆弧(如下一节的单摆).这种往复运动的位移图象。就是以x轴上纵坐标的数值表示质点对平衡位置的位移。以t轴横坐标数值表示各个时刻,这样在x—t坐标系内,可以找到各个时刻对应质点位移坐标的点,即位移随时间分布的情况——振动图象.

(2)简谐运动的周期性,体现在振动图象上是曲线的重复性.简谐运动是一种复杂的非匀变速运动.但运动的特点具有简单的周期性、重复性、对称性.所以用图象研究要比用方程要直观、简便.简谐运动的图象随时间的增加将逐渐延伸,过去时刻的图形将永远不变,任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小。正负表示速度的方向,正时沿x正向,负时沿x负向.

【例9】劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻

A.振子所受的弹力大小为0.5N,方向指向x轴的负

方向

B.振子的速度方向指向x轴的正方向

C.在0~4s内振子作了1.75次全振动

D。在0~4s内振子通过的路程为0.35cm,位移为0

解析:由图可知A 在t 轴上方,位移x =0.25cm ,所以弹力F =-kx =-5N ,即弹力大小为5N ,方向指向x 轴负方向,选项A 不正确;由图可知过A 点作图线的切线,该切线与x 轴的正方向的夹角小于90°,切线斜率为正值,即振子的速度方向指向x 轴的正方向,选项B 正确. 由图可看出,t =0、t =4s 时刻振子的位移都是最大,且都在t 轴的上方,在0~4s 内完成两次全振动,选项C 错误.由于t =0时刻和t =4s 时刻振子都在最大位移处,所以在0~4s 内振子的位移为零,又由于振幅为0.5cm ,在0~4s 内振子完成了2次全振动,所以在这段时间内振子通过的路程为2×4×0.50cm =4cm ,故选项D 错误.

综上所述,该题的正确选项为B .

【例10】 摆长为L 的单摆做简谐振动,若从某时刻开始计时,(取作t =0),当振动至 g

L t 23π

=时,摆球具有负向最大速度,则单摆的振动图象是图中的( )

解析:从t =0时经过g L t 23π

=时间,这段时间为T 43,经过

T 43摆球具有负向最大速度,说明摆球在平衡位置,在给出的四个图象中,经过

T 43具有最大速度的有C 、D 两图,而具有负向最大速度的只有D 。所以选项D 正确。

四、受迫振动与共振

1.受迫振动

物体在驱动力(既周期性外力)作用下的振动叫受迫振动。

⑴物体做受迫振动的频率等于驱动力的频率,与物体的固有频率无关。

⑵物体做受迫振动的振幅由驱动力频率和物体的固有频率共同决定:两者越接近,受迫振动的振幅越大,两者相差越大受迫振动的振幅越小。

2.共振

当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅最大,这种现象叫共振。 要求会用共振解释现象,知道什么情况下要利用共振,什么情况下要防止共振。

(1)利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……

(2)防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……

【例11】把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。为使共振筛的振幅增大,以下做法正确的是

A.降低输入电压B.提高输入电压

C.增加筛子质量D.减小筛子质量

解析:筛子的固有频率为f固=4/3Hz,而当时的驱动力频率为f驱=88/60Hz,即f固< f驱。为了达到振幅增大,应该减小这两个频率差,所以应该增大固有频率或减小驱动力频率。本题应选AD。

【例12】一物体做受迫振动,驱动力的频率小于该物体的固有频率。当驱动力的频率逐渐增大时,该物体的振幅将:()

A.逐渐增大

B.先逐渐减小后逐渐增大;

C.逐渐减小

D.先逐渐增大后逐渐减小

解析:此题可以由受迫振动的共振曲线图来判断。

受迫振动中物体振幅的大小和驱动力频率与系统固有频率之差有关。驱动力的频率越接近系统的固有频率,驱动力与固有频率的差值越小,作受迫振动的振子的振幅就越大。当外加驱动力频率等于系统固有频率时,振动物体发生共振,振幅最大。由共振曲线可以看出,当驱动力的频率小于该物体的固有频率时,增大驱动力频率,振幅增大,直到驱动力频率等于系统固有频率时,振动物体发生共振,振幅最大。在此之后若再增大驱动力频率,则振动物体的振幅减小。

所以本题的正确答案为D。

【例13】如图所示,在一根张紧的水平绳上,悬挂有a、b、c、d、e五个单摆,让a 摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动。下列说法中正确的有:()

A.各摆的振动周期与a摆相同

B.各摆的振幅大小不同,c摆的振幅最大

C.各摆的振动周期不同,c摆的周期最长

D .各摆均做自由振动

解析:a 摆做的是自由振动,周期就等于a 摆的固有周期,其余各摆均做受迫振动,所以振动周期均与a 摆相同。 c 摆与a 摆的摆长相同,所以c 摆所受驱动力的频率与其固有频率相等,这样c 摆产生共振,故c 摆的振幅最大。

此题正确答案为A 、B 。

五、针对训练

1.已知在单摆a 完成10次全振动的时间内,单摆b 完成6次全振动,两摆长之差为

1.6 m .则两单摆摆长l a 与l b 分别为

A .l a =2.5 m ,l b =0.9 m

B .l a =0.9 m ,l b =2.5 m

C .l a =2.4 m ,l b =4.0 m

D .l a =4.0 m ,l b =2.4 m

2. 一个弹簧振子在AB 间作简谐运动,O 是平衡位置,以某时刻作为计时零点(t 0)。经过4

1周期,振子具有正方向的最大加速度。那么以下几个振动图中哪一个正确地反映了振子的振动情况?( )

3. 如下图所示,一个小铁球,用长约10m 的细线系牢,另一端固定在O 点,小球在C 处平衡,第一次把小球由C 处向右侧移开约4cm ,从静止释放至回到C 点所用时间为1t ;第二次把小球提到O 点,由静止释放,到达C 点所用的时间为2t ,则( )

A .1t >2t

B . 1t =2t

C . 1t <2t

D . 无法判断

4. 一个单摆作简谐运动,若使摆球质量变为原来的4倍,而通过平衡位置时的速度变为原来的2

1,则( ) A . 频率不变,振幅不变 B . 频率不变,振幅改变

C.频率改变,振幅不变D.频率改变,振幅改变

5.甲、乙两个单摆的振动图线如图所示。根据振动图线可以断定()

A.甲、乙两单摆摆长之比是4∶9 B.甲、乙两单摆振动的频率之比是2∶3

C.甲摆的振动能量大于乙摆的振动能量D.乙摆的振动能量大于甲摆的振动能量

6.在一圆形轨道上运行的人造同步地球卫星中放一只用摆计时的挂钟,这个钟将要()

A.变慢B.变快C.停摆不走D.快慢不变

7.一个单摆放在甲地,每分振动45次;放在乙地,每分振动43次。甲、乙两地重力加速度之比是__________。

8.如图是M、N两个单摆的振动图线。M的振幅是__________厘米,周期是__________秒;N的振幅是__________厘米,周期是__________秒。开始振动后当N第一次通过平衡位置时,M的位移是__________厘米。如果两摆球质量之比是1∶2,在同一地点,摆长之比是__________。

9.如图所示,在竖直平面内有一段光滑圆轨道MN,它所对的圆心角小于10 ,P点是MN的中点,也是圆弧的最低点。在N P之间的点Q和P之间搭一光滑斜面,将一小滑块(可视为质点)分别从Q点和M点由静止开始释放,设圆半径为R,则两次运动到P 点所需的时间分别为__________、__________。

10. 如图16是某物体的共振曲线,若是悬挂在天花板上的单摆的共振曲线,则其摆长为L =__________(设g 为已知)

11.如图所示,一块质量为2 kg 、涂有碳黑的玻璃板,在拉力F 的作用

下竖直向上做匀变速直线运动.一个频率为5 Hz 的振动方向为水平且固定的

振针,在玻璃板上画出了如图所示的图线,量得OA =1 cm ,OB =4 cm ,OC =9

cm .求拉力F 的大小. (不计一切摩擦阻力,取g =10 m/s 2)

参考答案:

1.B 2. D 3. A 4. B 5. A 6. C

7. 1.09∶1

8. 20 cm ,4s ,10cm ,8s ,20cm ,1:4

9.g R

t Q 2= ,g R

t M 2π=

10.224N g

π

11.OA =1 cm AB =3 cm

BC =5 cm

因为:T OA =T AB =T BC =T /2=0.1 s

根据:Δs =aT 2

a =22T AB BC T s

-=?=2 m/s 2

F -mg =ma

得:F =mg +ma =24 N

附:

简谐运动的图象专项练习

1.一质点做简谐运动的振动图象如下图所示,由图可知t=4s时质点()

A.速度为正的最大值,加速度为零

B.速度为零,加速度为负的最大值

C.位移为正的最大值,动能为最小

D.位移为正的最大值,动能为最大

2.如下图中,若质点在A对应的时刻,则其速度v、加速度a的大小的变化情况为()

A.v变大,a变小B.v变小,a变小

C.v变大,a变小D.v变小,a变大

3.某质点做简谐运动其图象如下图所示,质点在t=3.5s时,速度v、加速度α的方向应为()

A.v为正,a为负B.v为负,a为正

C.v、a都为正D.v、a都为负

4.如下图所示的简谐运动图象中,在t1和t2时刻,运动质点相同的量为()

A.加速度B.位移C.速度D.回复力

5.如下图所示为质点P在0~4s内的振动图象,下列说法中正确的是()

A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上

C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大

6.一质点作简谐运动的图象如下图所示,则该质点()

A.在0至0.01s内,速度与加速度同方向

B.在0.01至0.02s内,速度与回复力同方向

C.在0.025s末,速度为正,加速度为负

D.在0.04s末,速度为零,回复力最大

7.如下图所示,下述说法中正确的是()

A.第2s末加速度为正最大,速度为0 B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大

8.一个做简谐振动的质点的振动图象如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是()

A .t 4

B .t 3

C .t 2

D .t 1

9.如下图所示为一单摆做间谐运动的图象,在0.1~0.2s 这段时间内( )

A .物体的回复力逐渐减小

B .物体的速度逐渐减小

C .物体的位移逐渐减小

D .物体的势能逐渐减小

10.一个弹簧振子在A 、B 间做简谐运动,O 为平衡位置,如下图a 所示,以某一时刻作计时起点(t 为0),经4

1周期,振子具有正方向增大的加速度,那么在下图b 所示的几个振动图象中,正确反映振子振动情况(以向右为正方向)的是( )

11.弹簧振子做简谐运动的图线如下图所示,在t 1至t 2这段时间内( )

A .振子的速度方向和加速度方向都不变

B .振子的速度方向和加速度方向都改变

C .振子的速度方向改变,加速度方向不变

D .振子的速度方向不变,加速度方向改变

12.如下左图所示为一弹簧振子的简谐运动图线,头0.1s 内振子的平均速度和每秒钟通过的路程为( )

A.4m/s,4m B.0.4m/s,4cm C.0.4m/s,0.4m D.4m/s,0.4m 13.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图象,则振动系统在()

A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶1

14.从如下图所示的振动图象中,可以判定弹簧振子在t= s时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.

15.如下图所示为两个弹簧振子的振动图象,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.

16.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.

参考答案

1.B、C 2.C 3.A 4.C 5.A、D 6.A、D 7.A、B、C 8.D

9.A、C、D 10.D 11.D 12.C 13.B、D

14.0.4;0.2;0.6;0.8;0.4;0.6

15.2∶1;2∶3;9∶2;3∶1

16.6m/s2;向上;0;向下

17.0.1s;0.1m/s

教学后记

内容简单,学生掌握好,两种典型模型,单摆和弹簧镇子是高考重点,注意培养学生建

模能力和知识迁移能力是本节的首要任务。

完整版机械振动和机械波测试题

简谐运动,关于振子下列说法正确的是( A. 在a 点时加速度最大,速度最大 B ?在0点时速度最大,位移最大 C ?在b 点时位移最大,回复力最大 D.在b 点时回复力最大,速度最大 5. 一质点在水平方向上做简谐运动。如图,是该质点在0 的振动图象,下列叙述中正确的是( ) A. 再过1s ,该质点的位移为正的最大值 B ?再过2s ,该质点的瞬时速度为零 C. 再过3s ,该质点的加速度方向竖直向上 D. 再过4s ,该质点加速度最大 6. 一质点做简谐运动时,其振动图象如图。由图可知,在 时刻,质点运动的( ) A.位移相同 B .回复力大小相同 C.速度相同 D .加速度相同 7. 一质点做简谐运动,其离开平衡位置的位移 与时间 如图所示,由图可知( ) A.质点振动的频率为4 Hz B .质点振动的振幅为2cm C. 在t=3s 时刻,质点的速率最大 D. 在t=4s 时刻,质点所受的合力为零 8. 如图所示,为一列沿x 轴正方向传播的机械波在某一时刻的图像, 这列波的振幅A 、波长入和x=l 米处质点的速度方向分别为:( 高二物理选修3-4《机械振动、机械波》试题 一、选择题 1. 关于机械振动和机械波下列叙述正确的是:( ) A .有机械振动必有机械波 B .有机械波必有机械振动 C .在波的传播中,振动质点并不随波的传播发生迁移 D .在波的传播中,如振源停止振动,波的传播并不会立即停止 2. 关于单摆下面说法正确的是( ) A. 摆球运动的回复力总是由摆线的拉力和重力的合力提供的 B. 摆球运动过程中经过同一点的速度是不变的 C. 摆球运动过程中加速度方向始终指向平衡位置 D. 摆球经过平衡位置时加速度不为零 3. 两个质量相同的弹簧振子,甲的固有频率是 3f .乙的固有频率是4f ,若它们 均在频率为5f 的驱动力作用下做受迫振动.则( ) A 、振子甲的振幅较大,振动频率为3f B 、振子乙的振幅较大.振动频率为4f C 、振子甲的振幅较大,振动频率为5f D 、振子乙的振幅较大.振动频率为5f 班级: 姓名: 成绩: 4. 如图所示,水平方向上有一弹簧振子, 0点是其平衡位置,振子在a 和b 之间做 t 的关系 )

专题六---机械振动和机械波

专题六 机械振动和机械波 【考点梳理】 1.简谐运动的三个特征 简谐运动物体的受力特征:F=kx m ;简谐运动的能量特征:机械能转化及守恒;简谐运动的运动特征:变加速运动。 2.单摆的振动规律 单摆的摆角越小,其运动越接近简谐运动。单摆回复力是重力沿切线方向的分力,而不是重力和绳子张力的合力。 3.阻尼振动与无阻尼振动 阻尼振动和无阻尼振动的区别只在于表面现象,即振幅是否衰减。但无阻尼振动不能单一理解成无阻力自由振动,例如:当策动力补充能量与克服阻力消耗能量相等时,此时的受迫振动尽管有阻力作用,但由于能量不变,振幅不变,所以仍为无阻尼振动。 4.几个辩析 ①机械振动能量只取决于振幅,与周期和频率无关; ②机械波的传播速度只与介质有关,与周期和频率无关;波由一介质进入另一介质,只改变波速和波长,不改频率; ③波干涉中振动加强的点比振动减弱的点振幅大,但每一时刻的位移并不一定大,即振动加强的点也有即时位移为零的时候;波的干涉图像中除加强和减弱点外,还有振动介于二者之间的质点。同时波的干涉是有前提条件的。 5.波动问题的周期性和多解性 波动过程具有时间和空间的周期性。 第一:介质在传播振动的过程中,介质中每一个质点相对于平衡位置的位移随时间作周期性变化,这体现了时间的周期性。 第二:介质中沿波传播方向上各个质点的空间分布具有空间周期性。如相距波长整数倍的两个质点振动状态相同,即它们在任一时刻的位移、速度及相关量均相同;相距半波长奇数倍的两个质点振动状态相反,即它们在任一时刻的位移、速度及相关量均相反。 双向性与重复性是波的两个基本特征。波的这两个特征决定了波问题通常具有多解性。为了准确地表达波的多解性,通常选写出含有“n”或“k ”的通式,再结合某些限制条件,得出所需要的特解,这样可有效地防止漏解。 【热身训练】 1. 如图所示,两单摆摆长相同,平衡时两摆球刚好接触。现将摆球A 在两摆线所在平面内向左拉开一小角度后释放,碰撞后,两摆球分开各自做简谐运动。以A m 、B m 分别表示摆球A 、B 的质量,则( )

机械振动和机械波知识点总结与典型例题

高三物理第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹. ②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为:T=2π ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动. (2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关. (3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振. 共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波. (1)机械波产生的条件:①波源;②介质 (2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷). ②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部. [注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

机械振动与机械波答案

衡水学院 理工科专业《大学物理 B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、 填空题(每空2分) 1、 一质点在x 轴上作简谐振动,振幅 A = 4cm ,周期T = 2s ,其平衡位置取坐标原点。若 t = 0时质点第一次通过 x =— 2cm 处且向 2 x 轴负方向运动,则质点第二次通过 x =— 2cm 处的时刻为一 S 。 3 2、 一质点沿x 轴作简谐振动,振动范围的中心点为 x 轴的原点,已知周期为 T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为 x Acos(2 t/T /2)。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为 x Acos(2 t/T /3)。 3、 频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为 n /3则此两点相距 0.5 m 。。 4、 一横波的波动方程是 y 0.02sin2 (100t 0.4x)(SI),则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 __________ 和 _____________ 。 二、 单项选择题(每小题2分) (C ) 1、一质点作简谐振动的周期是 T,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A ) T/12 (B ) T/8 (C ) T/6 (D ) T/4 (B ) 2、两个同周期简谐振动曲线如图 1所示,振动曲线 1的相位比振动曲线 2的相位( ) (A )落后 (B )超前 (C )落后 2 2 (D )超前 (C ) 3、机械波的表达式是 y 0.05cos(6 t 0.06 x),式中y 和x 的单位是m , t 的单位是

正确理解机械振动和机械波

正确理解机械振动和机械波 机械振动是一种周期性运动,它在介质中的传播形成机械波.振动与波动的关系是,沿波的传播方向,先振动的质点带动后振动的质点,后振动的质点重复、落后于先振动的质点,从而将振动这种运动形式由近及远地传播开来形成波。本文将浅谈机械振动和机械波,从而正确理解二者及其关系。 机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。 先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。 输送设备运用到机械振动也是很多的。比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。 给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。总而言之,机械振动在现实生活生产中的应用是多种多样的,有的是直接应用,有的是间接应用。总之,科学的力量是强大的,只有把科学转变为科技才能造化人类,造福社会。 众所周知, 机械波在传播机械振动这种运动形式的同时也伴随着振动能量的传递。那么,机械波的能量是怎样分布和变化的,又是如何传递的呢?接下来将对机械波一些简要的分析。 1、机械波能量在空间上的分布 机械波在传播过程中,某时刻介质中某处质点的动能决定于该处质点的振动速度的大小,而势能决定于该处介质的形变(这种形变叫胁变)的大小 2、机械波能量随时间的变化 我们知道,弹簧振子和单摆做自由的谐振动时,只有振动系统内部的动能和势能的转化,而系统的总能量是守恒的。这表明振动系统不与外界交换能量,通过振动不断地从前一质 点吸收能量而又不断地向后一质点释放能量,从而把振动的能量传播出去。 3、机械波能量传递的本质 能量的传递必须通过做功过程而实现,机械波的能量传递也不例外。 综上所述,机械波在传播过程中,每一时刻介质中各处的能量(严格来说是能量密度)在波的传播方向上呈现周期性的分布,是不均匀的,而每一质点的能量也是随时间周期性变化的,

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、填空题(每空2分) 1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23 s 。 2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。 3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。。 4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 和 连续的介质 。 二、单项选择题(每小题2分) (C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A )T /12 (B )T /8 (C )T /6 (D ) T /4 ( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( ) 图1 (A )落后2π (B )超前2 π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( ) (A )波长为5m (B )波速为10m ?s -1 (C )周期为13s (D )波沿x 正方向传播 ( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。波在S 1点的振动初相是1?,点S 1到点p 的距离是r 1。波在S 2点的振动初相是2?,点S 2到点p 的距离是r 2。以k 代表零或正、负整数,则点p 是干涉极大的条件为( ) (A )21r r k π-= (B )212k ??π-= (C )()21212/2r r k ??πλπ-+-= 图2

机械振动机械波试题(附答案全解)

专题十九、机械振动机械波 1.如图,t=0时刻,波源在坐标原点从平衡位置沿y轴正方向开始振动,振动周期为0.4s,在同一均匀介质中形成沿x轴正、负两方向传播的简谐横波。下图中能够正确表示t=0.6时波形的图是 答案:C 解析:波源振动在同一均匀介质中形成沿x轴正、负两方向传播的简谐横波。t=0.6时沿x轴正、负两方向各传播1.5个波长,能够正确表示t=0.6时波形的图是C。2.做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是 (A)位移(B)速度(C)加速度(D)回复力 答案:B 解析:做简谐振动的物体,当它每次经过同一位置时,位移相同,加速度相同,位移相同,可能不同的物理量是速度,选项B正确。 3.一列横波沿水平绳传播,绳的一端在t=0时开始做周期为T的简谐运动,经过时间t(3 4 T <t<T),绳上某点位于平衡位置上方的最大位移处。则在2t时,该点位于平衡位置的 (A)上方,且向上运动(B)上方,且向下运动 (C)下方,且向上运动(D)下方,且向下运动 答案:B 解析:由于再经过T时间,该点才能位于平衡位置上方的最大位移处,所以在2t时,该点位于平衡位置的上方,且向上运动,选项B正确。 4.在学校运动场上50 m直跑道的两端,分别安装了由同一信号发生器带动的两个相同的扬声器。两个扬声器连续发出波长为5 m的声波。一同学从该跑道的中点出发,向某一端点缓慢行进10 m。在此过程中,他听到扬声器声音由强变弱的次数为()A.2 B.4 C.6 D.8 答案:B 解析:向某一端点每缓慢行进2.5m,他距离两波源的路程差为5m,听到扬声器声音强,缓慢行进10 m,他听到扬声器声音由强变弱的次数为4次,选项B正确。 5. 如图,a. b, c. d是均匀媒质中x轴上的四个质点.相邻两点的间距依次为2m、4m和6m 一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s时a第一次到达最高点。下列说法正确的是 (填正确答

高中物理选修-4知识点机械振动与机械波解析

机械振动与机械波 简谐振动 一、学习目标 1.了解什么是机械振动、简谐运动 2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 二、知识点说明 1.弹簧振子(简谐振子): (1)平衡位置:小球偏离原来静止的位置; (2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械 运动,这样的系统叫做弹簧振子。 (3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。 2.弹簧振子的位移—时间图像 弹簧振子的s—t图像是一条正弦曲线,如图所示。 3.简谐运动及其图像。 (1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 (2)应用:心电图仪、地震仪中绘制地震曲线装置等。 三、典型例题

例1:简谐运动属于下列哪种运动( ) A.匀速运动 B.匀变速运动 C.非匀变速运动 D.机械振动 解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。故A、B错,C正确。简谐运动是最简单的、最基本的机械振动,D正确。 答案:CD 简谐运动的描述 一、学习目标 1.知道简谐运动的振幅、周期和频率的含义。 2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。 二、知识点说明 1.描述简谐振动的物理量,如图所示: (1)振幅:振动物体离开平衡位置的最大距离,。 (2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。 (3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。 (4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。 (5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。 (6)相位:用来描述周期性运动在各个时刻所处的不同状态。 2.简谐运动的表达式:。

高中物理机械振动和机械波知识点.doc

高中物理机械振动和机械波知识点 "机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即 T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.

②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角<5. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为: ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

N考核《大学物理学》机械振动与机械波部分练习题(解答)

《大学物理学》机械振动与机械波部分练习题(解答) 一、选择题 1.一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 2.两个简谐振动的振动曲线如图所示,则有 ( A ) (A )A 超前/2π; (B )A 落后/2π; (C )B 超前/2π; (D )B 落后/2π。 3.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( D ) (A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。 4.分振动方程分别为13cos(50)4 x t π π=+ 和234cos(50)4 x t ππ=+ (SI 制)则它们的合 振动表达式为: ( C ) (A )5cos(50)4 x t π π=+ ; (B )5cos(50)x t π=; (C )1 15cos(50)2 7 x t tg π π-=+ +; (D )1 45cos(50)2 3 x t tg π π-=+ +。 5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且1l ?=22l ?,两弹簧振子的周期之比T 1:T 2为 ( B ) (A )2; (B )2; (C )1/2; (D )2/1。 6.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。x =0处,质点振动曲线如图所示,则该波的表式为 (A ))2 20 2 cos( 2π π π + + =x t y m ; (B ))2 20 2 cos( 2π π π - + =x t y m ; (C ))2 20 2 sin( 2π π π + + =x t y m ; (D ))2 20 2 sin( 2π π π - + =x t y m 。 2 -

机械振动与机械波相结合的综合应用(教案)

机械振动与机械波相结合的综合应用 【教学目标】 1、通过对比简谐运动与简谐波,掌握简谐运动与简谐波的特征及描述方法。 2、知道简谐运动与简谐波相结合的综合题的题型,掌握解决此类问题的基本方法。【教学过程】 一、核心知识 1、研究对象:简谐运动、简谐波 2、简谐运动与简谐波的对比 学生活动:学生先讨论课前独立填写的学案中的下表中红色内容(2分钟),然后 学生活动:①学生先小组讨论学案上按要求完成的内容(每一类问题2分钟),然后展示要难点问题,提请全班讨论解决。②第三类题型讨论完后,总结合归纳解题基本方法。 老师活动:①老师对重点突破共同难点问题,突破方法是通过提前预设的PPT进行分析。②对学生归纳的解题方法进行提炼和深化。③强调解题规范。 1、已知波的传播和波上质点振动的部分信息,分析问题 【例1】(2016年全国Ⅲ卷,34(1))(5分)由波源S形成的简谐横波在均匀介质中向左、右传播。波源振动的频率为20 Hz,波速为16 m/s。已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为m、m,P、Q开始震动后,下列判断

正确的是_____。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。每选错1个扣3分,最低得分为0分) A .P 、Q 两质点运动的方向始终相同 B .P 、Q 两质点运动的方向始终相反 C .当S 恰好通过平衡位置时,P 、Q 两点也正好通过平衡位置 、 D .当S 恰好通过平衡位置向上运动时,P 在波峰 E .当S 恰好通过平衡位置向下运动时,Q 在波峰 【答案】BDE 【考点】波的图像,波长、频率和波速的关系 【解析】根据题意信息可得1s 0.05s 20 T ==,16m/s v =,故波长为0.8m vT λ==,找P 点关于S 点的对称点P ',根据对称性可知P '和P 的振动情况完全相同,P '、 Q 两点相距15.814.630.80.82x λλ???=-= ??? ,为半波长的整数倍,所以两点为反相点,故P '、Q 两点振动方向始终相反,即P 、Q 两点振动方向始终相反,A 错误B 正确; P 点距离S 点3194 x λ=,当S 恰好通过平衡位置向上振动时,P 点在波峰,同理Q 点距离S 点1184 x λ'=,当S 恰好通过平衡位置向下振动时,Q 点在波峰,DE 正确。 巩固练习:(2016年全国Ⅱ卷,34(2)))(10分)一列简谐横波在介质中沿x 轴正向传播,波长不小于10cm .O 和A 是介质中平衡位置分别位于x =0和x=5cm 处的两个质点.t=0时开始观测,此时质点O 的位移为y =4cm ,质点A 处于波峰位置;1 s 3 t =时,质点O 第一次回到平衡位置,t=1s 时,质点A 第一次回到平衡位置.求: (ⅰ)简谐波的周期、波速和波长;(ⅱ)质点O 的位移随时间变化的关系式. 【答案】(i )T =4s ,v =s ,λ=30cm (ii )50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 【解析】(i )t =0s 时,A 处质点位于波峰位置 t =1s 时,A 处质点第一次回到平衡位置可知 1s 4 T =,T =4s … 1s 3 t =时,O 第一次到平衡位置,t =1s 时,A 第一次到平衡位置 可知波从O 传到A 用时2s 3 ,传播距离x =5cm 故波速7.5cm /s x v t ==,波长λ=vT =30cm (ⅱ)设0sin(t )y A ω?=+,可知2rad/s 2T ππω== 又由t =0s 时,y =4cm ;1s 3t =,y =0,代入得A =8cm ,再结合题意得056 ?π= 故50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 2、已知两个时刻的波形图和部分信息,分析问题

高考物理专题16机械振动和机械波 真题分类汇编(教师版)

专题16 机械振动和机械波 1.(2019·新课标全国Ⅰ卷)一简谐横波沿x 轴正方向传播,在t = 2 T 时刻,该波的波形图如图(a )所示,P 、Q 是介质中的两个质点。图(b )表示介质中某质点的振动图像。下列说法正确的是 A .质点Q 的振动图像与图(b )相同 B .在t =0时刻,质点P 的速率比质点Q 的大 C .在t =0时刻,质点P 的加速度的大小比质点Q 的大 D .平衡位置在坐标原点的质点的振动图像如图(b )所示 E .在t =0时刻,质点P 与其平衡位置的距离比质点Q 的大 【答案】CDE 【解析】由图(b )可知,在2T t = 时刻,质点正在向y 轴负方向振动,而从图(a )可知,质点Q 在2 T t = 正在向y 轴正方向运动,故A 错误;由2 T t = 的波形图推知,0t =时刻,质点P 正位于波谷,速率为零;质点Q 正在平衡位置,故在0t =时刻,质点P 的速率小于质点Q ,故B 错误;0t =时刻,质点P 正位于波谷,具有沿y 轴正方向最大加速度,质点Q 在平衡位置,加速度为零,故C 正确;0t =时刻,平衡位置在坐标原点处的质点,正处于平衡位置,沿y 轴正方向运动,跟(b )图吻合,故D 正确;0t =时刻,质点P 正位于波谷,偏离平衡位置位移最大,质点Q 在平衡位置,偏离平衡位置位移为零,故E 正确。故本题选CDE 。 2.(2019·新课标全国Ⅱ卷)如图,长为l 的细绳下方悬挂一小球a 。绳的另一端固定在天花板上O 点处,在O 点正下方3 4 l 的O '处有一固定细铁钉。将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时。当小球a 摆至最低位置时,细绳会受到铁钉的阻挡。设小球相对于其平衡位置的水平位移为x ,向右为正。下列图像中,能描述小球在开始一个周期内的x-t 关系的是

机械振动和机械波·机械波·教案

机械振动和机械波·机械波·教案 一、教学目标 1.在物理知识方面的要求: (1)明确机械波的产生条件; (2)掌握机械波的形成过程及波动传播过程的特征; (3)了解机械波的种类极其传播特征; (4)掌握描述机械波的物理量(包括波长、频率、波速)。 2.要重视观察演示实验,对波的产生条件及形成过程有全面的理解,同时要求学生仔细分析课本的插图。 3.在教学过程中教与学双方要重视引导和自觉培养正确的思想方法。 二、重点、难点分析 1.重点是机械波的形成过程及描述; 2.难点是机械波的形成过程及描述。 三、教具 1.演示绳波的形成的长绳; 2.横波、纵波演示仪; 3.描述波的形成过程的挂图。 四、主要教学过程 (一)引入新课

我们学习过的机械振动是描述单个质点的运动形式,这一节课我们来学习由大量质点构成的弹性媒质的整体的一种运动形式——机械波。 (二)教学过程设计 1.机械波的产生条件 例子——水波:向平静的水面投一小石子或用小树枝不断地点水,会看到水面上一圈圈起伏不平的波纹逐渐向四周传播出去,形成水波。 演示——绳波:用手握住绳子的一端上下抖动,就会看到凸凹相间的波向绳的另一端传播出去,形成绳波。 以上两种波都可以叫做机械波。 (1)机械波的概念:机械振动在介质中的传播就形成机械波 (2)机械波的产生条件:振源和介质。 振源——产生机械振动的物质,如在绳波中的手的不停抖动就是振源。 介质——传播振动的媒质,如绳子、水。 2.机械波的形成过程 (1)介质模型:把介质看成由无数个质点弹性连接而成,可以想象为(图1所示) (2)机械波的形成过程: 由于相邻质点的力的作用,当介质中某一质点发生振动时,就会带动周围的质点振动起来,从而使振动向远处传播。例如:

相关主题
文本预览
相关文档 最新文档