当前位置:文档之家› 人工神经网络模式识别

人工神经网络模式识别

人工神经网络模式识别
人工神经网络模式识别

人工神经网络模式识别

一、人工神经网络模式识别

1、人工神经网络的概述

人工神经网络从人脑的生理学和心理学角度出发,通过模拟人脑的工作机理,实现机器的部分智能行为,是从微观结构和功能上对人脑进行抽象和简化,是模拟人类智能的一条重要途径。具体的模式识别是多种多样的,如果从识别的基本方法上划分,传统的模式识别大体分为统计模式识别和句法模式识别,在识别系统中引入神经网络是一种近年来发展起来的新的模式识别方法。尽管引入神经网络的方法和引入网络的结构可以各不相同,但都可称为神经网络模式识别。而且这些识别方法在解决传统方法较难处理的某些问题上带来了新的进展和突破,因而得到了人们越来越多的重视和研究。

人工神经元网络(Artificial Neural Network)简称神经网络,是基于日前人们对自然神经系统的认识而提出的一些神经系统的模型,一般是由一系列被称为神经元的具有某种简单计算功能的节点经过广泛连接构成的一定网络结构,而其网络连接的权值根据某种学习规则在外界输入的作用下不断调节,最后使网络具有某种期望的输出特性。神经网络的这种可以根据输入样本学习的功能使得它非常适合于用来解决模式识别问题,这也是神经网络目前最成功的应用领域之一。

2、神经网络进行模式识别的方法和步骤

神经网络模式识别的基本方法是,首先用己知样本训练神经网络,使之对不同类别的己知样本给出所希望的不同输出,然后用该网络识别未知的样本,根据各样本所对应的网络输出情况来划分未知样本的类别。神经网络进行模式识别的一般步骤如图2-1所示,分为如下几个部分:

预处理

样本获取常规处理特征变换神经网络识别

图 2-1 神经网络模式识别基本构成

1、样本获取

这一步骤主要是为了得到一定数量的用于训练和识别的样本。

2、常规处理

其作用相当于传统模式识别中的数据获取和常规处理两步的功能。即通过对识别对象的有效观测、进行采样量化,获得一系列数据,再经过去除噪声、加强有用信息等工作获得尽量逼真的原始数据。通过这一步骤,得到了样本的原始表达。

3、特征变换

在原始样本表达的基础上,进行适当的变换,得到适合神经网络进行识别的样本的特征表达。以上两步构成了神经网络模式识别中的预处理过程。

这一步骤与传统模式识别的特征提取选择的位置很相似,不同的是,神经网络可以对原始样本直接进行处理,因此这种变换在神经网络模式识别中不象传统模式识别的特征提取选择那样必不可少,神经网络对预处理的要求与传统模式识别对特征提取选择的要求也有所不同。

4、神经网络识别

根据识别对象和研究问题的不同,选用不同的网络结构并采用适当的学习算法,用已知样本作为训练集对神经网络进行训练,使其网络连接的权值不断调整,直到网络的输出特性与期望的相符合。训练过程结束以后,网络相当于一个固定的映射器,新的输入样本(测试样本)通过网络映射到不同的类别。

3、神经网络的优点

神经网络用于控制,主要是为了解决非线性、不确定、未知数学模型复杂系统的控制问题。神经网络能够应用于模式识别,关键在于它具有一般数学模型所不具有的诸多优点。神经网络的优点如下:

1、分布存储和容错性

一个信息不是存储在一个地方,而是按内容分布在整个网络上,网络某一处不是只存储一个外部信息,而是每个神经元都存储多种信息的部分内容。网络的每部分对信息的存储都有等势作用。这种分布式存储算法是存储区与运算区合为一体的。在神经网络中,要获得存储的知识则采用“联想”的办法,即当一个神经网络输入一个激励时,它要在己存的知识中寻找与该输入匹配最好的存储知识为其解。当然在信息输出时也还要经过一种处理。而不是直接从记忆中取出。这种存储方式的优点在于若部分信息不完全,丢失或者损坏甚至有错误的信息,它仍能恢复出原来正确的完整的信息,系统仍能运行。这就是网络具有容错性和联想记忆的功能。人的大脑的容错性是它的一种重要的智慧形式。

2、大规模并行处理

人工神经元网络在结构上是并行的,而且网络的各个单元可以同时进行类似的处理过程。因此,网络中的信息处理是在大量单元中平行而又有层次地进行,

运算速度高,大大超过传统的序列式运算的数字机。虽然每个神经元的信息传递(神经脉冲)速度是以毫秒计算的,比普通序列式计算机要慢很多,但是人通常能在1秒内即可作出对外界事物的判断和决策、这就是能神奇地完成所谓“百步”决策。这按照现有传统的计算机及人工智能技术目前还是做不到的。

3、自学习、自组织和自适应性

学习和适应要求在时间过程中系统内部结构和联系方式有改变,神经元网络是一种变结构系统,恰好能完成对环境的适应和对外界事物的学习能力。神经元之间的连接有多种多样,各神经元之间连接强度具有一定的可塑性,相当于突触传递信息能力的变化,这样,网络可以通过学习和训练进行自组织以适应不同信息处理的要求。

神经元网络是大量神经元的集体行为,并不是各单元行为的简单的相加,而表现出一般复杂非线性动态系统的特性。如不可预测性、不可逆性、有各种类型的吸引子和出现混沌现象等。

正是由于神经网络具有这些特点,所以可以处理一些环境信息十分复杂、知识背景不清楚和推理规则不明确的问题。例如语音识别和识别、医学诊断以及市场估计等,都是具有复杂非线性和不确定性对象的控制。在那里,信源提供的模式丰富多彩,有的互相间存在矛盾,而判定决策原则又无条理可循。通过神经元网络学习,从典型事例中学会处理具体事例,给出比较满意的解答。

二、人工神经网络的基本原理

1、神经细胞以及人工神经元的组成

神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括四个主要部分:细胞体、树突、轴突和突触。树突的作用是用于接受周围其他神经元传入的神经冲动,轴突的功能是通过轴突末梢向其他神经元传出神经冲动。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。

从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

(1)细胞体(2)树突(3)轴突(4)突触

图2-2 简单神经元网络及其简化结构图

人们正是通过对人脑神经系统的初步认识,尝试构造出人工神经元以组成人工神经网络系统来对人的智能控制,甚至对思维行为进行研究:尝试从理性角度阐明大脑的高级机能。经过几十年的努力与发展,己涌现出上百种人工神经网络模型,它们的网络结构、性能、算法及应用领域各异,但均是根据生物学事实衍生出来的。由于其基本处理单元是对生物神经元的近似仿真,因而被称之为人工神经元。它用于仿效生物神经细胞最基本的特性,与生物原型相对应。

人工神经元的主要结构单元是信号的输入、综合处理和输出,其输出信号的强度大小反映了该单元对相邻单元影响的强弱。人工神经元之间通过互相联接形成网络,称为人工神经网络。神经元之间相互联接的方式称为联接模式,相互之间的联接度由联接权值体现在人工神经网络中。改变信息处理过程及其能力,就是修改网络权值的过程。

目前多数人工神经网络的构造大体上都采用如下的一些原则:

1、由一定数量的基本单元分层联接构成;

2、每个单元的输入、输出信号以及综合处理内容都比较简单;

3、网络的学习和知识存储体现在各单元之间的联接强度上。

2、人工神经元的模型

神经元是人工神经网络的基本处理单元,它一般是一个多输入/单输出的非线性元件。神经元输出除受输入信号的影响外,同时也受到神经元内部其它因素的影响,所以在人工神经元的建模中,常常还加有一个额外输入信号、称为偏差(bais),有时也称为阈值或门限值。一个具有r 个输入分量的神经元如图2-2所示。其中,输入分量()r j p j ,...,2,1=通过与和它相乘的权值分量()r j w j ,..,2,1=相连,以∑=r

j j j p w 1的形式求和后,形成激活函数f()的输入。激活函数的另一个输入是

神经元的偏差b,权值Wj 和输入分量的矩阵形式可以由W 的行矢量以及P 的列矢量来表示:

[]r w w w W ...21=

[]t

r p p p P ...21= (2.1) 3、神经网络的联接形式

人脑中大量的神经细胞都不是孤立的,而是通过突触形式相互联系着的,构成结构与功能十分复杂的神经网络系统。为了便于从结构出发模拟智能,因此必须将一定数量的神经元适当地联接成网络,从而形成多种神经网络模型。

通常所说的神经网络的结构,主要指它的联接方式。神经网络按照拓扑结构属于以神经元为节点,以及节点间有向连接为边的一种图,其结构大体上可分为层状和网状两大类。层状结构的神经网络是由若干层组成,每层中有一定数量的神经元,相邻层中神经元单向联接,一般地同层内的神经元不能联接,网状结构的神经网络中,任何两个神经元之间都可能双向联接。

三、神经网络在数字识别中的应用

神经网络模型用于模拟人脑神经元活动的过程。其中包括对信息的加工、处理、存储和搜索等过程,它的基本特点如下:

1、神经网络具有分布式存储信息的特点。它存储信息的方式与传统的计算机的思维方式是不同的,一个信息不是存在一个地方,而是分布在不同的位置。网络的某一部分也不只存储一个信息,它的信息是分布式存储的。神经网络是用大量神经元之间的连接及对各连接权值的分布来表示特定的信息。因此,这种分布式存储方式即使当局部网络受损时,仍具有能够恢复原来信息的优点。

2、神经网络对信息的处理及推理的过程具有并行的特点。每个神经元都可以根据接收到的信息作独立的运算和处理,然后将结果传输出去,这体现了一种并行处理。神经网络对于一个特定的输入模式,通过前向计算产生一个输出模式,各个输出节点代表的逻辑概念被同时计算出来。在输出模式中,通过输出节点的比较和本身信号的强弱而得到特定的解,同时排出其余的解。这体现了神经网络并行推理的特点。

3、神经网络对信息的处理具有自组织、自学习的特点。神经网络中各神经元之间的连接强度用权值大小来表示,这种权值可以事先定出,也可以为适应周围环境而不断地变化,这种过程称为神经元的学习过程。神经网络所具有的自学习过程模拟了人的形象思维方法,这是与传统符号逻辑完全不同的一种非逻辑非语言的方法。

模糊控制与神经网络是当前两种主要的智能控制技术,它们都能模拟人的智

能行为,不需要精确的数学模型,能够解决传统自动化技术无法解决的许多复杂的、不确定性的、非线性的自动化问题,而且易于用硬件或软件来实现。模糊控制与神经网络又具有各自的特点,模糊控制是模拟人的思维和语言中对模糊信息的表达和处理方式,擅长利用人的经验性知识;神经网络则是模拟人脑的结构以及对信息的记忆和处理功能,擅长从输入输出数据中学习有用的知识。由于模糊控制与神经网络既有共性又有互补性,二者的结合也就成了当今智能控制领域的研究热点。

数字识别是一项极具研究价值的课题,随着神经网络和模糊逻辑技术的发展,人们对这一问题的研究又采用了许多新的方法和手段,也使得这一古老的课题焕发出新的生命力.目前国际上有相当多的学者在研究这一课题,它包括了模式识别领域中所有典型的问题:数据的采集、处理及选择、输入样本表达的选择、模式识别分类器的选择以及用样本集对识别器的有指导的训练。人工神经网络为数字识别提供了新的手段。正是神经网络所具有的这种自组织自学习能力、推广能力、非线性和运算高度并行的能力使得模式识别成为目前神经网络最为成功的应用领域。

四、参考文献

[1] 谢庆生,尹健,罗延科.机械工程中的神经网络方法.机械工业出版社 2008.5

[2] 高隽.人工神经网络原理及其仿真实例机械工业出版社 2007.2

[3] 边肇祺,张学工.模式识别.清华大学出版社,2006.1

[4] 徐丽娜.神经网络控制.哈尔滨:哈尔滨工业大学出版社,2008.3

神经网络模式识别Matlab程序

神经网络模式识别Matlab程序识别加入20%噪声的A-Z26个字母。(20%噪声情况下,完全能够识别)clear;close all; clc; [alphabet,targets]=prprob; [R,Q]=size(alphabet); [S2,Q]=size(targets); S1=10; P=alphabet; net=newff(minmax(P),[S1,S2],{'logsig''logsig'},'traingdx'); net.LW{2,1}=net.LW{2,1}*0.01; net.b{2}=net.b{2}*0.01; T=targets; net.performFcn='sse'; net.trainParam.goal=0.1; net.trainParam.show=20; net.trainParam.epochs=5000; net.trainParam.mc=0.95; [net,tr]=train(net,P,T); netn=net; netn.trainParam.goal=0.6; netn.trainParam.epochs=300; T=[targets targets targets targets]; for pass=1:10; P=[alphabet,alphabet,... (alphabet+randn(R,Q)*0.1),... (alphabet+randn(R,Q)*0.2)]; [netn,tr]=train(netn,P,T); end netn.trainParam.goal=0.1; netn.trainParam.epochs=500; netn.trainParam.show=5; P=alphabet; T=targets; [netn,tr]=train(netn,P,T); noise_percent=0.2; for k=1:26 noisyChar=alphabet(:,k)+randn(35,1)*noise_percent; subplot(6,9,k+floor(k/9.5)*9); plotchar(noisyChar); de_noisyChar=sim(net,noisyChar); de_noisyChar=compet(de_noisyChar);

浅谈数字图像处理技术和模式识别在现代林业中的应用研究

浅谈数字图像处理技术和模式识别在现代林业中的应用研究 论文关键词:数字图像处理技术;模式识别;现代林业;应用研究;论文代写网 数字图像处理和模式识别概述数字图像是指由被称作象素的小块区域组成的二维矩阵。对于单色即灰度图像而言,每个象素的亮度用一个数值来表不,通常数值范围在0到255之间,即可用一个字,lb来表},0表T黑、255表T 自,而其它表T灰度{'}。如图1所数字图像是对二维连续光函数进行等距离矩形网格采样,再对幅度进行等间隔量化得到的二维数据矩阵。采样是测量每个象素值而量化是将该值数字化的过程。 数字图像在本质上是二维信号,因此信号处理(以一维信号为对象展开的课程中的基本技术他u FFT)可以用在数字图像处理中。但是,由于数字图像只是一种非常特殊的二维信号,反映场景的视觉属性,只是二维连续信号的非常稀疏的采样,希望从单个或少量采样中获得有意义的描述或特征,无法照搬一维信号处理的方法,需要专门的技术。实际上数字图像处理史多地依赖于具体应用问题,是一系列的特殊技术的汇集,缺乏贯穿始终的严格的理论体系。 数字图像处理是一个多学科交又的领域,涉及光学、电子学、数学、摄影技术、计算机技术等众多学科,是一个高度综合的技术学科数字图像处理和模式识别在林业中的应用领域模式识别诞生于20 }u纪20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在20 }u纪60年代迅速发展成为一门学科。它所研究的理论和方法在很多科学和技术领域中得到了广泛的重视,推动了人工智能系统的发展,扩大了计算机应用的可能性。在林业中的应用,这将发展成为一个越来越重要的项口。例如编制森林分布图森林资源调查,特别是森林经理调查要制定林业局林场的具体经营利用方案,需要绘制以林分或小班为单元的林相图。在未使用遥感资料的时期,地面测量工作占森林资源调查工作量的70%以上。使用了遥感资料,减少了大部分的地面测量工作量,为清查资源提供了正确可靠的图面资料,以便于求算森林面积。现在,在我国的森林资源调查工作中,已广泛使用航测方法编制地形图。但由于林区变化比较快,需要利用新的航空像片或者是调绘旧的航空像片进行修测补绘,而后编制森林分布图。国外林业集约经营的国家他u:德国、日本、瑞典等)开始用正射像片图代替线划图作为林业局、林场的基本图。我国测绘等部门已开始生产影像地图,这将大大地挖掘遥感信息的潜力,提高林业图件的质量,进一步满足林业生产的需要。 林地分类不论是哪一类森林资源调查,也不论是哪一种调查方法都需要区划或大或小的内部相对同质的单元。这种单元在森林资源清查中根据林分类型、树种、龄级、郁闭度等因子进行划分;在上地利用中则根据地貌、上地利用类型等因子来划分。航空像片上都能够反映地物细部,所以按照林业区划所要求的因子比较精确地勾绘出轮廓他u森林小班),而后转绘成图。

数字图像处理的就业前景

数字图像处理的就业前景收藏 最近版上有不少人在讨论图像处理的就业方向,似乎大部分都持悲观的态度。我想结合我今年找工作的经验谈谈我的看法。 就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势最好的,因为你不仅要掌握(一维)信号处理的基本知识,也要掌握图像处理(二维或者高维信号处理)的知识。其次,图像处理是计算机视觉和视频处理的基础,掌握好了图像处理的基本知识,就业时就可以向这些方向发展。目前的模式识别,大部分也都是图像模式识别。在实际应用场合,采集的信息很多都是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。说到应用场合,千万不能忘了医学图像这一块,如果有医学图像处理的背景,去一些医疗器械公司或者医疗软件公司也是不错的选择。图像处理对编程的要求比较高,如果编程很厉害,当然就业也多了一个选择方向,并不一定要局限在图像方向。 下面谈谈我所知道的一些公司信息,不全,仅仅是我所了解到的或者我所感兴趣的,实际远远不止这么多。 搜索方向 基于内容的图像或视频搜索是很多搜索公司研究的热点。要想进入这个领域,必须有很强的编程能力,很好的图像处理和模式识别的背景。要求高待遇自然就不错,目前这方面的代表公司有微软、google、yahoo和百度,个个鼎鼎大名。 医学图像方向 目前在医疗器械方向主要是几个大企业在竞争,来头都不小,其中包括Simens、GE、飞利浦和柯达,主要生产CT和MRI等医疗器材。由于医疗器械的主要功能是成像,必然涉及到对图像的处理,做图像处理的很有机会进入这些公司。它们在国内都设有研发中心,simens 的在上海和深圳,GE和柯达都在上海,飞利浦的在沈阳。由于医疗市场是一个没有完全开发的市场,而一套医疗设备的价格是非常昂贵的,所以在这些地方的待遇都还可以,前景也看好。国内也有一些这样的企业比如深圳安科和迈瑞 计算机视觉和模式识别方向 我没去调研过有哪些公司在做,但肯定不少,比如指纹识别、人脸识别、虹膜识别。还有一个很大的方向是车牌识别,这个我倒是知道有一个公司高德威智能交通似乎做的很不错的样子。目前视频监控是一个热点问题,做跟踪和识别的可以在这个方向找到一席之地。 上海法视特位于上海张江高科技园区,在视觉和识别方面做的不错。北京的我也知道两个公司:大恒和凌云,都是以图像作为研发的主体。 视频方向 一般的高校或者研究所侧重在标准的制定和修改以及技术创新方面,而公司则侧重在编码解码的硬件实现方面。一般这些公司要求是熟悉或者精通MPEG、H.264或者AVS,选择了这个方向,只要做的还不错,基本就不愁饭碗。由于这不是我所感兴趣的方向,所以这方面的公司的信息我没有收集,但平常在各个bbs或者各种招聘网站经常看到。 我所知道的两个公司:诺基亚和pixelworks 其实一般来说,只要涉及到成像或者图像的基本都要图像处理方面的人。比方说一个成像设备,在输出图像之前需要对原始图像进行增强或者去噪处理,存储时需要对图像进行压缩,成像之后需要对图像内容进行自动分析,这些内容都是图像处理的范畴。下面列举一些与图像有关或者招聘时明确说明需要图像处理方面人才的公司:上海豪威集成电路有限公司(https://www.doczj.com/doc/6015576087.html,)、中芯微、摩托罗拉上海研究院、威盛(VIA)、松下、索尼、清华同方、三星。

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

外文翻译----数字图像处理和模式识别技术关于检测癌症的应用

引言 英文文献原文 Digital image processing and pattern recognition techniques for the detection of cancer Cancer is the second leading cause of death for both men and women in the world , and is expected to become the leading cause of death in the next few decades . In recent years , cancer detection has become a significant area of research activities in the image processing and pattern recognition community .Medical imaging technologies have already made a great impact on our capabilities of detecting cancer early and diagnosing the disease more accurately . In order to further improve the efficiency and veracity of diagnoses and treatment , image processing and pattern recognition techniques have been widely applied to analysis and recognition of cancer , evaluation of the effectiveness of treatment , and prediction of the development of cancer . The aim of this special issue is to bring together researchers working on image processing and pattern recognition techniques for the detection and assessment of cancer , and to promote research in image processing and pattern recognition for oncology . A number of papers were submitted to this special issue and each was peer-reviewed by at least three experts in the field . From these submitted papers , 17were finally selected for inclusion in this special issue . These selected papers cover a broad range of topics that are representative of the state-of-the-art in computer-aided detection or diagnosis(CAD)of cancer . They cover several imaging modalities(such as CT , MRI , and mammography) and different types of cancer (including breast cancer , skin cancer , etc.) , which we summarize below . Skin cancer is the most prevalent among all types of cancers . Three papers in this special issue deal with skin cancer . Y uan et al. propose a skin lesion segmentation method. The method is based on region fusion and narrow-band energy graph partitioning . The method can deal with challenging situations with skin lesions , such as topological changes , weak or false edges , and asymmetry . T ang proposes a snake-based approach using multi-direction gradient vector flow (GVF) for the segmentation of skin cancer images . A new anisotropic diffusion filter is developed as a preprocessing step . After the noise is removed , the image is segmented using a GVF 1

人工神经网络模式识别

人工神经网络模式识别 一、人工神经网络模式识别 1、人工神经网络的概述 人工神经网络从人脑的生理学和心理学角度出发,通过模拟人脑的工作机理,实现机器的部分智能行为,是从微观结构和功能上对人脑进行抽象和简化,是模拟人类智能的一条重要途径。具体的模式识别是多种多样的,如果从识别的基本方法上划分,传统的模式识别大体分为统计模式识别和句法模式识别,在识别系统中引入神经网络是一种近年来发展起来的新的模式识别方法。尽管引入神经网络的方法和引入网络的结构可以各不相同,但都可称为神经网络模式识别。而且这些识别方法在解决传统方法较难处理的某些问题上带来了新的进展和突破,因而得到了人们越来越多的重视和研究。 人工神经元网络(Artificial Neural Network)简称神经网络,是基于日前人们对自然神经系统的认识而提出的一些神经系统的模型,一般是由一系列被称为神经元的具有某种简单计算功能的节点经过广泛连接构成的一定网络结构,而其网络连接的权值根据某种学习规则在外界输入的作用下不断调节,最后使网络具有某种期望的输出特性。神经网络的这种可以根据输入样本学习的功能使得它非常适合于用来解决模式识别问题,这也是神经网络目前最成功的应用领域之一。 2、神经网络进行模式识别的方法和步骤 神经网络模式识别的基本方法是,首先用己知样本训练神经网络,使之对不同类别的己知样本给出所希望的不同输出,然后用该网络识别未知的样本,根据各样本所对应的网络输出情况来划分未知样本的类别。神经网络进行模式识别的一般步骤如图2-1所示,分为如下几个部分: 预处理 样本获取常规处理特征变换神经网络识别 图 2-1 神经网络模式识别基本构成 1、样本获取 这一步骤主要是为了得到一定数量的用于训练和识别的样本。

数字图像处理的应用

数字图像处理技术的应用研究 图像处理也就是按照人们视觉、心理或实际应用的需要,对 图像信息进行加工修改的过程,在不同的时期、不同的领域往往 会采用不同的图像处理技巧。数字图像处理技术是伴随着计算机 信息功能的日益强大以及人们对高精度图像的需求而产生的,随 着社会的发展,尤其是计算机信息技术的进步,数字图像处理技 术被广泛应用于各个领域,其重要性变得日益突出。 一、数字图像处理技术的概念内涵 当前,我国通常采用的图像处理技术主要有两种,即光学处 理法和数字(电子)处理法。前者产生的时间较早,从最开始的 光学滤波技术到现在的激光全息技术,无论是理论研究,还是应 用技巧,光学图像处理法已日臻完善。但其图像处理精度低、稳 定性差以及操作不便的特点极大地限制了其应用领域拓展,在这 种情况下,数字图像处理技术便应运而生。 数字图像处理,也即是Digital Image Processing,产生于 20世纪50年代,是指人们采用计算机及其它数字硬件设备,对图 像信息转换而来的电信号根据数学运算的方式,进行增强、提取、复原、分割以及去除噪音等处理的方法和技术,以此提高图像的实用性,因此,该技术的产生与发展建立在计算机运用、离算数学理论的产生与完善以及社会诸多领域的需求之上的。其最大特点是不仅图像处理精度高,而且可以通过改进硬件系统配置和优化软件系统功能的方式来提高图像处理效果,一切以计算机运行为基础,操作极为方便。最初,由于数字图像处理技术的数据需求量大,处理速度慢,极大地限制了其应用领域,但随着计算机技术的快速发展,尤其是运算速度的提升,这一瓶颈早已被突破。 二、数字图像处理技术的功能内容分析 (一)增强图像的视觉效果。在某些特殊领域,图像在传输与 转换的过程中容易造成信息的丢失,从而形成失真现象,比如航天拍摄的图片在传回地球的过程中,由于光学系统、大气流、空气介质等原因造成图像模糊;在图像扫描、采样、量化的过程中,所形成的噪音污染等等。我们可以采用数字图像处理技术,一方面突出重要信息而衰减次要信息;另一方面根据失真原因,补偿丢失的信息因素,从而使改善后的图像效果尽可能的接近原始图像。 (二)图像的重建功能。随着电子计算机体层摄影技术的发 展,图像的重建成为一种新兴的数字图像处理技术,它主要是对 目标对象进行观察和测量,重新构建出图像中的大量信息的直观 显示,从而在计算机模拟系统中进行二维或者三维的图像处理, 这也是对特殊实体进行图像回归的过程。 (三)模式识别功能。模式识别也是数字图像处理技术的一

模式识别在神经网络中的研究

摘要:基于视觉理论的神经网络模式识别理论的研究一直是非常活跃的学科,被认为是神经网络应用最成功的一个方面,它的发展与神经网络理论可以说是同步的。几乎所有现有的神经网络物理模型都在模式识别领域得到了成功的应用,神经网络理论取得进步会给模式识别理论的发展带来鼓舞;相反,模式识别理论的进步又会大大推动神经网络理论的长足发展。它们的关系是相互渗透的。 关键词:神经网络;模式识别 Abstract: The research of pattern recognition theories according to the neural network mode of sense of vision theories has been very active in academics, neural network has been thought one of the most successful applications , its development can been seen as the same step with the neural network theories.Almost all existing physics model of the neural network all identified realm to get success in the mode of application, neural network theories' progress will give the development of the pattern recognition theories much encourage;Contrary, the pattern recognition theories of progress again consumedly push neural network theories of substantial development.Their relations permeate mutually. Key word: neural network; pattern recognition

7基于神经网络的模式识别实验要求

实验七基于神经网络的模式识别实验 一、实验目的 理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。通过构建BP网络和离散Hopfield 网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。 二、实验原理 BP学习算法是通过反向学习过程使误差最小,其算法过程从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正。BP网络不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点。输入信号先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。 离散Hopfield神经网络的联想记忆过程分为学习和联想两个阶段。在给定样本的条件下,按照Hebb学习规则调整连接权值,使得存储的样本成为网络的稳定状态,这就是学习阶段。联想是指在连接权值不变的情况下,输入部分不全或者受了干扰的信息,最终网络输出某个稳定状态。 三、实验条件 Matlab 7.X 的神经网络工具箱:在Matlab 7.X 的命令窗口输入nntool,然后在键盘上输入Enter键,即可打开神经网络工具箱。 四、实验内容 1.针对教材P243例8.1,设计一个BP网络结构模型(63-6-9),并以教材图8.5 为训练样本数据,图8.6为测试数据。 (1)运行train_data.m和test_data.m文件,然后从Matlab工作空间导入(Import)训练样本数据(inputdata10,outputdata10)和测试数据(testinputdata,testoutputdata),其次新建一个神经网络(New Network),选择参数如下表1,给出BP神经网络结构图。

数字图像处理

数字图像处理的理论基础及发展方向 一、数字图像处理的起源及发展 数字图像处理(Digital Image Processing) 将图像信号转换成数字信号并利用计算机对其进行处理,起源于20 世纪20年代,目前已广泛地应用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,已成为一门引人注目、前景远大的新型学科,发挥着越来越大的作用。数字图像处理作为一门学科形成于20 世纪60 年代初期,早期的图像处理的目的是改善图像的质量,以人为对象,以改善人的视觉效果为目的,首次获得实际成功应用的是美国喷气推进实验室(J PL)并对航天探测器徘徊者7 号在1964 年发回的几千张月球照片使用了图 像处理技术,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,随后又对探测飞船发回的近十万张照片进行了更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。数字图像处理取得的另一个巨大成就是在医学上获得的成果,1972 年英国EMI 公司工程师Ho usfield 发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph) 。1975 年EMI 公司又成功研制出全身用的CT 装置,获得了人体各个部位鲜明清晰的断层图像。 1979 年这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。随着图像处理技术的深

入发展,从70 年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70 年代末MIT 的Ma rr 提出的视觉计算理论,这个理论成为计算机视觉领域其后多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。正因为如此,图像处理理论和技术受到各界的广泛重视,当前图像处理面临的主要任务是研究新的处理方法,构造新的处理系统,开拓更广泛的应用领域。 二、数字图像处理的研究内容 数字图象处理,就是采用计算机对图象进行信息加工。图象处理的主要内容有:图像的采集、增强、复原、变换、编码、重建、分割、配准、嵌拼、融合、特征提取、模式识别和图象理解。 对图像进行处理(或加工、分析)的主要目的有三个方面: 1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。 2)提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是模式识别或计算机视觉的预处理。提取的特征可以包括很多方面,如频

数字图像处理论文石晓亮

数字图像处理 作者:石晓亮 摘要:本文介绍了数字图像处理与模式识别在交通的应用领域及其重要意义,详细阐述了利用数字图像处理及模式识别技术的原理和方法,并在此基础上研究了交通检测系统的算法和模型,通过本文的研究,初步探索了数字图像处理与模式识别在交通检测系统中的应用途径和方法,为以后进一步的实现基于数字图像的交通检测系统的打下了基础。 关键词:数字图像位图调色板

目录 前言 (3) 1高速公路常用的车流检测方法主要有以下几种: (4) 1空气管道检测 (4) 2检测环检测 (4) 3视频检测 (5) 2 视频车辆检测系统: (5) 1视频车辆检测系统 (5) WINDOWS位图和调色板 (7) 结论与展望 (9) 参考文献 (9) 致谢 (9) 数字图像处理和模式识别在交通检测中的应用

前言 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT (Computer Topography)。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类做出了划时代的贡献。与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成 为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。

实验七:基于神经网络的模式识别实验

实验七:基于神经网络的模式识别实验 一、实验目的 理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。通过构建BP网络和离散Hopfield网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。 综合掌握模式识别的原理,了解识别过程的程序设计方法。 二、实验内容 熟悉模式识别的理论方法,用选择一种合适的识别方法,对图像中的字符(英文字母)进行识别,能够区分出不同的形态的26个字母。 在Matlab中,采用BP神经网络,对读取的数据进行训练,进而识别。 1. 程序设计 (1)程序各流程图 实验中主程序流程图如图4-1所示:

图4-1主程序流程图 其中图像预处理的流程如图4-2 所示: 图4-2图像预处理的流程神经网络训练的具体流程如图4-3所示:

图4-3 神经网络训练流程 (2)程序清单 %形成用户界面 clear all; %添加图形窗口 H=figure('Color',[0.85 0.85 0.85],... 'position',[400 300 500 400],... 'Name','基于BP神经网络的英文字母识别',... 'NumberTitle','off',... 'MenuBar','none'); %画坐标轴对象,显示原始图像 h0=axes('position',[0.1 0.6 0.3 0.3]); %添加图像打开按钮 h1=uicontrol(H,'Style','push',... 'Position',[40 100 80 60],... 'String','选择图片',... 'FontSize',10,... 'Call','op'); %画坐标轴对象,显示经过预处理之后的图像 h2=axes('position',[0.5 0.6 0.3 0.3]); %添加预处理按钮

数字图像处理期末小论文题目

《数字图像处理》课程期末小论文题目 1、车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 4>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 2、医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞 核区域。通过直方图修改技术得到均衡化或规定化等不同的处理效果。 2>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输 时所混入的噪声,提高图像的视觉效果。 3>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 4>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。

原始细胞图像图像处理后的细胞图像 3、利用中值空间滤波去去除波形噪声 要求: 1>掌握空间滤波原理; 2>了解中值空间滤波在实际中的应用; 3>利用MATLAB实现对波形的中值滤波; 5>改进算子,使图像达到标准对照图像效果。 待处理图片处理后图片4、利用拉普拉斯算法对扩散现象引起的模糊进行图像锐化 要求: 1>掌握拉普拉斯算法的原理及常用算子形式; 2>分析扩散现象引起的模糊属于哪种类型; 3>实现拉普拉斯算子对图像的锐化,并实现显示; 4>改进算子,使图像达到标准对照图像效果。 待处理图片参考最终效果图

神经网络的应用及其发展

神经网络的应用及其发展

神经网络的应用及其发展 来源:辽宁工程技术大学作者: 苗爱冬 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts 合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。 (2) 信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。 (3) 模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别

模式识别 神经网络识别MATLAB实现

模糊神经网络模式识别 function retstr = FnnTrain(dt,ld,tt,sp) retstr=-1; %%%% 输入参数赋值开始%%%%%%%%%%%%%%%%%%%%%%% % 方便调试程序用,程序调试时去掉这部分的注释 % dt=4; %学习阈值 % ld=0.05; %学习进度 % tt=10; %训练次数 % sp='data\sample.txt'; %一个点的监测数据 %%%% 输入参数赋值结束%%%%%%%%%%%%%%%%%%%%%%%% global recordDimention; global sampleNumber; global weightNumber; global distanceThread; global WW; global learningDegree; global epochsNumber; distanceThread=dt; learningDegree=ld; traintimes=tt; A=load(sp); [Arow Acol]=size(A); %样本个数 sampleNumber=Arow; recordDimention=Acol; disp(sampleNumber); WW=A(1,:); WW=[WW [1]]; weightNumber=1; epochsNumber=1; for jj=2:1:sampleNumber TrainNN2(A(jj,:)); end for jt=1:traintimes-1 for jt2=1:sampleNumber TrainNN2(A(jj,:)); end end % 将训练结果写入权值文件 dlmwrite('data\w.dat',WW,'\t'); % % 训练子函数

模式识别知识点

1、图像: 图像是对客观存在的物体的一种相似性的生动模仿或描述,是物体的一种不完全、不精确,但在某种意义上是适当的表示。 2、数字图像处理:利用数字计算机或其它数字硬件,对从图像信息转换而来的电信号进行某些数学运算以期达到预想的结果。 3、图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。包括采样和量化两个主要步骤。 4、分辨率:指映射到图像平面上的单个像素的景物元素的尺寸,单位:像素/英寸,像素/厘米;或者是指要精确测量和再现一定尺寸的图像所必需的像素个数,单位:像素*像素。 5、灰度图像:每个像素的信息由一个量化的灰度级来描述的图像,没有彩色信息。 6、彩色图像的概念:每个像素的信息由RGB 三原色构成的图像,其中RGB 是由不同的灰度级来描述的。 7、了解彩色三要素(亮度,色调,饱和度):亮度是人眼感受彩色光的明暗的程度,色调是光的颜色,饱和度是颜色的深浅程度。 8、了解图像数字化的量化技术分类:量化可分为均匀量化和非均匀量化。均匀量化是简单地在灰度范围内等间隔量化。非均匀量化是对像素出现频度少的部分量化间隔取大,而对频度大的量化间隔取小。 9、掌握简述数字图像信息的特点:[简答] 信息量大,占用频宽,像素间相关性大,受人的因素影响大。 Chapter2 1、了解傅里叶变换的条件(狄里赫利条件):有限个间隔点,有限个极点,绝对可积。一个周期为T 的函数f(t)在[-T/2,T/2]上满足狄利赫利(Dirichlet)条件,则在[-T/2,T/2]可以展成傅立叶级数。表明了信号由哪些频率分量组成及其所占的比重。 2、会计算一维、二维连续信号的傅里叶变换: 一维: 二维: 3、熟悉二维离散信号的傅里叶变换的性质(比例性质、空间位移、频率位移、共轭对称性、平均值): 4、了解拉格尔函数的基本知识: ,一个不完备的正交集;R(n,t)的取值只有+1和-1;R(n,t)是R(n-1,t)的二倍频。 Chapter3 1、熟悉图像对比度、直方图的定义:对比度是亮度的最大值与最小值之比。灰度级修正g =T ( f )=Af +C ,当A>1,灰度拉伸; A=1,C=0,图像不变;A<1, 灰度压缩;A=1,C 0,灰度值上移或下移 图像更暗或更亮;A<0, 暗区变亮,亮区变暗;A=-1,C=255,图像反转再求补运算。直方图表示数字图像中每一灰度级与其出现的频数或相对频数之间的关系。 2、掌握图像增强的概念:用一系列手段对图像进行处理,以改善图像效果,或使之更适合人或机器进行下一步的分析处理。增强感兴趣区域;抑制不感兴趣区域;不必须逼近原图像;不增加原图像信息。包括:灰度级修正(线性变换、直方图均衡),图像平滑(平滑、中值、通带滤波),图像锐化(微分法,拉普拉斯法),彩色增强(伪彩色),图像校正(几何校正)。 3、掌握图像灰度的线性变换:(详见书第41页3.1.2和习题3-1) 4、掌握直方图均匀化、规格化的定义及计算:直方图均匀化(均衡化)指将输入图像 转换为在每一个灰度级都有相同的象素点数的输出图像。直方图规格化就是把已知的直方图图像变换成具有期望的某种直方图像。(概念详见书44页起,计算详见书47页例题和习题3-3)。 5、掌握常用的空域平滑方法及特点:平滑技术是为了减少图像的噪声。一般情况下,在空域内用邻域平均减少噪声;在频域内用低通滤波来减少噪声。方法:邻域平均法(对消除随机噪声效果较好,适用于高次噪声,主要缺点是在降噪的同时使图像模糊,即掩膜,特别是在图像边缘和图像细节处更明显,邻域越大,模糊越厉害),中值滤波法(习题3-5,非线性,对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多的图像却不太合适。要正确选择窗口尺寸的大小。对某些特定的输入信号,滤波输出保持输入信号值不 变),多图像平均法(以噪声干扰的统计学特征为基础,即假定图像包含的噪声相对 于每一象素是不相关的,且其数学期望为零。困难在于把多幅图像配准以便使对应像素正确排列),形态学滤波(理论基础:集合论作用:保持形状特征,同时简化图像工具:结构元)。 6、了解常用的锐化算子(梯度算子,Roberts ,Prewitts ,Sobel ,Laplacian ,Marr ),会用拉普拉斯算子对图像进行增强运算:锐化技术是为了突出边缘,加强轮廓特征。在空域内用微分法使图像清晰;在频域内用高通滤波来清晰图像。详见书61页起,64页例题和习题3-7. Chapter4 1、掌握图像增强和图像复原的区别:都是为了改善图像,图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因, 分析引起退化的环境因素,建立相应的数学模型, 并沿着使图像降质的逆过程恢复图像。从图像质量评价的角度来看, 图像复原就是提高图像的可理解性。而图像增强的目的是提高视感质量,图像增强的过程基本上是一个探索的过程, 它利用人的心理状态和视觉系统去控制图像质量, 直到人们的视觉系统满意为止。 图像复原本身往往需要有一个质量标准, 即衡量接近全真景物图像的程度。 为了描述图像退化过程所建立的数学模型往往多种多样,而恢复的质量标准也往往存在差异性。 2、掌握图像退化的基本模型(空域)及其原理框图: 原始图像f(x, y)经过一个退化算子或退化系统H(x, y)的作用, 再和噪声n(x, y)进行叠加,形成退化后的图像g(x, y)。 4、了解常用的图像复原方法。(线性:逆滤波;维纳滤波、约束最小平方滤波(最小二乘类复原);非线性:最大后验复原,最大熵复原,投影复原)。 Chapter5 1、图像编码的可行性,必要性:可行性是指图像压缩编码是利用图像数据固有的冗余性(包括编码冗余、空间冗余、视觉冗余),对图像数据按一定的规则进行变换和组合,达到以较少的代码(符号)来表示较多的图像信息。必要性指数字图像数据的特点之一是信息量大,海量数据需要巨大的存储空间,采用编码压缩以减轻多媒体图像信息保存、传输的困难(即压缩图像的存储量,扩大传输容量,提高传输速度,利用冗余性进行压缩)。 2、计算编码效率: ,图像熵,平均码长,冗余度,压缩比;相关性越强,冗余度越大,可压缩率越高。 3、掌握哈夫曼编码方法:(特点:必须读取图像数据两次;变长编码,单义可译码;同一图像编码不唯一;效率与图像的统计特性相关;缺乏构造性)书107页例题。 Chapter7 1、图像分割的主要方法:分割算法基于图像像素的两个基本特性:空间接近性和像素值相似性。基于边缘检测的方法(检测灰度级的不连续性。找到点、线(宽度为1)、边(不定宽度)。先找边后确定区域),基于区域的方法和基于阈值分割的方法(检测像素值的相似性。通过选择阈值,找到像素值相似的区域,区域的外轮廓就是对象的边)。 2、熟悉图像特征的定义、分类以及常见图像特征:指图像场的原始特性或属性。分类:自然特征和人为特征。常用的特征包括:幅度特征,直方图特征,变换系数特征,线条和角点特征,灰度边沿特征、纹理特征和几何特征等。 3、纹理的定义及如何描述纹理:某些图像在局部区域内呈现不规则性,而在整体表现出规律性。这种局部不规律而宏观有规律的特性称为纹理。纹理是一种区域特性,常用的纹理描述方法:统计分析方法和结构分析方法。统计分析方法主要包括:直方图分析法,灰度共生矩阵法和傅立叶描述法。 Chapter8 1、模板匹配的定义及其特点:指用一个较小的图像,即模板与源图像进行比较,以确定在源图像中是否存在与该模板相同或相似的区域,若该区域存在,还可确定其位置并提取该区域。特点:是最常用的图像匹配方法;需要逐点计算互相关,计算量大;模板只能进行平行移动,如原图像中要匹配的目标发生旋转或大小变化,算法无效(改进:基于特征的匹配)。 Chapter9 1、熟悉模式、模式识别的定义:模式指存在于时间空间中可观察的事物,具有时间或空间分布的信息。特点:可观察性、可区分性、相似性。模式识别指用计算机实现对各种事物或现象的分析,描述,判断,识别(分类:统计模式识别、结构模式识别、模糊集识别)。 2、熟悉模式识别系统的组成及其各部分的作用:图像信息获取:将素材转变成电信号以备后续处理;信息的加工和处理:将数据材料加工整理分析归纳后去伪存真抽出反映本质的特征;判决或分类:与特征抽取的方式密切相关,复杂程度也依赖于特征抽取的方式。(也可为:图像获取、预处理、特征提取和选择(分为分类器设计和分类决策))。 3、熟悉贝叶斯分类法: 使错判率最小的统计模式识别方法,前提:决策分类的类别数一定;类别i 的先验概率已知;类别i 的状态X 的类条件概率密度函数已知。书198页开始。 ??? ??≤≤+---≤≤+--≤≤=f f g M y x f b d b y x f b M d M b y x f a c y x f a b c d a y x f y x f a c y x g ),(,]),()][/()[(),(,),()]/()[(),(0),,()/(),(???????≤≤≤≤+--<<=f M y x f b d b y x f a c y x f a b c d a y x f c y x g ),(,),(,),(),(0,),(

相关主题
文本预览
相关文档 最新文档