当前位置:文档之家› 人工神经网络分类器

人工神经网络分类器

人工神经网络分类器
人工神经网络分类器

通信工程学院题目人工神经网络分类器

专业:自动化

学号:52110608

学生姓名:张继伟

指导教师姓名:刘富

日期:年月日

人工神经网络分类

摘要:80 年代重新兴起的人工神经网络已成为世界人工智能研究的热门课题之一。本文介绍了人工神经网络的一般结构及其算法, 介绍人工神经网络在模式识别方面的作用及用作模式识别的人工神经网络分类器。

人工神经网络简介:

人们对人工神经网络( A rt ifi ci al N e ur al N et 简作人N N , 也称神经网络) 的研究可追溯到40 年前。初期人们致力于建立较为详细的、仿生的( 模仿人的神经元) 神经网络的数学模型。50 年代至60 年代有人便试图建立结构上类于人脑的计算机。但由于当时集成电路、计算机及人工智能等方面技术的限制使得这种尝试未获成功, ’而且使这方面的工作几乎停顿了近20 年. 直到80 年代, 超大规格集成电路、人工智能、计算机技术及拓扑学算法的发展使得人工神经网络重新兴起并很快地蓬勃发展成了当今世界的一大热门课题. 尤其是人们希望人工神经网络能在语音和图象识别(s , ” c h a n d im a se eR co gn it on ) 方面达到完成人类的功能。使得人工神经网络在这方面有了不少应用成果。

1 98 7 年6 月在美国圣地亚哥召开的第一届国际神经网络年会( I c N N , nI entr iat o o al oC n fe r en ce on Ne ur ia N et w or k ) 重新揭开了人类向神经网络大规模进军的战幕, 据有关人士预料, 今后新一代计算机将是以神经网络为基础的, 具有高度并行处理能力, 具有自适应能力的新一代的计算机。从当前研究的热点看主要有下列几个方面: 一是各种神经网络模型的研究, 包括生物物理模型, 数学模型等。二是在数字机上进行模拟以探讨各类模型的特点、性能等。三是各种训练、学习规则的研究。四是神经网络在工作中的自适应能力的研究。五是硬件实现。国际上在这几方面的研究都尚属初级阶段, 尚有一些硬件实现和初步的应用成果。国内的研究则刚起步不久。本文介绍人工神经网络模型的一般结构及算法, 同时在和传统分类器( o as if er ) 比较的基础上介绍用于模式识别的人工神经网络分类器的结构和工作过程[1]。

人工神经网络的概念:

人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。

由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

人工神经网络研究的发展:

1943年,提出形式神经元的数学模型,人工神经网络研究的开端。

1949年,提出神经元的学习准则,为神经网络的学习算法奠定了基础。

50年代,研究类似于神经网络的分布系统。

50年代末提出感知模型,把神经网络的实现付诸工程实践。

1982年,提出神经网络的数学模型,引入了能力的概念,研究了网络的动力学特性;设计出用电子线路实现网络的方案,大大促进了神经网络的研究。

1986年,提出多层感知器的反向传播算法。

现在神经网络的应用已渗透到智能控制、信号处理、优化计算、生物医学工程等领域[2]。人工神经网络基本内容:

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,

对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。一个奇异吸引子有如下一些特征:(1)奇异吸引子是一个吸引子,但它既不是不动点,也不是周期解;(2)奇异吸引子是不可分割的,即不能分为两个以及两个以上的吸引子;(3)它对初始值十分敏感,不同的初始值会导致极不相同的行为。

人工神经网络四种基本特征:

(1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工

神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

(3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

人工神经元的机制:

1、生物神经元

典型的神经元,即神经细胞结构:胞体、树突、轴突、突触

胞体:神经细胞的本体,完成普通细胞的生存功能。

树突:有大量的分枝,接受来自其他神经元的信号。

轴突:用以输出信号。

突触:神经元相联系的部位,对树突的突触为兴奋性的,使下一个神经元兴奋;对胞体的突触为抑制性的,阻止下一个神经元兴奋。

神经元的两种工作状态:兴奋和抑制。

动态极化原则:在每一个神经元中,信息以预知的确定方向流动,即从神经元的接收信息部分传到轴突的电脉冲起始部分,再传到轴突终端的突触,以与其它神经元通信。

连接的专一性原则:神经元之间无细胞质的连续,神经元不构成随机网络,每一个神经元与另一些神经元构成精确的联接。

信号的传递过程:接受兴奋电位;信号的汇集和传导;信号的输出。

2、人工神经元

人工神经元模型:

xi:输入,神经元的输入值

ωi :权值,突触的连接强度 f :输出函数,非线性函数 y :输出 神经元动作:

常用输出函数: 阈值函数:

阶跃函数:

双曲正切函数:

3、感知器模型

f 为阈值函数:

设阈值:θ=-ω0 W=(ω1,ω2, … ,ωn,ω0)T X=(x1, x2, … , xn, 1)T

则:y=sgn (WTX) 即: y =f (WTX)

1

n

i i

i net w x ==?∑

这种神经元没有内部状态的转变,而且函数为阈值型。因此,它实质上是一种线性阈值计算单元。感知器是一个具有单层计算单元的人工神经网络。感知器训练算法就是由这种神经网络演变来的。感知器算法能够通过对训练模式样本集的“学习”得出判别函数的系数[3]。

4、感知器训练算法

算法描述

用样本训练时,若x∈ωi,g(x)>0,则w不变。若g(x)<0,则修改w,直到所有样本都满足条件为止。

通过上面的定义,感知器问题变成wi/wj两类问题。因此,感知器的自组织、自学习思想可以用于确定性分类器的训练——感知器训练方法。

初始化:

给定一个训练模式集{x1, x2,…xN},其中每个类别已知,它们分属于ω1,ω2。xi=(xi1, xi2,…xin)T为n维向量,增广为(n+1)维向量:xi=(xi1, xi2,…xin,1)ω2类样本乘以-1。权向量w为(n+1)维向量。

感知器算法步骤

置步数k=1,令增量C为常数,且C>0,分别赋予初始增广权矢量w(1)的各分量较小的任意值。

输入训练模式xk,计算判别函数值wT(k)xk

调整增广权矢量,规则是:

如果wT(k)xk≤0, 则w(k+1)=w(k)+ Cxk

如果wT(k)xk>0, 则w(k+1)=w(k)

如果k

通常人工神经网络在能识别之前, 需要用一些已知的输入模式对网络进行识别训练( 或称之为学习)。这样的训练—学习是在一组学习规则控制下进行的。初始的权重往往是由网络拓扑、节点特性和学习规则来规定的。学习规则除了控制训练、学习外, 还要说明在不断的学习过程中如何改进性能、改变权重。由于整个人工神经网络是由大量的具有处理能力的节点所组成, 而且节点间又有无数的联系。所以, 少数节点或联系的损坏并不影响大局。再加上不少人工神经网络的算法还不断地利用当前的结果来及时改善其性能. 因此, 人工神经网络还具有自适应性, 并在容错方面比冯·诺诊曼机要强得多。

用作分类器的人工神经网络:

在模式识别( aP et m R eC 0 gn i it on ) 中通常用来将不同的输入模式进行分类, 以获得一正确的归类。为对人工神经网络在这方面的功能有一清楚的认识, 不妨把它和传统模式识别作一对比。假设一个分类器有N 个稳定的输入, 它可判断某一输入模式最可能对应M 个类别中的那一类。在语音识别中, 输入可能是某一时刻声波的频谱, 而其分类结果则是某一元音。在图象识别中输入则可能是一幅由不同灰度等级象素点组成的图画, 而其结果可能是某一物体。这样的分类器的工作过程可用图三来描述。由图可见, 传统分类器可分成两级。第一级, 计算输入和可能输出每一类的匹配值(该值反映了输入模式和输出类别的接近程度)。第二级, 选择匹配值最大的类。第一级的输入是代表个输入元素值的一些符号 , 这些符号是顺序、串行输入的, 在这一级中分类器要将输入符号的外部形式转化成内部形式以用于算术、符号运算。这一级中的算法是用来计算M 个可输出类别中每一类的匹配值。其值的大小表示输入和输出的接近程序, 值越大越接近。很多情况下, 分类器是利用概率模型来确定输出样本模型和输入模式的关系及匹配值. 分布参数可由训练数据来估算, 多变量高斯分布是一种较简便的算法。

传统分类器的工作过程

第一级输出的匹配值仍是以符号表示的, 仍是以顺序, 串行的方法传递给第二级。通过符号译码, 选择出具有最大值的类别。最后输出表示该类的符号, 从而完成了整个分类工作. 整个过程顺序、串行传递信息, 速度慢, 工作中无法自我改善, 因此也无自适应能力。虽然也可将这种具有自适应能力的神经网络分类器的结构分成两级, 但其工程过程和传统的分类器不大一样。首先通过N 个输入连线并行地而不是串行地将输入模式送入第一级。每一连线输入的均为模拟值. 对于二值输入, 该值可取两个不同的数. 对具有连`戈值的输入, 则可在一很大范围内变化。

具有自适应功能的人工神经网络分类器的工作过程

第一级的任务仍然是计算匹配值, 并通过M 根替拟的输出线将结果并行地传给下一级。这里不仅输入模式的输入和级问的信息传递都是并行的,另一方面也免除了外部表示, 内部表示的互相转化。在第二级中不仅要选择最大的匹配值,而且还通过一定的算法对该最大匹配值还要使之扩大。在第一级对第二级的输入对M 类中的每一类均有一个输入, 但在分类结束时, 仅仅对应最可能的那一类的输出为“强” ( 或“高” ), 其它输出均为“弱” ( 或“低勺。在这种模型中, 对每一类均有输出, 只要它们是“突出”的, 那未这些输出都必须被保存, 而且在下一级中进一步处理。在最简单的分类系统中, 这些输出可能直接接到标志着不同类别的灯泡上进行显示。这一些较为复杂的情况下, 这些输出线可能连到下一级( 即这种情况不只限于两级) , 而且下一级的输入可能是包含其它方式, 也可能是时变的。如果输出提供了正确的类别, 那未这些信息、分类器的输出可反馈到第一级, 利用某种学习的算法产生一个自适应的权重。这样产生的自适应性的权重可以使得结果更加令人满意。上述人工神经网络分类器能完成三种不同的用途。上而描述的是第一种, 分类器用来辨认哪一类( 输出) 最能代表输入模式。而且允许输入时有杂声干扰[4]。

第二种用途是用作联想记忆器( C O n to t - A , 别, 幼bl e / A S co iat i ve M e m or y )。此时, 各类输出样本是理想的, 输入模式用来决定产生何种样本。这种联想记忆器对于信息残缺不全, 即只有部分信息而想获得全部信息时这就象只知作者名或文章名, 而想获得作者的全部信息( 作者名, 文章名, 出版物, 出版时间, 页数, 起止页号… ) , 或象一张残缺的照片要复原的情况是一样的. 当然这种分类器通常要对图四所示的分类器额外增加一级再产生最可能类别的样本. 但对某些神经网络( 如H叩if d d 网络) 这第三级却不必要。第三种用途是用作语音、图象识别的信息的压缩, 以减少传输模拟数据所需的比特( ib o 数, 这种压缩数据量的办法, 既不能丢失信息, 又要能提高速度[5]。

matlab 源程序代码:

%产生指定类别的样本点,并在图中绘出

X = [0 1; 0 1]; % 限制类中心的范围

clusters = 5; % 指定类别数目

points = 10; % 指定每一类的点的数目

std_dev = 0.05; % 每一类的标准差

P = nngenc(X,clusters,points,std_dev);

plot(P(1,:),P(2,:),'+r');

title('输入样本向量');

xlabel('p(1)');

ylabel('p(2)');

%建立网络

net=newc([0 1;0 1],5,0.1); %设置神经元数目为5 %得到网络权值,并在图上绘出

figure;

plot(P(1,:),P(2,:),'+r');

w=net.iw{1}

hold on;

plot(w(:,1),w(:,2),'ob');

hold off;

title('输入样本向量及初始权值');

xlabel('p(1)');

ylabel('p(2)');

figure;

plot(P(1,:),P(2,:),'+r');

hold on;

%训练网络

net.trainParam.epochs=7;

net=init(net);

net=train(net,P);

%得到训练后的网络权值,并在图上绘出

w=net.iw{1}

plot(w(:,1),w(:,2),'ob');

hold off;

title('输入样本向量及更新后的权值');

xlabel('p(1)');

ylabel('p(2)');

a=0;

p = [0.6 ;0.8];

a=sim(net,p)

%指定输入二维向量及其类别

P = [-3 -2 -2 0 0 0 0 +2 +2 +3;

0 +1 -1 +2 +1 -1 -2 +1 -1 0];

C = [1 1 1 2 2 2 2 1 1 1];

%将这些类别转换成学习向量量化网络使用的目标向量T = ind2vec(C)

%用不同的颜色,绘出这些输入向量

plotvec(P,C),

title('输入二维向量');

xlabel('P(1)');

ylabel('P(2)');

%建立网络

net = newlvq(minmax(P),4,[.6 .4],0.1);

%在同一幅图上绘出输入向量及初始权重向量

figure;

plotvec(P,C)

hold on

W1=net.iw{1};

plot(W1(1,1),W1(1,2),'ow')

title('输入以及权重向量');

xlabel('P(1), W(1)');

ylabel('P(2), W(2)');

hold off;

%训练网络,并再次绘出权重向量

figure;

plotvec(P,C);

hold on;

net.trainParam.epochs=150;

net.trainParam.show=Inf;

net=train(net,P,T);

plotvec(net.iw{1}',vec2ind(net.lw{2}),'o');

%对于一个特定的点,得到网络的输出

p = [0.8; 0.3];

a = vec2ind(sim(net,p))

实验举例:

(1)

%以FRP-混凝土面内剪切试验说明matlab神经元网络的使用

%读入试验数据,数据格式为

% FRP厚度(mm) FRP宽度(mm) FRP粘结长度(mm) FRP弹模(GPa) 混凝土抗拉强度(MPa) 混凝土宽度(mm)

%[ 0.169 50 130 97 2.9 100]'

%网络输出为极限承载力

FID1=fopen('Direct_Shear_Test.txt','r');

[Test_Data,count]=fscanf(FID1,'%e',[7 inf]);

%前6列为参数,最后1列是试验承载力

fclose(FID1);

S1=8;

%设定数值边界

Boundry=zeros(6,2);

for i=1:6

Boundry(i,:)=minmax(Test_Data(i,:));

end

%初始化网络

net=newff(Boundry,[S1 1],{'tansig','purelin'},'trainscg'); %网络训练

net.trainParam.epochs=50000;

net.trainParam.show=300;

net.trainParam.goal=0.0001;

net=train(net, Test_Data(1:6,:),Test_Data(7,:));

%验证网络

testp=Test_Data(1:6,20);

resultp=sim(net,testp)

%如果要使用网络只需要先读入存档的训练好的网络

load Direct_Shear_net.mat

%接着输入试验参数

a=[ 0.169 50 130 97 2.9 100]';

%得到承载力

Pu=sim(net,testp)

(2)

采用动量梯度下降算法训练 BP 网络。

训练样本定义如下:

输入矢量为

p =[-1 -2 3 1 -1 1 5 -3]

目标矢量为 t = [-1 -1 1 1]

解:本例的 MATLAB 程序如下:

close all

clear

echo on

clc

% NEWFF——生成一个新的前向神经网络

% TRAIN——对 BP 神经网络进行训练

% SIM——对 BP 神经网络进行仿真

pause

% 敲任意键开始

clc

% 定义训练样本

% P 为输入矢量

P=[-1, -2, 3, 1; -1, 1, 5, -3];

%T为目标矢量

T=[-1, -1, 1, 1];

pause;

clc

% 创建一个新的前向神经网络

net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值

inputWeights=net.IW{1,1}

inputbias=net.b{1}

% 当前网络层权值和阈值

layerWeights=net.LW{2,1}

layerbias=net.b{2}

pause

clc

% 设置训练参数

net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.mc = 0.9;

net.trainParam.epochs = 1000;

net.trainParam.goal = 1e-3;

pause

clc

% 调用 TRAINGDM 算法训练 BP 网络

[net,tr]=train(net,P,T);

pause

clc

% 对 BP 网络进行仿真

A = sim(net,P)

% 计算仿真误差

E = T - A

MSE=mse(E)

pause

clc

echo off

(3)

采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:

输入矢量:P = [-1:0.05:1];

目标矢量:randn(’seed’,78341223);

T = sin(2*pi*P)+0.1*randn(size(P));

解:本例的 MATLAB 程序如下:

close all

clear

echo on

clc

% NEWFF——生成一个新的前向神经网络

% TRAIN——对 BP 神经网络进行训练

% SIM——对 BP 神经网络进行仿真

pause

% 敲任意键开始

clc

% 定义训练样本矢量

% P 为输入矢量

P = [-1:0.05:1];

% T 为目标矢量

randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P)); % 绘制样本数据点

plot(P,T,'+');

echo off

hold on;

plot(P,sin(2*pi*P),':');

% 绘制不含噪声的正弦曲线

echo on

clc

pause

clc

% 创建一个新的前向神经网络

net=newff(minmax(P),[20,1],{'tansig','purelin'});

pause

clc

echo off

clc

disp('1. L-M 优化算法 TRAINLM'); disp('2. 贝叶斯正则化算法 TRAINBR'); choice=input('请选择训练算法(1,2):');

figure(gcf);

if(choice==1)

echo on

clc

% 采用 L-M 优化算法 TRAINLM

net.trainFcn='trainlm';

pause

clc

% 设置训练参数

net.trainParam.epochs = 500;

net.trainParam.goal = 1e-6;

net=init(net);

% 重新初始化

pause

clc

elseif(choice==2)

echo on

clc

% 采用贝叶斯正则化算法 TRAINBR

net.trainFcn='trainbr';

pause

clc

% 设置训练参数

net.trainParam.epochs = 500;

randn('seed',192736547);

net = init(net);

% 重新初始化

pause

clc

end

% 调用相应算法训练 BP 网络

[net,tr]=train(net,P,T);

pause

clc

% 对 BP 网络进行仿真

A = sim(net,P);

% 计算仿真误差

E = T - A;

MSE=mse(E)

pause

clc

% 绘制匹配结果曲线

close all;

plot(P,A,P,T,'+',P,sin(2*pi*P),':');

pause;

clc

echo off

人工神经网络发展趋势:

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经

网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

人工智能及网络拓扑算法的发展, 推动了人工神经网络的重新崛起, 迅速发展已成了当今世界人工智能的又一热点。人工神经网络由于它在并行处理和自适应方面的优良特性及在模式识别方面的应用成果已使人们对之刮目相看。人工神经网络正向模拟人类认知的道路上深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向;在现代神经科学研究成果的基础上,试图用模拟神经网络加工、记忆信息的方式,制造各种智能机器;神经元网络的实现是其广泛应用的前提,是软件与硬件的有效结合,可以针对网络材料和功能结构,研究更简洁高效的网络结构,同时扩大神经元芯片的作用范围;利用光电结合的神经计算机,创造出功能更全,应用更广的人工神经网络,提高其信息处理能力,进一步优化从理论到实际的实现;人类与计算机的自然口译、流畅的谈话、音频检索甚至用自然语言与计算机对话也是其发展实现的方向之一[6]。

虽然人工神经网络已经取得了一定的进步,但是还存在许多缺陷,例如:应用的面不够宽阔、结果不够精确;现有模型算法的训练速度不够高;算法的集成度不够高;同时我们希望在理论上寻找新的突破点,建立新的通用模型和算法。需进一步对生物神经元系统进行研究,不断丰富人们对人脑神经的认识[7]。

参考文献

[1] 韩立群. 人工神经网络[M]. 北京:北京邮电大学出版社,2006.

[2] 武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9): 1488-1492.

[3] 邓学荣, 王全.神经网络系统.新浪潮.1 9 8 9 年第6 期

[4] 罗忠,谢永斌,朱重光. CMAC学习过程收敛性研究[J]. 自动化学报,1997,23(4):455-461.

[5] 何国光,朱萍,曹志彤,等. 混沌神经网络的Lyapunov指数与混沌区域[J]. 浙江大学报,

2004,31(7):387-390.

[6] 董军,胡上序. 混沌神经网络研究进展和展望[J]. 信息与控制,1997,26(5):360-368.

[7] WU Wei,WANG Jian,CHENG Ming-song,et al. Convergenceanalysis of online gradient method for BP neural networks[J].Neural Networks ,2011(24):91-98.

无线传感器网络路由协议

无线传感器网络的关键技术有路由协议、MAC协议、拓扑控制、定位技术等。路由协议: 数据包的传送需要通过多跳通信方式到达目的端,因此路由选择算法就是网络层设计的一个主要任务。路由协议主要负责将数据分组从源节点通过网络转发到目的节点,它主要包括两个方面的功能: 1、寻找源节点与目的节点间的优化路径。 2、将数据分组沿着优化路径正确转发。 无线传感器与传统的无线网络协议不同之处,它受到能量消耗的制约,并且只能获取到局部拓扑结构的信息,由于这两个原因,无线传感器的路由协议要能够在局部网络信息的基础上选择合适路径。传感器由于它很强的应用相关性,不同应用中的路由协议差别很大,没有通用的路由协议。无线路由器的路由协议应具备以下特点: (1)能量优先。需要考虑到节点的能量消耗以及网络能量均衡使用的问题。(2)基于局部拓扑信息。WSN为了节省通信能量,通常采用多跳的通信模式,因此节点如何在只能获取到局部拓扑信息与资源有限的情况下实现简单高效的路由机制,这就是WSN的一个基本问题。 (3)以数据为中心。传统路由协议通常以地址作为节点的标识与路由的依据,而WSN由于节点的随机分布,所关注的就是监测区域的感知数据,而不就是具体哪个节点获取的信息,要形成以数据为中心的消息转发路径。(4)应用相关。设计者需要针对每一个具体应用的需求,设计与之适应的特定路由机制。 现介绍几种常见的路由协议(平面路由协议、网络分层路由协议、地理定位辅助路由协议): 一、平面路由协议 平面路由协议中,逻辑结构时平面结构,节点间地位平等,通过局部操作与反馈信息来生成路由。当汇聚点向某些区域发送查询并等待来自于这些区域内传感器所采集的相关数据,其中的数据不能采用全局统一的ID,而就是要采用基于属性的命名机制进行描述。平面路由的优点就是结构简单、鲁棒性(即路由机制的容错能力)较好,缺点就是缺乏对通信资源的优化管理,对网络动态变化的反应速度较慢。其中典型的平面路由协议有以下几种: 1、1、洪泛式路由(Flooding): 这就是一种传统的网络通信路由协议。这种算法不要求维护网络的拓扑结构与相关路由的计算,仅要求接受到信息的节点以广播形式转发数据包。例如:S节点要传送一段数据给D节点,它需要通过网络将副本传送给它每一个邻居节点,一直到传送到节点D为止或者为该数据所设定的生存期限为零为止。优点在于:实现简单;不需要为保持网络拓扑信息与实现复杂路由发现算法消耗计算资源;适用于鲁棒性较高的场合。但同时也有相应的缺点:一个节点可能得到一个数据的多个副本;存在部分重叠,如果相邻节点同时对某件事作出反应,则两个节点的邻居节点将收到两份数据副本;盲目使用资源,无法作出自适应的路由选择。 为克服Flooding算法这些固有的缺陷,S、Hedetniemi等人提出闲聊式(Gossiping)策略。这种算法采用随机性原则,即节点发送数据时不再采用广播形式,而就是随机选取一个相邻节点转发它接收到的数据副本(避免了消息爆炸的结果)。

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

《无线传感器网络》试题.

《无线传感器网络》试题 一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ

14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。(2) 点到点的消息认证问题。(3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为28 s 、点协调功能帧间间隔PIFS长度是SIFS 加一个时隙(slot)长度,即78 s 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 s 17、任意相邻区域使用无频率交叉的频道是,如:1、6、11频道。 18、802.11网络的基本元素SSID标示了一个无线服务,这个服务的内容包括了:接入速率、工作信道、认证加密方法、网络访问权限等 19、传感器是将外界信号转换为电信号的装置,传感器一般由敏感元件、转换元件、转换电路三部分组成 20、传感器节点由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成 二、基本概念解释(每题5分,共40分) 1.简述无线网络介质访问控制方法CSMA/CA的工作原理 CSMA/CA机制: 当某个站点(源站点)有数据帧要发送时,检测信道。若信道空闲,且在DIFS时间内一直空闲,则发送这个数据帧。发送结束后,源站点等待接收ACK确认帧。如果目的站点接收到正确的数据帧,还需要等待SIFS时间,然后向源站点发送ACK确认帧。若源站点在规定的时间内接收到ACK确认帧,则说明没有发生冲突,这一帧发送成功。

无线传感器网络试题库附答案

无线传感器网络试题库附答案 《无线传感器网络》 一、填空题(每题4分,共计60分) 1.传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2.传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息3、 3.无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4.无线通信物理层的主要技术包括:介质选择、频段选取、调制技术、扩频技术 5.扩频技术按照工作方式的不同,可以分为以下四种:直接序列扩频、跳频、跳时、宽带 线性调频扩频 6.定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7.无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、 应用相关的网络 8.无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、 数据融合及管理、网络安全、应用层技术

9.IEEE标准主要包括:物理层。介质访问控制层 10.简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理 引擎、图形用户界面和后台组件四个部分组成。 11.数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和 预测 12.无线传感器网络可以选择的频段有:_800MHz___915M__、、___5GHz 13.传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14.传感器网络的安全问题:(1)机密性问题。(2)点到点的消息认证问题。(3)完整 性鉴别问题。 15.规定三种帧间间隔:短帧间间隔SIFS,长度为28s a)、点协调功能帧间间隔PIFS长度是SIFS加一个时隙(slot)长度,即78s b)分布协调功能帧间间隔DIFS,DIFS长度=PIFS+1个时隙长度,DIFS的长度为128 s 16.任意相邻区域使用无频率交叉的频道是,如:1、6、11频道。 17.网络的基本元素SSID标示了一个无线服务,这个服务的内容

无线传感器网络发展与路由

1、引言无线传感器网络(Wireless Sensor Network)是由大规模部署的成百上千的节点构成。这些微传感器节点具有感知能力、无线通信能力以及计算能力。无线传感器网络的发展得益于微机电系统以及处理器、存储技术的发展,这些发展使得制造低功率、微体积、低成本的微传感器节点逐步成为现实。无线传感器网络综合了传感器技术、嵌入式计算技术、分布式信息处理技术和通信技术,各个节点能够协同地 1、引言 无线传感器网络(Wireless Sensor Network)是由大规模部署的成百上千的节点构成。这些微传感器节点具有感知能力、无线通信能力以及计算能力。无线传感器网络的发展得益于微机电系统以及处理器、存储技术的发展,这些发展使得制造低功率、微体积、低成本的微传感器节点逐步成为现实。无线传感器网络综合了传感器技术、嵌入式计算技术、分布式信息处理技术和通信技术,各个节点能够协同地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并将处理后的信息传送到需要这些信息的用户(观察者)。

由于无线传感器网络具有可快速部署、可自组织和高容错性的特点,因此非常适合在军事上应用。比如通过飞机将传感器节点撒播在战场上,可以组成网络对战场中化学武器的使用、敌方车辆和士兵的运动进行及时的监测和报告。同时,无线传感器网络对于比较恶劣的环境和人不宜到达的场所也非常适用,比如荒岛上的环境和生态监控,原始森林的防火和动物活动情况监测,污染区域以及地震和火灾等突发灾难现场的监控。另外,它还可用于城市的交通监测,医疗机构的病员及环境监测,大型车间原材料和仓库货物进出情况的监测,以及机场、大型工业园区的安全监测。无线传感器网络可以使人们在任何时间、地点和任何环境条件下获取大量信息。因此,这种网络系统可以被广泛地应用于国防军事、国家安全、环境监测、交通管理、医疗卫生、制造业、反恐抗灾等领域。可以说无线传感器网络是信息感知和采集的一场革命,是21世纪最重要的技术之一。 2、无线传感器网络 在讨论无线传感器网络之前,有必要了解无线传感器网络的组成和协议框架。典型的无线传感器网络如图1所示。

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

无线传感器网络课后习题答案

1-2.什么是无线传感器网络? 无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络。目的是协作地探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。 1-4.图示说明无线传感器网络的系统架构。 1-5.传感器网络的终端探测结点由哪些部分组成?这些组成模块的功能分别是什么? (1)传感模块(传感器、数模转换)、计算模块、通信模块、存储模块电源模块和嵌入式软件系统 (2)传感模块负责探测目标的物理特征和现象,计算模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发送和接收。另外,电源模块负责结点供电,结点由嵌入式软件系统支撑,运行网络的五层协议。 1-8.传感器网络的体系结构包括哪些部分?各部分的功能分别是什么? (1)网络通信协议:类似于传统Internet网络中的TCP/IP协议体系。它由物理层、数据链路层、网络层、传输层和应用层组成。 (2)网络管理平台:主要是对传感器结点自身的管理和用户对传感器网络的管理。包括拓扑控制、服务质量管理、能量管理、安全管理、移动管理、网络管理等。 (3)应用支撑平台:建立在网络通信协议和网络管理技术的基础之上。包括一系列基于监测任务的应用层软件,通过应用服务接口和网络管理接口来为终端用户提供各种具体应用的支持。 1-9.传感器网络的结构有哪些类型?分别说明各种网络结构的特征及优缺点。 (1)根据结点数目的多少,传感器网络的结构可以分为平面结构和分级结构。如果网络的规模较小,一般采用平

面结构;如果网络规模很大,则必须采用分级网络结构。 (2)平面结构: 特征:平面结构的网络比较简单,所有结点的地位平等,所以又可以称为对等式结构。 优点:源结点和目的结点之间一般存在多条路径,网络负荷由这些路径共同承担。一般情况下不存在瓶颈,网络比较健壮。 缺点:①影响网络数据的传输速率,甚至造成网络崩溃。②整个系统宏观上会损耗巨大能量。③可扩充性差,需要大量控制消息。 分级结构: 特征:传感器网络被划分为多个簇,每个簇由一个簇头和多个簇成员组成。这些簇头形成了高一级的网络。簇头结点负责簇间数据的转发,簇成员只负责数据的采集。 优点:①大大减少了网络中路由控制信息的数量,具有很好的可扩充性。②簇头可以随时选举产生,具有很强的抗毁性。 缺点:簇头的能量消耗较大,很难进人休眠状态。 1-13.讨论无线传感器网络在实际生活中有哪些潜在的应用。 (1)用在智能家具系统中,将传感器嵌入家具和家电中,使其与执行单元组成无线网络,与因特网连接在一起。 (2)用在智能医疗中,将传感器嵌入医疗设备中,使其能接入因特网,将患者数据传送至医生终端。 (3)用在只能交通中,运用无线传感器监测路面、车流等情况。 2-2.传感器由哪些部分组成?各部分的功能是什么? 2-5.集成传感器的特点是什么? 体积小、重量轻、功能强、性能好。 2-7.传感器的一般特性包括哪些指标? 灵敏度、响应特性、线性范围、稳定性、重复性、漂移、精度、分辨(力)、迟滞。 2-15.如何进行传感器的正确选型? 1.测量对象与环境:分析被测量的特点和传感器的使用条件选择何种原理的传感器。 2.灵敏度:选择较高信噪比的传感器,并选择适合的灵敏度方向。 3.频率响应特性:根据信号的特点选择相应的传感器响应频率,以及延时短的传感器。 4.线性范围:传感器种类确定后观察其量程是否满足要求,并且选择误差小的传感器。 5.稳定性:根据使用环境选择何时的传感器或采用适当的措施减小环境影响,尽量选择稳定性好的传感器。 6.精度:选择满足要求的,相对便宜的传感器。 2-17.简述磁阻传感器探测运动车辆的原理。 磁阻传感器在探测磁场的通知探测获得车轮速度、磁迹、车辆出现和运动方向等。使用磁性传感器探测方向、角度或电流值,可以间接测定这些数值。因为这些属性变量必须对相应的磁场产生变化,一旦磁传感器检测出场强变化,则采用一些信号处理办法,将传感器信号转换成需要的参数值。 3-2.无线网络通信系统为什么要进行调制和解调?调制有哪些方法? (1)调制和解调技术是无线通信系统的关键技术之一。调制对通信系统的有效性和可靠性有很大的影响。采用什

无线传感器网络通信与路由研究

网络通讯及安全本栏目责任编辑:冯蕾 无线传感器网络通信与路由研究 肖军,李科,王建华 (西北核技术研究所,陕西西安710024) 摘要:随着无线通信和数字电子技术的发展,由低成本、低功耗、多功能的无线传感器节点组成的无线传感网络得到迅速发展。无线传感网络是由很多无线传感器节点密集分布组成的,它具有以下特性:各传感器节点位置随机分布,具有自组织特性;各节点共同协作完成数据收集、路由任务,具有很好的协作特性。无线传感网络的这些特性使得它在医疗、环境监测、军事和智能家庭等领域有了广泛的应用。 本文从介绍无线传感器网络的发展入手,分析了无线传感器的网络结构,节点结构,节点的限制,网络特点,在此基础上继续分析了无线传感器网络的路由协议以及现有的路由协议分类。 关键词:无线传感器;路由;节点;协议 中图分类号:TP393文献标识码:A文章编号:1009-3044(2008)18-21621-03 TheResearchofCommunicationsandRouteofWirelessSensorNetwork XIAOJun,LIKe,WANGJian-hua (NorthwestInstituteofNuclearEngineering,Xi'an710024,China) Abstract:Withtheadvancesofwirelesscommunicationandmicro-processortechnologies,itbecomespossibleforlargeamountsoflow-cost,low-power,multifunctionalsensornodestobuildhigh-qualitywirelesssensornetworks.Thesenodeshavemanyspecificfeatures:denselydistributinginworkingfieldwithrandomlocationandself-organizationability;adaptivelycollaboratingwithothernodesfordataroutingandtransmission.AlltheseadvantagesenablebroaduseofwirelesssensornetworksinthefieldsofHealth-care,EnvironmentMon-itoring,MilitaryandSmartHome. Thisarticleobtainsfromthewirelesssensornetworkcommunicationsresearch,andstudytheframework,characteristicofthewirelesssesornetwork,thenanalysetheframeworkofthenetnoteandthelimitingconditionofthenetnote;atlast,thispaperstudytherouterprotocolofthewirelesssensornetwork. Keywords:thewirelesssensor;route;node;protocol 近年来随着微电子技术、传感器技术及通信技术的发展,无线传感器网络技术发展迅猛[1],进展很快。无线传感器网络是由一组传感器节点通过无线连接构成的无线网络,它布置大量微型的智能传感器节点,通过节点的协同工作来采集和处理网络覆盖区域中的目标信息。 无线传感器网络无论是在国家安全,还是国民经济等方面均有着广泛的应用前景。未来,传感器网络将向天、空、海、陆、地下一体化综合传感器网络的方向发展,最终将成为现实世界和数字世界的接口,深入到人们生活的各个层面,像互联网一样改变人们的生活方式。可以说无线传感器网络是信息感知和采集的一场革命,是21世纪最重要的技术之一。本文主要有武定县传感器网络的特点入手,着重介绍传感器的网络机构,节点的布置结构及其限制条件,以及对应此结构的路由协议的介绍。 1无线传感器网络的特点 无线传感器网络是一种新兴技术,它是将传感器技术,通信技术以及网络技术结合的产物,相较于传统的网络以及传感器,它具有突出的特点: (1)大规模网络[2] 为了获取精确信息,在监测区域通常部属大量传感器节点,传感器节点数量可能达到上万个,甚至更多。传感器网络的大规模包含两个含义:一是分布的地理区域大,如一片森林;二是节点分布密集,在一个面积不大的空间内可能有大量的节点。 (2)自组织网络 布置传感器节点时,节点的位置通常不能预先精确设定,节点之间的邻居关系也不能预先知道。这样就要求传感器节点有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成多跳无线网络。 (3)动态性网络 传感器网络的拓扑结构可能由于如下原因而改变:①环境因素和电能耗尽造成节点出现故障或失效;②环境条件变化造成无线通信链路带宽变化,甚至时断时续;③传感器节点、感知对象、观察者可能都具有移动性;④新节点的加入。因此,在设计传感器网络时,就要求考虑网络具有能适应这种变化的能力。 (4)可靠的网络 收稿日期:2008-04-10 作者简介:肖军(1976-),陕西洛南人,工程师,计算机与软件开发;李科(1983-),湖北天门人,助理工程师,计算机与软件开发;王建华(1964-),江西定南人,高级工程师,机电工程。 1621

无线传感器网络课后习题答案解析

- 1-2.什么是无线传感器网络 无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络。目的是协作地探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。 1-4.图示说明无线传感器网络的系统架构。 1-5.传感器网络的终端探测结点由哪些部分组成这些组成模块的功能分别是什么 (1)传感模块(传感器、数模转换)、计算模块、通信模块、存储模块电源模块和嵌入式软件系统 (2)传感模块负责探测目标的物理特征和现象,计算模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发送和接收。另外,电源模块负责结点供电,结点由嵌入式软件系统支撑,运行网络的五层协议。 1-8.传感器网络的体系结构包括哪些部分各部分的功能分别是什么 ) (1)网络通信协议:类似于传统Internet网络中的TCP/IP协议体系。它由物理层、数据链路层、网络层、传输层和应用层组成。 (2)网络管理平台:主要是对传感器结点自身的管理和用户对传感器网络的管理。包括拓扑控制、服务质量管理、能量管理、安全管理、移动管理、网络管理等。 (3)应用支撑平台:建立在网络通信协议和网络管理技术的基础之上。包括一系列基于监测任务的应用层软件,通过应用服务接口和网络管理接口来为终端用户提供各种具体应用的支持。 1-9.传感器网络的结构有哪些类型分别说明各种网络结构的特征及优缺点。 (1)根据结点数目的多少,传感器网络的结构可以分为平面结构和分级结构。如果网络的规模较小,一般采用平面结构;如果网络规模很大,则必须采用分级网络结构。

(2)平面结构: > 特征:平面结构的网络比较简单,所有结点的地位平等,所以又可以称为对等式结构。 优点:源结点和目的结点之间一般存在多条路径,网络负荷由这些路径共同承担。一般情况下不存在瓶颈,网络比较健壮。 缺点:①影响网络数据的传输速率,甚至造成网络崩溃。②整个系统宏观上会损耗巨大能量。③可扩充性差,需要大量控制消息。 分级结构: 特征:传感器网络被划分为多个簇,每个簇由一个簇头和多个簇成员组成。这些簇头形成了高一级的网络。簇头结点负责簇间数据的转发,簇成员只负责数据的采集。 优点:①大大减少了网络中路由控制信息的数量,具有很好的可扩充性。②簇头可以随时选举产生,具有很强的抗毁性。 缺点:簇头的能量消耗较大,很难进人休眠状态。 1-13.讨论无线传感器网络在实际生活中有哪些潜在的应用。 (1)< (2)用在智能家具系统中,将传感器嵌入家具和家电中,使其与执行单元组成无线网络,与因特网连接在一起。 (3)用在智能医疗中,将传感器嵌入医疗设备中,使其能接入因特网,将患者数据传送至医生终端。 (4)用在只能交通中,运用无线传感器监测路面、车流等情况。 2-2.传感器由哪些部分组成各部分的功能是什么 2-5.集成传感器的特点是什么 体积小、重量轻、功能强、性能好。 2-7.传感器的一般特性包括哪些指标 : 灵敏度、响应特性、线性范围、稳定性、重复性、漂移、精度、分辨(力)、迟滞。 2-15.如何进行传感器的正确选型 1.测量对象与环境:分析被测量的特点和传感器的使用条件选择何种原理的传感器。 2.灵敏度:选择较高信噪比的传感器,并选择适合的灵敏度方向。 3.频率响应特性:根据信号的特点选择相应的传感器响应频率,以及延时短的传感器。 4.线性范围:传感器种类确定后观察其量程是否满足要求,并且选择误差小的传感器。 5.稳定性:根据使用环境选择何时的传感器或采用适当的措施减小环境影响,尽量选择稳定性好的传感器。 6.精度:选择满足要求的,相对便宜的传感器。 : 2-17.简述磁阻传感器探测运动车辆的原理。 磁阻传感器在探测磁场的通知探测获得车轮速度、磁迹、车辆出现和运动方向等。使用磁性传感器探测方向、角度或电流值,可以间接测定这些数值。因为这些属性变量必须对相应的磁场产生变化,一旦磁传感器检测出场强变化,则采用一些信号处理办法,将传感器信号转换成需要的参数值。 3-2.无线网络通信系统为什么要进行调制和解调调制有哪些方法 (1)调制和解调技术是无线通信系统的关键技术之一。调制对通信系统的有效性和可靠性有很大的影响。采用什

移动性无线传感器网络的研究

一、引言 无线传感器网络作为微机电、通信和传感器三种技术相结合的产物,已成为计算机与通信领域的一个研究热点。无线传感器网络的应用前景广阔,能够广泛应用于军事、环境监测和预报、健康护理、智能家居等领域,随着对无线传感器研究的深入和成熟,传感器网络将逐渐深入到人类生活的各个领域。目前,国内外对无线传感器的研究主要针对无线传感器网络能量受限的特点,提出了很多节能的MAC协议和路由协议等。然而多数的研究局限于所有传感器节点都是静止的情况,不满足某些需要移动节点的应用,比如监测野生动物的生活,追踪病人的心跳情况等等,节点总是处于不断的运动中,同时引进移动节点还可以拓宽网络空间的采样能力,例如在应用移动节点收集其他静止节点的数据,作为一种信息收集槽。 无线传感器网络中,可能造成网络能量浪费的主要原因有:传输信息发生冲突、节点接收并处理不必要的数据(串音现象)、过度空闲侦听、控制消息过多等。MAC子层的主要任务就是可靠地控制信道的接入,尽量降低或减少以上的能量浪费。因此,MAC层协议的设计对无线传感器网络能量高效利用有重要的意义。 本文介绍了两种移动性无线传感器网络,一种是普通节点移动型,一种是代理节点(或中继节点)移动型,同时阐述了两者的研究现状,以便对移动性无线传感器进行进一步的研究和改进。 二、移动性无线传感器网络模型 根据移动的节点的功能不同,把移动性无线传感器网络分为两类:一种是普通节点移动型,一种是代理节点(或中继节点)移动型。下面分别对这两种节点进行介绍和分析。 1、普通节点移动型 这种网络模型具有分布式结构,各个节点的功能一样,没有主协调点和次要节点之分,类似于Flat Ad Hoc网络节点,如图1(a)。节点由于某种原因随时可能离开当前的网络,或进入新的网络,就会带来一系列的接入问题:如何判断节点离开/进入一个网络;网络如何适应节点的变化;节点间如何交互等等。对其它的移动网络,例如移动电话或移动Ad Hoc网络,已经有很多很好地解决其移动性的方案,但这些方案并不适用于无线传感器网络,由于无线传感器网络是能量受限型网络,网络协议的设计必须考虑能量损耗的问题。 目前有两种针对这种网络模型的能量高效的MAC接入协议:MS-MAC [1]和MOBMAC [2],这两个协议都是建立在SMAC[3]协议的基础之上,考虑了节点移动性带来的接入和能耗问题。 MS-MAC提出了一种快速建立连接的机制,即根据接收到的信号变化来判断

无线传感器网络题

《无线传感器网络》 一、填空题(每题4分,共计40分) 1. 传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息 无线传感器节点的基本功能:采集数据、数据处理、控制、通信 2. 常见的同步机制:RBS( Referenee Broadcast Synchronization ),Ting/Mini-Sync 和TPSN( Timing-sync Protocol for Sensor Networks) 3. 无线通信物理层的主要技术包括:介质选择、频段选取、调制技术、扩频技术 4. 定向扩散路由机制可以分为三个阶段:兴趣扩散阶段、梯度建立阶段、数据传播阶段、 路径加强阶段 5. 无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相 关的网络 无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技 术、数据融合及管理、网络安全、应用层技术 6. IEEE 802.15.4标准主要包括:物理层、介质访问控制层 7. 简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处 理引擎、图形用户界面和后台组件四个部分组成 8. 数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估 和预测 9. 无线传感器网络可以选择的频段有:868MHz、915MHz 2.4GHz、5GHz 10. 传感器网络的电源节能方法:休眠(技术)机制、数据融合 11. 传感器网络的安全问题:(1)机密性问题(2)点到点的消息认证问题(3)完整性鉴 别问题 12. 基于竞争的MAC协、议S-MAC协议T-MAC协议Sift 协议 13. 传感器节点由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成 14. 故障修复的方法基于连接的修复基于覆盖的修复 15. 基于查询的路由定向扩散路由谣传路由二、问答题(每题10分,共计60分) 1. 简述无线传感器网络系统工作过程,传感器节点的组成和功能。 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户。 传感器节点由电源、感知部件、嵌入式处理器、存储器、通信部件和软件这几部分构成。电源为传感器提供正常工作所必需的能源。感知部件用于感知、获取外界的信息,并将其转换为数字信号。处理部件负责协调节点各部分的工作,如对感知部件获取的信息进行必要的处理、保存,控制感知部件和电源的工作模式等。通信部件负责与其他传感器或用户的通信。软件为传感器提供必要的软件支持,如嵌入式操作系统、嵌入式数据库系统等。

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

无线传感器网络期末复习题

《无线传感器网络原理与应用》复习题 一、填空题: 1.无线传感器网络的三个基本要素是:、和。 2.无线传感器网络实现了、和的三种功能。 3.无线传感器网络包括四类基本实体对象:目标、观测节点、和 。 4.根据无线传感器网络系统架构,无线传感器网络系统通常包括传感器节点(sensor node)、和。 5.无线传感器节点通常包含四个模块,他们是:数据采集模块、、无线通信模块和。 6.无线传感器网络的协议栈包括物理层、、、传输层和,还包括能量管理、移动管理和任务管理等平台。 7.无线传感器网络的MAC层和物理层协议采用的是国际电气电子工程师协会(IEEE)制定的协议。 8.无线通信物理层的主要技术包括、、调制技术和。 9.在无线通信系统中,有三种影响信号传播的基本机制:、绕射和。 10.无线传感器节点处于、接收状态、侦听状态和时单位时间内消耗的能量是依次减少的。 11.无线传感器网络MAC协议根据信道的分配方式可分为、 和混合式三种。 12.根据无线传感器网络不同的应用可以将其路由协议分为五类,你知道的有:、、。(任意给出3种)。 13. IEEE 802.15.4标准将无线传感器网络的数据链路层分为两个子层,即和。 14. Zigbee的最低两层即物理层和MAC层使用标准,而网络层和应用层由Zigbee联盟制定。 15. Zigbee协议中定义了三种设备,它们是:、和Zigbee终端设备。

16.Zigbee支持三种拓扑结构的网络,它们是:、和。 17.无线传感器网络的时间同步方法有很多,按照网络应用的深度可以划分三种:、和。 18.无线传感器网络的时间同步方法有很多,按照时间同步的参考时间可以划分为和。 19.无线传感器网络的时间同步方法有很多,根据需要时间同步的不同应用需求以及同步对象的范围不同可以划分为和。20.无线传感器网络定位技术大致可以划分为三类:、和 。 21.无线传感器网络典型的非测距定位算法有、APIT算法、 以及等。 22.无线传感器网络的数据融合策略可以分为、以及。 23.无线传感器网络的故障可以划分为三个层次:、和 。 24. 根据网络提供服务的能力可以将QoS分为3种等级,分别是:、 和。 25. 传感器网络的支撑技术包括:、、及安全机制等。 26. 无线传感器节点的能耗主要集中在模块。 二、名词解释: 1.无线自组织网络 2.无线传感器网络(WSN) 3.基带信号 4.模拟调制 5.数字调制 6.物理信道 7.逻辑信道 8.路由选择

人工神经网络的发展和分类

人工神经网络的发展和分类 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 它的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。 1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究。加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。 在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐ART,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。 1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视。美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变 RWC项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两

相关主题
文本预览
相关文档 最新文档