当前位置:文档之家› 工程材料及成形技术基础

工程材料及成形技术基础

工程材料及成形技术基础

一、工程材料的分类

工程材料是指用于建筑、道路、桥梁、机械等工程领域的材料。根据

其性质和用途,可以分为以下几类:

1. 金属材料:包括钢铁、铜、铝等,具有高强度和良好的可塑性。

2. 非金属材料:包括水泥、玻璃、陶瓷等,具有耐腐蚀性和耐高温性。

3. 复合材料:由两种或两种以上不同的材料组成,如玻璃钢等。

4. 塑料材料:包括聚乙烯、聚氯乙烯等,具有轻质和绝缘性能。

5. 纤维素材料:如木材、纸张等,具有良好的韧性和抗压能力。

二、工程材料的选用原则

在选择工程材料时,需要考虑以下几个方面:

1. 强度和刚度:根据使用环境和承受力量大小选择合适的强度和刚度。

2. 耐久性:考虑使用寿命长短以及环境因素对耐久性的影响。

3. 耐腐蚀性:根据使用环境选择具有良好耐腐蚀性的材料。

4. 经济性:在满足使用要求的前提下,尽可能选择成本低廉的材料。

5. 可加工性:考虑材料的可塑性和可加工性,以便进行成形和加工。

三、常用的成形技术

1. 锻造:通过对金属材料进行高温加热和压制,使其产生塑性变形,从而得到所需形状和尺寸的零部件。

2. 拉伸:将金属材料拉伸至所需长度,并在拉伸过程中使其产生塑性变形,从而得到所需形状和尺寸的零部件。

3. 压力加工:将金属材料置于模具中,在施加压力的同时进行变形,从而得到所需形状和尺寸的零部件。

4. 焊接:通过将两个或多个金属材料相互连接,在连接处产生化学键或物理结合,从而得到所需结构和尺寸的零部件。

5. 铸造:通过将液态金属倒入模具中,在冷却凝固后得到所需形状和

尺寸的零部件。

四、工程材料的应用

1. 钢铁材料:广泛应用于建筑、桥梁、机械等领域,如钢结构、钢管等。

2. 水泥材料:主要用于建筑和道路建设,如混凝土、水泥砖等。

3. 陶瓷材料:主要用于制作陶器、瓷器等装饰品和工业领域中的耐腐

蚀零部件。

4. 塑料材料:广泛应用于包装、电子设备外壳等领域。

5. 玻璃材料:主要用于建筑和装饰领域,如玻璃幕墙、玻璃门窗等。

综上所述,工程材料及成形技术基础是工程领域中不可或缺的一部分,正确选择合适的材料和成形技术不仅可以提高工程质量和效率,还可

以减少成本并保证使用寿命。

工程材料及成形技术基础课课后习题参考答案

工程材料及成形技术基础课课后习题参考答案 第一章: 1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用? 答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。1-3 σs、σ0.2和σb含义是什么?什么叫比强度?什么叫比刚度? 答:σs-P s∕F0,屈服强度,用于塑性材料。 σ0.2-P0.2∕F0,产生0.2%残余塑性变形时的条件屈服强度,用于无明显屈服现象的材料。 σb-P b∕F0,抗拉强度,材料抵抗均匀塑性变形的最大应力值。 比强度-材料的强度与其密度之比。 比刚度-材料的弹性模量与其密度之比。 思考1-1、1-2. 2-3 晶体的缺陷有哪些?可导致哪些强化? 答:晶体的缺陷有: ⑴点缺陷——空位、间隙原子和置换原子,是导致固溶强化的主要原因。 ⑵线缺陷——位错,是导致加工硬化的主要原因。 ⑶面缺陷——晶界,是细晶强化的主要原因。 2-5 控制液体结晶时晶粒大小的方法有哪些? 答:见P101.3.4.2液态金属结晶时的细晶方法。⑴增加过冷度;⑵加入形核剂(变质处理);⑶机械方法(搅拌、振动等)。 2-8 在铁-碳合金中主要的相是哪几个?可能产生的平衡组织有哪几种?它们的性能有什么特点? 答:在铁-碳合金中固态下主要的相有奥氏体、铁素体和渗碳体。可能产生的室温平衡组织有铁素体加少量的三次渗碳体(工业纯铁),强度低塑性好;铁素体加珠光体(亚共析钢),珠光体(共析钢),珠光体加二次渗碳体(过共析钢),综合性能好;莱氏体加珠光体加二次渗碳体(亚共晶白口铸铁),莱氏体(共晶白口铸铁),莱氏体加一次渗碳体(过共晶白口铸铁),硬度高脆性大。 思考题 1. 铁-碳合金相图反映了平衡状态下铁-碳合金的成分、温度、组织三者之间的关系,试回答: ⑴随碳质量百分数的增加,铁-碳合金的硬度、塑性是增加还是减小?为什么? ⑵过共析钢中网状渗碳体对强度、塑性的影响怎样? ⑶钢有塑性而白口铁几乎无塑性,为什么? ⑷哪个区域的铁-碳合金熔点最低?哪个区域塑性最好? ﹡⑸哪个成分结晶间隔最小?哪个成分结晶间隔最大? 答:⑴随碳质量百分数的增加,硬度增加、塑性减小。因为随碳质量百分数的增加,渗碳体量增加而硬度增加,铁素体量减少而塑性减少。即硬度只与渗碳体量多少有关,塑性只与铁素体量多少有关。

工程材料及成形技术基础答案

一、填空题(每空1分,共20分) 1. 机械设计时常用屈服强度和抗拉强度两种强度指标。 2. 纯金属的晶格类型主要有面心立方、体心立方和密排六方三种。 3. 实际金属存在点、线和面缺陷等三种缺陷。 4.F和A分别是碳在α-Fe 、γ-Fe 中所形成的间隙固溶体。5. 加热是钢进行热处理的第一步,其目的是使钢获得奥氏体组织。 6. QT600-3中,QT表示球墨铸铁,600表示抗拉强度不小于600Mpa 。7.金属晶体通过滑移和孪生两种方式来发生塑性变形。 8.设计锻件时应尽量使零件工作时的正应力与流线方向相同 ,而使切应力与流线方向相垂直。 9.电焊条由药皮和焊芯两部分组成。 10.冲裁是冲孔和落料工序的简称。 得分 二、单项选择题(每小题1分,共15分) 1.在铁碳合金相图中,碳在奥氏体中的最大溶解度为( b )。 a、0.77% b、2.11% c、0.02% d、4.0% 2.低碳钢的焊接接头中,( b )是薄弱部分,对焊接质量有严重影响,应尽可能减小。 a、熔合区和正火区 b、熔合区和过热区 c、正火区和过热区 d、正火区和部分相变区 3.碳含量为Wc=4.3%的铁碳合金具有良好的( c )。 a、可锻性 b、可焊性 c、铸造性能 d、切削加工性 4.钢中加入除Co之外的其它合金元素一般均能使其C曲线右移,从而( b ) b、增加淬透性 c、减少其淬透性 d、增大其淬硬性 a、增大V K 5. 高碳钢淬火后回火时,随回火温度升高其( a ) a、强度硬度下降,塑性韧性提高 b、强度硬度提高 ,塑性韧性下降 c、强度韧性提高,塑性硬度下降 d、强度韧性下降,塑性硬度提高 6.感应加热表面淬火的淬硬深度,主要决定于因素( d ) a、淬透性 b、冷却速度 c、感应电流的大小 d、感应电流的频率 7.珠光体是一种( b ) a、单相间隙固溶体 b、两相混合物 c、Fe与C的混合物 d、单相置换固溶体8.灰铸铁的石墨形态是( a ) a、片状 b、团絮状 c、球状 d、蠕虫状 9.反复弯折铁丝,铁丝会越来越硬,最后会断裂,这是由于产生了( a )

工程材料及成形技术基础

工程材料及成形技术基础 一、工程材料的分类 工程材料是指用于建筑、道路、桥梁、机械等工程领域的材料。根据 其性质和用途,可以分为以下几类: 1. 金属材料:包括钢铁、铜、铝等,具有高强度和良好的可塑性。 2. 非金属材料:包括水泥、玻璃、陶瓷等,具有耐腐蚀性和耐高温性。 3. 复合材料:由两种或两种以上不同的材料组成,如玻璃钢等。 4. 塑料材料:包括聚乙烯、聚氯乙烯等,具有轻质和绝缘性能。 5. 纤维素材料:如木材、纸张等,具有良好的韧性和抗压能力。 二、工程材料的选用原则 在选择工程材料时,需要考虑以下几个方面: 1. 强度和刚度:根据使用环境和承受力量大小选择合适的强度和刚度。

2. 耐久性:考虑使用寿命长短以及环境因素对耐久性的影响。 3. 耐腐蚀性:根据使用环境选择具有良好耐腐蚀性的材料。 4. 经济性:在满足使用要求的前提下,尽可能选择成本低廉的材料。 5. 可加工性:考虑材料的可塑性和可加工性,以便进行成形和加工。 三、常用的成形技术 1. 锻造:通过对金属材料进行高温加热和压制,使其产生塑性变形,从而得到所需形状和尺寸的零部件。 2. 拉伸:将金属材料拉伸至所需长度,并在拉伸过程中使其产生塑性变形,从而得到所需形状和尺寸的零部件。 3. 压力加工:将金属材料置于模具中,在施加压力的同时进行变形,从而得到所需形状和尺寸的零部件。 4. 焊接:通过将两个或多个金属材料相互连接,在连接处产生化学键或物理结合,从而得到所需结构和尺寸的零部件。

5. 铸造:通过将液态金属倒入模具中,在冷却凝固后得到所需形状和 尺寸的零部件。 四、工程材料的应用 1. 钢铁材料:广泛应用于建筑、桥梁、机械等领域,如钢结构、钢管等。 2. 水泥材料:主要用于建筑和道路建设,如混凝土、水泥砖等。 3. 陶瓷材料:主要用于制作陶器、瓷器等装饰品和工业领域中的耐腐 蚀零部件。 4. 塑料材料:广泛应用于包装、电子设备外壳等领域。 5. 玻璃材料:主要用于建筑和装饰领域,如玻璃幕墙、玻璃门窗等。 综上所述,工程材料及成形技术基础是工程领域中不可或缺的一部分,正确选择合适的材料和成形技术不仅可以提高工程质量和效率,还可 以减少成本并保证使用寿命。

工程材料及成型技术基础模考试题(含答案)

工程材料及成型技术基础模考试题(含答案) 一、单选题(共90题,每题1分,共90分) 1、模锻件上平行于锤击方向(垂直于分模面)的表面必须有斜度,其原因是( )。 A、增加可锻性 B、防止产生裂纹 C、便于从模膛取出锻件 D、飞边易清除 正确答案:C 2、为了改善高速钢铸态组织中的碳化物不均匀性,应进行( )。 A、正火 B、锻造加工 C、完全退火 D、球化退火 正确答案:B 3、可锻铸铁适宜制造薄壁小件,这是由于浇注时其( ) A、易得到白口组织 B、石墨化完全 C、收缩较小 D、流动性较好 正确答案:A 4、T10钢锻坯切削加工前,应进行的预备热处理是( )。 A、完全退火 B、去应力退火 C、球化退火 D、再结晶退火 正确答案:C 5、铸件的壁厚越厚,铸件强度越低,这是因为壁厚越厚( ) A、易产生气孔 B、易产生浇不足、冷隔 C、易产生缩孔、晶粒粗大 D、易产生白口组织 正确答案:C 6、过共析钢正常的淬火加热温度是( )。

A、Ac1+30~70℃ B、Accm+30~70℃ C、Ac3+30~70℃ D、Ac1-30~70℃ 正确答案:A 7、平衡状态下抗拉强度最高的材料是() A、20 B、45 C、65 D、T9 正确答案:D 8、铸件同时凝固主要适用于( )。 A、铸铝件 B、铸钢件 C、灰口铸铁件 D、球墨铸铁件 正确答案:C 9、选择金属材料生产锻件毛坯时,首先应满足( )。 A、硬度高 B、塑性好 C、无特别要求 D、强度高 正确答案:B 10、亚共析钢常用的退火方法是( )。 A、完全退火 B、球化退火 C、等温退火 D、均匀化退火 正确答案:A 11、锻造加热温度过高会产生过热、过烧。过热指的是( )。 A、晶界物质氧化 B、含碳量下降 C、晶粒急剧长大 D、表层氧化

工程材料及成形技术基础论文

工程材料及成形技术基础论文 摘要: 本文主要介绍了工程材料及成形技术的基础知识。工程材料是指在工程领域中使用的物质的总称,其种类繁多,可以分为金属材料、非金属材料和高分子材料等。而成形技术是指将工程材料加工成所需形状和尺寸的过程,其中包括热加工和冷加工等不同的加工方式。本文重点介绍了材料的力学性能、金属材料的结构与组织以及常见的成形技术。 关键词:工程材料、成形技术、力学性能、材料结构与组织 一、引言 工程材料是指在工程领域中使用的物质,其种类繁多、性能各异。工程材料的选择和使用涉及到材料的力学性能、物理性能、化学性能等多个方面。而成形技术则是将材料加工成所需形状和尺寸的过程,也是工程中不可或缺的部分。本文将重点介绍工程材料的力学性能、金属材料的结构与组织以及常见的成形技术。 二、工程材料的力学性能 工程材料的力学性能主要包括强度、韧性、硬度、塑性等。强度是指材料抵抗外力的能力,可以通过拉伸试验、压缩试验等手段进行测试。韧性是指材料抵抗断裂的能力,可以通过冲击试验等来评估。硬度是指材料表面抵抗划痕的能力,可以通过洛氏硬度试验等进行测定。塑性是指材料在受力下发生塑性变形的能力,可以通过拉伸试验等进行评估。 三、金属材料的结构与组织

金属材料的结构与组织是其力学性能的重要影响因素。金属材料的结 构可以分为晶体结构和非晶体结构。晶体结构是指金属内部的原子排列有序、有规则,具有晶粒界的特点。非晶体结构是指金属内部的原子排列无序、无规则,没有晶粒界。金属材料的组织可以分为均匀组织、非均匀组 织和枝晶组织等。均匀组织是指金属中的晶粒大小均匀、分布均匀。非均 匀组织是指金属中的晶粒大小不均、分布不均。枝晶组织是指金属在凝固 过程中形成的一种特殊组织。 四、常见的成形技术 常见的成形技术包括热加工和冷加工等。热加工是指将材料加热至一 定温度后进行成形的过程。常见的热加工方法有锻造、轧制、挤压等。锻 造是将金属材料加热至一定温度后施加外力进行成形的过程,可以得到所 需形状和尺寸的工件。轧制是将金属材料通过辊轧机进行塑性变形的过程,可以得到所需厚度和宽度的板材。挤压是将金属材料通过挤压机进行塑性 变形的过程,可以得到所需形状和尺寸的管材。冷加工是指将材料在常温 下进行成形的过程。常见的冷加工方法有拉伸、压缩、弯曲等。拉伸是将 材料用力拉伸成所需形状和尺寸的过程,常用于制作丝线和带材。压缩是 将材料用力进行压缩成所需形状和尺寸的过程,常用于制作压力容器和汽 车零部件。弯曲是将材料用力进行弯曲成所需形状和尺寸的过程,常用于 制作管道和构件。 总结: 本文从工程材料的力学性能、金属材料的结构与组织以及常见的成形 技术等方面进行了基础知识的介绍。工程材料和成形技术在工程领域中具 有重要的应用价值,对于工程师和技术人员来说具有指导意义。未来,随

工程材料及成形技术基础复习

工程材料及成形技术基础复习 1.材料的分类与性能 材料一般可以分为金属材料、非金属材料和复合材料。金属材料具有 良好的导电性、导热性和可塑性等特性。非金属材料包括塑料、陶瓷、纤 维材料等,具有轻质、耐腐蚀等优点。复合材料由两种或多种材料组成, 具有优秀的综合性能。 2.材料的性能测试 材料的性能测试包括力学性能测试、物理性能测试和化学性能测试等。力学性能测试包括拉伸测试、压缩测试、弯曲测试等,可以评估材料的强度、硬度和韧性等性能。物理性能测试包括密度、热膨胀系数等,可以评 估材料的物理特性。化学性能测试可以评估材料的耐腐蚀性、氧化性等。 3.金属材料的性能与应用 金属材料具有较高的强度和导电性能,广泛应用于机械制造、航空航天、电子电器等领域。常见的金属材料包括钢、铝及其合金、铜及其合金等。 4.非金属材料的性能与应用 非金属材料具有轻质、耐腐蚀等特点,广泛应用于建筑、化工、电子 等行业。塑料材料具有良好的绝缘性能和延展性能,用于制造容器、管道 等产品。陶瓷材料具有优秀的机械性能和耐热性能,常用于制造陶瓷器具 和电子元器件等。 5.复合材料的性能与应用

复合材料由两种或多种材料组成,具有优秀的综合性能。常见的复合 材料包括玻璃纤维复合材料、碳纤维复合材料等。玻璃纤维复合材料具有 良好的抗冲击性和耐腐蚀性,常用于船舶制造和建筑材料等。碳纤维复合 材料具有优秀的强度和刚性,常用于航空航天和高端运动器材等。 6.成形技术的基本原理与方法 成形技术是将材料加工成所需形状和尺寸的过程,常见的成形方法包 括挤压、锻造、压力成形、注塑等。挤压是将加热的金属材料通过模具挤 压成所需的形状。锻造是将金属材料加热至一定温度后进行冲击变形。压 力成形是将金属板材等进行挤压和拉伸变形。注塑是将熔化的塑料注入模 具中,冷却后得到所需的形状。 7.焊接与连接技术 焊接是将两个或多个材料通过熔化、热融或加压等方式连接在一起的 方法。常见的焊接方法包括气焊、电弧焊、激光焊等。连接技术是通过螺纹、螺栓、胶粘剂等将两个或多个材料连接在一起。 以上是工程材料及成形技术基础的重点内容,通过对这些内容的学习,可以帮助我们更好地理解和应用工程材料及成形技术,提高工程实践中的 问题解决能力。

工程材料及成型技术基础概念_鞠鲁粤编

第一章工程材料 1)固体材料的主要性能包括力学性能、物理性能、化学性能、工艺性能 力学性能包括弹性、强度、塑性、硬度、韧性、疲劳强度、蠕变和磨损 2)材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力 最常用的强度指标有屈服强度和抗拉强度 固态物质按原子的聚集状态分为晶体和非晶体 常见的晶格类型:体心立方格,面心立方格,密排六方晶格 3)晶格缺陷:点缺陷,面缺陷,线缺陷 4)细化液态金属结晶晶粒的方法:增加过冷度,变质处理,附加振动 5)合金:由两种或两种以上的金属或金属与非金属组成的具有金属性质的物质 组元:组成合金的最基本、最独立的物质 二元合金:由两种组元组成的合金 相:合金中成分相同、结构相同,并与其他部分以界面分开的均匀组成部分 组织:一种或多种相按一定方式相互结合所构成的整体 6)固态合金中的相可分为固溶体和金属化合物 固溶体分为间隙固溶体和置换固溶体 7)固溶强化:当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体强度、硬度提高,塑性和韧性略有下降的现象 弥散强化:金属化合物呈细小颗粒均匀分布在固溶体基体上时,使合金的强度、硬度、耐热性和耐磨性明显提高 8)铁碳合金的基本相有铁素体、奥氏体、渗碳体、珠光体、莱氏体和低温莱氏体 9)铸铁的类型

铸铁分为一般工程应用铸铁和特殊性能铸铁 一般工程性能铸铁按石墨形貌不同分为灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁 10)影响石墨化的因素主要有化学成分和冷却速度 11)钢的热处理:将固态钢采用适当的方式进行加热、保温和冷却,以获得所需组织结构与性能的一种工艺 热处理分为普通热处理(退火、正火、淬火和回火)、表面热处理(表面淬火、渗碳、渗氮、碳氮共渗)及特殊热处理(形变热处理等) 12)铁碳合金相图(分析题)P32 第二章铸造成形 1)铸件的生产工艺方法 按充型条件不同分为重力铸造、压力铸造、离心铸造 按形成铸件的铸型分为砂型铸造、金属型铸造、熔模铸造、壳型铸造、陶瓷型铸造、消失模铸造、磁型铸造等 2)影响金属充型能力的因素和原因 ①合金的流动性②浇注温度③充型能力④铸型中的气体⑤铸型的传热系数⑥铸型温度⑦浇注系统的结构⑧铸件的折算厚度⑨铸件复杂程度 影响原因①流动性好,易于浇出轮廓清晰,薄而复杂的铸件,有利于非金属夹杂物和气体的上浮和排除,易于对铸件补缩 ②浇注温度越高,充型能力越强 ③压力越大,充型能力越强,但压力过大或充型速度过高会发生喷射、飞溅和冷隔④铸型中的气体能产生气膜,减少摩擦阻力 ⑤传热系数越大,铸型的激冷能力越强,金属液于其中保持液态的时间越短,充型能力下降

(完整word版)工程材料及成形技术基础(含答案)(word文档良心出品)

一、填空题(共20空,每空1分,共计20分) 1. 共析碳钢奥氏体化过程包括奥氏体核的形成、奥氏体核的长大、残余渗碳体的溶解和奥氏体成分的均匀化。 2. 晶体中的缺陷,按照其几何形状特征可分为_点缺陷_、___线缺陷___和_面缺陷_三种。 3. 液态金属结晶时,冷却速度越小,则过冷度越小,结晶后晶粒越粗大。 4. 金属塑性变形主要通过滑移和孪生是两种方式进行。 5. 塑性变形后的金属经加热将发生回复、再结晶、晶粒长大的变化。 6. 白口铸铁中碳主要是以Fe3C 的形式存在,灰口铸铁中碳主要以石墨形式存在。 7. 固溶体出现枝晶偏析后,可用扩散退火加以消除。 8. 影响碳钢焊接性能的主要因素是碳含量,所以常用碳当量来估算碳钢焊接性的好坏。 9. 普通灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁中石墨的形态分别为片状、棉絮状、 球状和蠕虫状。 二、选择题(共10小题,每小题1分,共计10分) 1. 钢经调质处理后获得的组织是( C )。 A. 回火马氏体 B. 回火屈氏体 C. 回火索氏体 D. 贝氏体 2. 在铸造模型的厚薄过渡处或锐角处做成圆角是为了( B )。 A. 增加模具强度 B. 减小铸件内应力 C. 方便模具制造 D. 便于和型芯组装 3. 下列合金中,铸造性能最差的是(A )。 A. 铸钢 B. 铸铁 C. 铸铜 D. 铸铝 4. 奥氏体向珠光体转变是( A )。 A. 扩散型转变 B. 非扩散型转变 C. 半扩散型转变 D. 切变转变 5. 金属冷塑性变形后,强度和塑性( C )。 A. 都增加 B. 都降低 C. 强度增加,塑性降低 D. 强度降低,塑性增加

工程材料与成型技术基础教案

第一章工程材料 常见的工程材料按组成可以进行如下分类: 1.金属材料 金属材料具有良好的力学性能、物理性能、化学性能以及工艺性能,是目前应用最广泛的材料。 2.高分子材料 高分子材料的原料丰富,成本低,加工方便。 3.无机非金属材料 无机非金属材料具有不可燃烧性、高耐热性、高化学稳定性、不老化性以及高的硬度和良好的耐压性。 4.复合材料 复合材料既有组成材料的特性,又具有组成后的新特性,且它的力学性能和功能可以根据使用需要进行设计、制造。 5.功能材料 功能材料是一种具有某种特殊物理性能、化学性能、生物性能以及某些功能之间可以相互转化的材料,是材料高性能化、功能化和复合化的产物。 一、使用性能 使用性能是指在服役条件下能保证安全可靠工作所必备的性能,其中包括材料的力学性能、物理性能、化学性能等。对绝大多数工程材料来说,其力学性能是最重要的使用性能。 1.静载时材料的力学性能包括强度、塑性和硬度。 2.其它载荷作用下的力学性能包括冲击韧性、断裂韧性、疲劳强度、磨损。 二、工艺性能 工艺性能是指材料的可加工性。其中包括锻造性能、铸造性能、焊接性能、热处理性能及切削加工性等。 一、金属的晶体结构 固体物质按其原子(或分子)的聚集状态分为晶体和非晶体两大类。 1.晶体是原子(或分子)在三维空间作有规律的周期性重复排列的固体,它具有固定的熔点、规则的几何外形和各向异性的特性。 2.非晶体是由原子(或分子)无规则地堆砌而形成的,它没有固定的熔点,且各向同性。 绝大多数金属都具有比较简单的晶体结构,其中最常见的金属晶体结构有体心立方晶格、面心立方晶格和密排六方结构晶格3种类型。 二、金属的实际晶体结构 在实际金属中存在着晶体缺陷,这些缺陷包括点缺陷、线缺陷和面缺陷3种类型。 三、金属材料的结构特点 1.金属材料主要由金属晶体组成,对纯金属而言,其结构主要指晶体结构的类型,以及这些晶体的显微组织形态和缺陷状态。 2.机械工业中使用的金属材料主要是合金。合金是指由两种或两种以上的金属元素或金属元素与非金属元素组成的、具有金属特性的物质。常见的合金中存在的相可以归纳为两大类:固溶体和金属化合物。

工程材料与成形技术基础

工程材料与成形技术基础 一、工程材料的定义和分类 1.1 工程材料的定义 工程材料是指在各种工程项目中使用的各种物质,包括金属、非金属、有机材料等。 1.2 工程材料的分类 工程材料可以根据其组成、用途、特性等不同方面进行分类。常见的工程材料分类包括: 1. 金属材料 2. 粘土材料 3. 混凝土材料 4. 高分子材料 5. 玻璃材料 6. 陶瓷材料 7. 复合材料 二、工程材料的性能与选用 2.1 力学性能 工程材料的力学性能包括强度、刚度、韧性、硬度等指标,这些指标对于工程结构的安全性和可靠性至关重要。 2.2 耐久性 工程材料的耐久性是指其在不同环境下长期使用的能力,包括耐热性、耐寒性、耐腐蚀性等。 2.3 加工性能 工程材料的加工性能包括可塑性、可焊性、可锻性等指标,这些指标影响着工程材料的成形过程和成形性能。

三、工程材料的成形技术 3.1 塑性成形技术 塑性成形技术是指通过对工程材料的塑性变形来实现其形状的改变,常见的塑性成形技术包括挤压、拉伸、冲压、滚压等。 3.2 焊接技术 焊接技术是将两个或多个工程材料通过加热或加压的方式连接在一起,常见的焊接技术包括电弧焊、气体焊、激光焊等。 3.3 铸造技术 铸造技术是将熔化的工程材料倒入铸型中,通过凝固形成所需的形状,常见的铸造技术包括砂型铸造、压力铸造、熔模铸造等。 3.4 热处理技术 热处理技术是通过对工程材料的加热或冷却处理来改变其组织和性能,常见的热处理技术包括淬火、回火、退火等。 四、工程材料与成形技术的应用 4.1 汽车制造 工程材料与成形技术在汽车制造中起着重要作用,如汽车车身的制造和焊接、发动机零件的铸造等。 4.2 建筑工程 工程材料与成形技术在建筑工程中广泛应用,如混凝土构件的浇筑、钢结构的焊接、玻璃幕墙的制作等。

工程材料及成形技术基础

有时候,一件事情看来太容易了,那往往不是真的。 (0)绪论 材料的分类及在机械工程技术中的应用、材料科学的发展、本课程的目的、 任务和学习方法。 (一)金属材料的力学性能 1、了解相关力学性能; 2、理解强度、刚度、弹性、塑性、硬度、冲击韧性、疲劳强度的概念; 3、理解σb、σs、σ0.2、HBS(W)、HRC、HRA、HV、δ、δ5、ψ、σ-1等 的含义。 (二)金属及合金的晶体结构与结晶 1、晶体与非晶体,及其特点;掌握晶格、晶胞、晶格常数、晶面和晶向。 2、掌握晶体的3种类型:体心、面心、密排六方;及其相关知识,如原子个 数、致密度、属于此类型的金属。 3、理解单晶体与多晶体;掌握晶体缺陷的3种类型:点缺陷、线缺陷、面缺陷;并能举例;位错(密度)。 4、金属结晶、过冷(度)现象、晶粒大小、金属结晶过程(形核与长大)、晶粒大小、细化晶粒的方法、铸锭组织(3个晶区)、同素异晶转变。 5、合金、组元、组织、相的基本概念、合金的相结构、固溶体(概念、种类(置换与间隙固溶体、有限与无限固溶体)、固溶强化)、金属化合物(概念、特点)、机械混合物。

6、冷、热变形加工的划分标志;实例。 (三)铁碳合金相图 1、纯铁的同素异构转变、二元合金相图基本知识、匀晶相图、共晶相图分析;合金的组成与组织。 2、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体、莱氏体;铁碳合金的基本相:铁素体、奥氏体、渗碳体。 3、铁碳合金相图(默画)分析:共晶反应、共析反应、相图中点、线的含义,特别是重要的点、线;铁碳合金的分类及室温组织。 4、典型合金结晶过程:共析钢、亚共析钢、过共析钢的结晶过程;共晶白口铁、亚共晶白口铁、过共晶白口铁的结晶过程。 5、铁碳合金成分、组织和性能之间的关系,相图的应用。 6、钢的表面淬火:基本原理、应用。 7、钢的化学热处理:概念、渗碳、氮化。 (五)钢 1、钢的分类(按用途、品质(S、P)、含碳量、合金元素分) 2、常用元素和杂质对钢性能的影响:Si、Mn、S、P非金属类杂物的影响。 机设09~1 徐健14 ~ 1 3、合金元素在钢中的作用:合金元素在钢中存在形式;合金元素对相图影响; 合金元素对钢热处理的影响。

工程材料及成型技术基础(吕广庶_张元明_著)_课后习题答案参考Word

工程材料及成型技术基础(吕广庶_张元明_著)_课后习题答案 参考Word 《工程材料》复习思考题参考答案 第一章金属的晶体结构与结晶 1.解释下列名词 点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。 答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。 线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。如位错。 面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。如晶界和亚晶界。 亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒, 称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。 刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。滑移部分与未滑移部分的交界线即为位错线。如果 相对滑移的结果上半部分多出一半原子面,多余半原子面的边 缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。 单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。 多晶体:由多种晶粒组成的晶体结构称为“多晶体”。 过冷度:实际结晶温度与理论结晶温度之差称为过冷度。 自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。

非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处 理。 变质剂:在浇注前所加入的难熔杂质称为变质剂。 2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构? 答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格; α-Fe、Cr、V属于体心立方晶格; γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格; Mg、Zn属于密排六方晶格; 3.配位数和致密度可以用来说明哪些问题? 答:用来说明晶体中原子排列的紧密程度。晶体中配位数和致密度越大,则晶体中原子排列越紧密。 4.晶面指数和晶向指数有什么不同? uvw;答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[] hkl 晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为() 。 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响? 答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。 6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?

工程材料及成形技术基础课后习题参考答案

工程材料及成形技术根底课后习题参考答案第一章金属的晶体构造与结晶 1.解释以下名词 点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。 答:点缺陷:原子排列不规那么的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。 线缺陷:原子排列的不规那么区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。如位错。 面缺陷:原子排列不规那么的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。如晶界和亚晶界。 亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。 刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的部分滑移而造成。滑移部分与未滑移部分的交界限即为位错线。如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好似插入晶体中的一把刀的刃口,故称“刃型位错”。 单晶体:如果一块晶体,其内部的晶格位向完全一致,那么称这块晶体为单晶体。 多晶体:由多种晶粒组成的晶体构造称为“多晶体”。 过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规那么排列的结晶核心。 非自发形核:是液态金属依附在一些未溶颗粒外表所形成的晶核。 变质处理:在液态金属结晶前,特意参加某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。 变质剂:在浇注前所参加的难熔杂质称为变质剂。 2.常见的金属晶体构造有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、 Pb 、 Cr 、 V 、Mg、Zn 各属何种晶体构造? 答:常见金属晶体构造:体心立方晶格、面心立方晶格、密排六方晶格; α-Fe、Cr、V属于体心立方晶格; γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格; Mg、Zn属于密排六方晶格; 3.配位数和致密度可以用来说明哪些问题? 答:用来说明晶体中原子排列的严密程度。晶体中配位数和致密度越大,那么晶体中原子排列越严密。 4.晶面指数和晶向指数有什么不同? 答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为uvw;晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为hkl。 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?

机械工程材料及成型技术基础

机械工程材料及成型技术基础 第一篇:机械工程材料及成型技术基础 《机械工程材料及成型技术基础》 班级:机自144 姓名:董 浩学号:201406024407 金属材料在机械行业中的应用 一、金属材料的特性 1、机械性能 1.1强度 这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂。 1.2塑性 金属材料在外力作用下产生永久变形而不破坏的最大能力称为塑性,通常以拉伸试验时的试样标距长度延伸率δ(%)和试样断面收缩率ψ(%)表示。 1.3硬度 金属材料抵抗其他更硬物体压入表面的能力成为硬度,或者说是材料对局部塑性变形的抵抗力。根据硬度的测定方法,主要可以分为:布氏硬度和洛氏硬度。 1.4韧性 金属材料在冲击载荷作用下抵抗破坏的能力成为韧性。 2、化学性能 金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。

在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。 3、物理性能 3.1密度 ρ=P/V 单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。3.2熔点金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。3.3热膨胀性 随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。 在实际应用中还要考虑比容材料受温度等外界影响时,单位重量的(材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。 3.4磁性 能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。3.5电学性能 主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。 4、工艺性能 4.1切削加工性能: 反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。 4.2可锻性: 反映金属材料在压力加工过程中成型的难易程度,例如将材料加

工程材料及成形技术基础复习重点完整版

一、二元相图的建立 合金的结晶过程比纯金属复杂,常用相图进行分析,相图是用来表达合金系中各金在缓冷条件下结晶过程的简明图解,又称状态图或平衡图。 合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金。 组元是指组成合金的最简朴、最基本、可以独立存在的物质。 多数情况下组元是指组成合金的元素。但对于既不发生分解、又不发生任何反映的合物也可看作组元, 如Fe-C合金中的Fe3C。 相图由两条线构成,上面是液相线,下面是固相线。相图被两条线分为三个相区,液相线以上为液相区L ,固相线以下为α固溶体区,两条线之间为两相共存的两相区(L+ α)。

(3) 枝晶偏析 合金的结晶只有在缓慢冷却条件下才干得到成分均匀的固溶体。但实际冷速较快,结晶时固相中的原子来不及扩散,使先结晶出的枝晶轴具有较多的高熔点元素(如Cu-Ni合金中的Ni), 后结晶的枝晶间具有较多的低熔点元素,如Cu-Ni合金中的Cu)。

在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析。与冷速有关并且与液固相线的间距有关。冷速越大,液固相线间距越大,枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能。 生产上常将铸件加热到固相线以下100-200℃长时间保温,以使原子充足扩散、成分均匀,消除枝晶偏析,这种热解决工艺称作扩散退火。 2、二元共晶相图 当两组元在液态下完全互溶,在固态下有限互溶,并发生共晶反映时所构成的相图称作共晶相图。以Pb-Sn 相图为例进行分析。

(1) 相图分析 ①相:相图中有L、α、β三种相,α是溶质Sn在Pb中的固溶体,β是溶质Pb在Sn 中的固溶体。 ②相区:相图中有三个单相区:L、α、β;三个两相区:L+α、L+β、α+ β。

工程材料及成形技术基础

工程材料及成形技术基础 工程材料及成形技术作业题库 一. 名词解释 1.间隙固溶体:溶质原子分布于溶剂的晶格间隙中所形成的固溶体。 2.过冷度:实际结晶温度Tn与理论结晶温度下Tm的差值称为过冷度 3.再结晶:金属发生重新形核和长大而不改变其晶格类型的结晶过程。 4.同素异构性:同一金属在不同温度下具有不同晶格类型的现象。 5.晶体的各向异性:晶体由于其晶格的形状和晶格内分子间距的不同,使晶体在宏观上表现出在不同方向上各种属性的不同。 6.枝晶偏析:金属结晶后晶粒内部的成分不均匀现象。 7.本质晶粒度:指奥氏体晶粒的长大倾向。 8.淬透性:指钢淬火时获得马氏体的能力。 9.淬硬性:指钢淬火后所能达到的最高硬度。 10.临界冷却速度:钢淬火时获得完全马氏体的最低冷却速度。 11.热硬性:指金属材料在高温下保持高硬度的能力。 12.共晶转变:指具有一定成分的液态合金,在一定温度下,同时结晶出两种不同的固相的转变。 13.时效强化:固溶处理后铝合金的强度和硬度随时间变化而发生显著提高的现象。 14.固溶强化:因溶质原子溶入而使固溶体的强度和硬度升高的现象。 15.形变强化:着塑性变形程度的增加,金属的强度、硬度提高,而塑性、韧性下降的现象。 16.调质处理: 指淬火及高温回火的热处理工艺。 指淬火及高温回火的热处理工艺。 17.过冷奥氏体:将钢奥氏体化后冷却至A温度之下尚未分解的奥氏体。 1

18.变质处理:在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。 19.C曲线:过冷奥氏体的等温冷却转变曲线。 20.孕育处理:在浇注前加入孕育剂,促进石墨化,减少白口倾向,使石墨片细化并均匀分布,改善组织和性能的方法。 21.孕育铸铁:经过孕育处理后的灰铸铁。 22.冒口:作为一种补给器,向金属最后凝固部分提供金属液… 23.熔模铸造:熔模铸造又称"失蜡铸造",通常是在蜡模表面涂上数层耐火材料,待其硬化干燥后,将其中的蜡模熔去而制成型壳,再经过焙烧,然后进行浇注,而获得铸件的一种方法,由于获得的铸件具有较高的尺寸精度和表面光洁度,故又称"熔模精密铸造"。 24.锻造比:锻造前的原材料(或预制坯料)的截面积与锻造后的成品截面积的比叫锻造比。 25.拉深系数:拉深系数是本工序圆筒形拉深件直径与前工序拉深件直径的比值。对于第一道拉深,拉深系数是拉深件直径与展开直径的比值。 26.熔化焊:利用局部加热手段,将工件的焊接处加热到熔化状态,形成熔池,人后冷却结晶,形成焊缝的焊接方法。 27.压力焊:在焊接过程中对工件加压形成焊接的方法。 28.钎焊:利用熔点比母材低的金属填充材料熔化以后,填充接头间隙并与固态的母材相互扩散实现连接的焊接方法。 二. 判断正误并加以改正 1.细化晶粒虽能提高金属的强度,但增大了金属的脆性. ( ? ) 改正:细化晶粒不但能提高金属的强度,也降低了金属的脆性。 2.结构钢的淬透性,随钢中碳含量的增大而增大. ( ? ) 改正:结构钢的淬硬性,随钢中碳含量的增大而增大。 3. 单晶体必有各向异性. ( ? )

工程材料与成形技术基础课程

工程材料及成形技术基础课程-----------------------作者:

-----------------------日期:

课程名称:工程材料及成形技术基础 总学时: 64/48学时 (理论学时56/40) 适用专业:机械设计制造及其自动化、机械电子工程/汽车服务工程 一、课程的性质与任务 《工程材料及成型技术基础》是研究机械零件的材料、性能及成形方法的综合性课程,是高等工科师范院校机械工程专业必修的专业基础课,其内容包括工程材料和成形技术基础两部分。 本课程是在修完高等数学、大学物理(含实验)和机械制图等课程的基础上开设的。其任务是使学生掌握工程材料及成形技术的基本知识,为后继学习机械设计、模具制造工艺、先进制造技术和毕业设计等课程,培养专业核心能力;为今后从事职业学校机械类专业相关课程的教学,奠定必要的专业基础。 本课程教学开设了实验教学。通过实验教学,在巩固和验证课程的基本理论知识的同时,拓展学生的创新思维,着重培养学生实践动手能力和创新能力。 二、课程教学基本要求 1、获得有关材料学的基本理论与工程材料的一般知识,掌握常用工程材料的成分、热加工工艺与组织、性能及应用之间的相互关系,熟悉常用工程材料的种类、牌号与特点,使学生具备合理选用工程材料、热处理方法、妥善安排热处理工艺路线的基本能力。 2、初步掌握工程材料主要成形方法的基本原理与工艺特点,获得具有初步选择常用工程材料、成形方法的能力和进行工艺分析的能力。 3、具有综合运用工艺知识,初步分析零件结构工艺性的能力。 4、初步了解新材料、新技术、新工艺的特点和应用。 四、本课程的教学内容 绪论 一、材料科学的发展与地位:材料科学的发展通常是和人类文明联系在一起的。 古代文明:人类的发展史上,最先使用的工具是石器;新石器时代(公元前6000年~公元前5000年)烧制成陶器;东汉时期发明了瓷器;到了西汉时期, 炼铁技术又有了很大的提高,采用煤作为炼铁的燃料,这要比欧洲早1700多年。在河南巩县汉代冶铁遗址中,发

工程材料及成型技术基础课后习题答案

《工程材料》复习思考题参考答案 第一章金属的晶体结构与结晶 1.解释下列名词 点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。 答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。 线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。如位错。 面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。如晶界和亚晶界。 亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒, 称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。 刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。滑移部分与未滑移部分的交界线即为位错线。如果 相对滑移的结果上半部分多出一半原子面,多余半原子面的边 缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。 单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。

多晶体:由多种晶粒组成的晶体结构称为“多晶体”。 过冷度:实际结晶温度与理论结晶温度之差称为过冷度。 自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。 非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增 加,从而提高了形核率,细化晶粒,这种处理方法即为变质处 理。 变质剂:在浇注前所加入的难熔杂质称为变质剂。 2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构? 答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格; α-Fe、Cr、V属于体心立方晶格; γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格; Mg、Zn属于密排六方晶格; 3.配位数和致密度可以用来说明哪些问题? 答:用来说明晶体中原子排列的紧密程度。晶体中配位数和致密度越大,则晶体中原子排列越紧密。 4.晶面指数和晶向指数有什么不同? uvw;答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[] hkl。 晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为() 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?

相关主题
文本预览
相关文档 最新文档