当前位置:文档之家› 空气流量计检测

空气流量计检测

空气流量计检测
空气流量计检测

空气流量计检测

空气流量计在电喷轿车上的重要作用,它是喷油控制的基本信号,也是决定信号。此信号的好坏将影响混合气的配比,也直接影响发动机的动力性、稳定性及污染性。当空气流量计信号发生故障时,电控单元将故障码存贮的同时,也将进气量的测量权交于节气门位置信号替代,这是电控单元的一大功能,即失效保护功能。可想而知,好的空气流量计信号与节气门位置信号有着一定的差距。前者精度高,发动机各工况均好,后者精度差,相比之下,发动机各工况的控制稍有差别。当空气流量计信号出现偏差(不准确)时,电控单元将按错误信号进行控制喷油,使混合气浓了或是稀了,造成发动机转速不稳及动力不足。此种故障在我国国产车型上经常发生,特别是大众车系,更换空气流量计的工作是普遍现象。由于热膜式空气流量计不设自洁功能,常常被脏物影响,同样造成信号不准确。信号不准确的传感器比损坏的传感器危害更大。为了准确有效的检测空气流量计是好是坏还是信号偏差,我们通过理论的探讨及实际经验的积累而总结出一套行而有效的检查方法,供大家参考。

如:一辆大众车系的轿车怠速不稳,加速不良,怀疑热膜式空气流量计信号有问题。可以在发动机运转的状况下拔下空气流量计的插头,观察发动机的变化情况,将会出现以下三种情况。

(1)故障消失。说明此空气流量计信号有偏差,并没有损坏,电控单元一直按有偏差的错误信号进行控制喷油。由于混合比失调。发动机燃烧不正常,将会出现发动机转速不稳或动力不良现象。当拔下空气流量计插头时,电控单元检测不到进气信号,便会立即进入失效保护功能,以节气门位置传感器信号替代空气流量计信号,使发动机继续以替代值进行工作。拔下流量计插头,故障消失,正是说明了拔插头前信号不正确,拔插头后信号正确,故障消失。

一般情况下,故障现象可以表明混合气的浓度。为了确认,我们用检测的方法,以数据说话。在插头的信号端测量动态信号电压,怠速工况下,标准电压为0.8~1.4V;加速到全负荷时,电压信号可接近4V。此车实测值.怠速时为0.3V,加速到满负荷时只有3V。由此可以确认,空气流量计有问题,信号电压整体偏低,故障原因有两种能:①零件质量问题,应更换。②脏污问题,只要用清洗剂清洗即可恢复。

(2)故障依旧。说明此空气流量计早已损坏或线路不良,造成电控单元根本没收到信号或收到的是超值信号,电控单元确认空气流量计信号不良,进入到失效保护功能,同时将故障码存入存贮器,故障指示灯闪烁(指装有指示灯的发动机)。此时拔下空气流量计插头与不拔插头结果是一样的,故障现象不会发生变化。那么当前的故障不应是流量计信号不良所影响的,而是由其他原因所致。当真正的原因找到后,务必更换空气流量计。

(3)故障现象稍有变化。说明此空气流量计是好的。拔下空气流量计插头前,电控单元根据空气流量计信号进行控制,喷油量准确,发动机各工况均好;当拔下空气流量计插头时,电控单元根据节气门位置传感器信号进行控制,喷油量有差异(可从数据流中读出这微小的变化值),发动机工况相对稍差。

从以上的一个动作、三种现象检查故障,看似经验,实际是理论分析的结果。如果不了解电控单元的失效保护功能(替换功能),就不可能得到如此有效的经验。

下面以大众车系为例,以数据流分析的形式来诊断热膜空气流量计的故障,仅供参考。

例一、一辆时代超人轿车,因怠速不稳,加速无力,急加速回火故障来厂检修。故障诊断,无故障码,着车后,进入读取数据流功能。怠速:转速在750~850r/min之间波动,节气门开度4°,进气量1.5g/s,喷油脉宽1.6ms,氧传感器信号0.2V不变。

从以上5个数据中可以看出,只有节气门位置信号是正确的,其他信号均偏离了标准范围,进气量明显偏低(标准值为2~4g/s)。大家都知道,大众车系的怠速控制是直动式的,怠速下的进气量由节气门怠速电机来控制,而进气量由空气流量计来测量,它们是一个统一的逻辑关系。也就是说,节气门的开度决定了进气量的大小。正常情况下,节气门的每个开度均对应着一进气量。为什么此车进气量在节气门正常开度下会偏低呢?可能有三个原因:①节气门信号不准确。②空气流量信号不准确。③有漏气的可能。再来分析喷油脉宽 1.6ms(标准值:2~2.5ms),明显偏小,但此时的喷油量与进气量相符,从而说明喷油量少与进气量信号有关。氧传感器信号0.2V,更加证实喷油少,导致混合气过稀。

通过数据流分析,确认空气流量计信号过低,其原因就在空气流量计可能是真空漏气,经用真空表测量歧管真空度为62kPa,正常,不存在漏气。于是用万用表仔细测量空气流量计信号引脚,怠速下为0.4V(标准0.8~1.4V),加速时最大值不到3V(标准3.5~4V)。因而可确认空气流量计有故障,拔下空气流量计插头时,故障明显转好。更换空气流量计后,故障排除。

例二、一辆捷达轿车,故障现象为耗油,冒黑烟,加速时较正常。

故障诊断:读取故障码,无故障码。读数据流,节气门4°(标准2°~4°),进气量5g/s(标准2~4g/s),喷油2.7ms(标准2~2.5ms),氧传感器信号0.8V(标准0.5V上下变化)。从以上数据流分析,冒黑烟,耗油是因为混合气过浓,喷油量过大,其根本原因为进气测量信号过大。再从节气门开度分析其值并不大,可以认为空气流量计信号大的原因:①有负荷信号。②空气流量计信号不准确。一般来讲,怠速控制中有两个控制内容:①稳速控制,即在电控单元的目标转速下进行稳定控制。②在稳速控制的基础上进行提速控制,即有负荷时(空调、转向、制动、挂挡、冷车等)自动提高转速以克服负荷所带来的影响。检查中未发现有负荷信号,且从怠速转速上也未看到提速的迹象,看来问题应在空气流量计的质量上。于是用万用表检测,发现怠速时空气流量计的信号高达2V左右,比正常值0.8~1.4V 高出了许多。再用拔下空气流量计插头的方法观察变化,果然好转,更换空气流量计,故障排除。再

次读取数据流时,显示为2.4g/s,再次测量其信号电压时为0.9V,数值一切正常。

例三、一辆帕萨特B5(1.8T),怠速不稳,加速不良,排气冒黑烟并有突突声。

调取故障码,读到两个故障码:①混合气自适应超限(下限)。②空气流量计故障。清除故障码后,再次启动发动机,故障依旧。

读数据流,进气量4g/s。节气门4°,氧传感器信号0.8BV,喷油脉宽1.9ms。

从以上数据分析,进气量、节气门开度及喷油脉宽均在标准范围内,然而氧传感器信号却显示浓,这与故障现象相符。为了进一步确认氧传感器信号的可信度,用急加速和急减速的方法来观察氧传感器

信号的变化。急加速时氧传感器信号同样为0.8V,?奔奔跛偈保 湫藕沤抵?0.1V,并保持了122s

时间后,又升至0.8V不再变化,经几次试验均是如此。有理由确认氧传感器信号可信,问题确实是混合气过浓造成发动机不稳,动力不足,冒黑烟。氧传感器信号能在急减速下显示0.1V,是因为从加速到减速时,发动机有一段断油过程,当减速将要进入怠速转速时(一般为1400r/min)将恢复供油,所以氧传感器信号为0.1V时正是断油时刻,混合气稀,恢复供油后立刻又显示浓的状态,氧传感器能反映这段过程,完全可确认其信号可信。那么过浓的原因是什么呢?从进气及喷油都正常上分析,原因在非电控方面,于是重点检测油压280kPa,油压正常。当随手关闭点火开关时,却发现了问题,油压表针在慢慢的下滑。正常的表针是不易下滑的,需要较长时间后会下滑50kPa左右,它提示喷油器有漏的可能。于是拆下4个喷油器进行清洗检测后,装复试车,故障消失,清码并重新调码时,又出现了空气流量计短路、断路故障。几次清码都清不掉,看来还有问题。读数据流,进气量为3~4g/s,加速时也随之增大,看不出空气流量计有什么问题。那为什么还有故障码呢?分析认为,显示的进气量有可能是节气门位置传感器信号提供的,当空气流量计信号有故障时,电控单元会以节气门信号代替。用万用表检测空气流量计信号0.1V,无论怠速、加速均不变化,检测插头的电源(5V、12V)正常,搭铁正常,决定更换空气流量计。客户说,此车已在别处修理厂更换过,也没修好。查阅资料发现了疑点,如图1所示,2号脚为5V。4号脚为12V。帕萨特B5轿车1.8L和1.8T车型的空气流量计一样,但引脚作用不一样。由于没有配件,只好将2号和4号线切断换位,再试车,故障码消失,故障也随之消失。在此请朋友们注意:一定要分清帕萨特B5轿车1.8L和1.8T车型的区别,以防陷入误区。

空气流量计的检测原理

空气流量计的检测原理 随着科学技术的发展,我们不断引进先进技术,空气流量计的测试精度高,可以输出线形信号,信号处理简单,被广泛的应用于汽车,燃气、煤气等领域。 空气流量计的检测原理,空气流量计在管道里设置柱状物之后形成两列涡旋,根据涡旋出现的频率就可以测量流量。因为涡旋成两列平行状,并且左右交替出现,与街道两旁的路灯类似,所以有涡街之称。空气流量计设有两个进气通道,主通道和旁通道,进气流量的检测部分就设在主通道上,设置旁通道的目的是为了能够调整主通道的流量,以便使主通道的检测特性呈理想状态。也就是说,对排气量不同的发动机来说,通过改变空气流量计通道截面大小的方法,就可以用一种规格的空气流量计来覆盖多种发动机。主通道上的三角柱和数个涡旋放大板构成卡曼涡旋发生器。在产生卡曼涡旋处的两侧,相对地设置了属于电子检测装置的超声波发送器和超声波接受器,也可以把这两个部件归入空气流量计,这两个电子传感器产生的电信号经空气流量计的控制电路整形、放大后成理想波形,再输入到微机中。为了利用超声波检查涡旋,在涡旋通道的内壁上都粘有吸音材料,目的是防止超声波出现不规则反射。 空气流量计的优缺点,为了克服活门式空气流量计的缺点,即在保证测量精度的前提下,扩展测量范围,并且取消滑动触点,有开发出小型轻巧的空气流量计,即空气流量计。卡曼涡旋是一种物理现象,涡旋的检测方法、电子控制电路与检测精度根本无关,空气的通路面

积与涡旋发生柱的尺寸变化决定检测精度。又因为这种传感器的输出的是电子信号(频率),所以向系统的控制电路输入信号时,可以省去AD转换器。因此,从本质来看,空气流量计是适用于微机处理的信号。 空气流量计的测试精度高,可以输出线形信号,信号处理简单,且经过长期使用,性能不会发生变化,因为是检测体积流量所以不需要对温度及大气压力进行修正。

菲舍波特电磁流量计零点校正方法

电磁流量计零点校正方法 一 、 各键的功能所述如下: C/CE C/CE 键用于在操作模式与菜单之间切换。 STEP STEP 键是两个箭头键中的一个。STEP 用于向前滚动 菜单。所有需要的参数都可访问。 DATA DATA 键是两个箭头键中的一个。DATA 用于向后滚动 菜单。所有需要的参数都可访问。 ENTER 功能可通过长按向上箭头键激活。 ENTER 用于开呈关闭程序保护。此外,ENTER 还可 用于访问更改参数的数值,接受新值或者新的选 项,ENTER 功能有效时间为10秒。如果在10秒内 未输入,旧的数值将重新显示在转换器上。 注意:电磁流量计在进行“零点校正”时,必须保证流量计所处管道中是充满所测介质,且管道中的介质处于静止状态。 二、操作步骤 长 按 ENTER

在显示状态下按“C”键→进入菜单→连续按“STEP”键翻页至→“prog protection on”→长按“DATA”键(当屏幕闪烁时松手)进入此项→并变为“prog protection off”→连续按“STEP”键翻页至“Low flow cut-off 1%(小流量切除)”→长按“DATA”键(当屏幕闪烁时松手)进入此项“Low flow cut-off 1%”改变为“Low flow cut-off 0%”→长按“DATA”键保存→连续按“STEP”键翻页至“System zero adj ****mV”并记录原始数值→长按“DATA”键进入→按“STEP”翻页至“Automatic”(自动校准)→长按“DATA”确认,自动校准开始(时间约为1分钟,校准完后仪表会自动记录下校准值)校准完成后→连续按“STEP”翻页至→“Low flow cut-off 0%”→长按“DATA”进入此项→把“Low flow cut-off 0%”改变为“Low flow cut-off 1%以上”(数值输入方法:“DATA”键为增加数值、“STEP”为移动位置)更改完成后→长按“DATA”确认→连续按“STEP”翻页至→“prog protection off”→更改为“prog protection on”即可→按“C”键直至返回到主测量界面。 三、电磁流量计密码输入 在显示状态下按“C”→进入菜单→连续按“STEP”翻页至→ “CODE NUMBER”→长按“DATA”(当屏幕闪烁时松手)进入此 项→输入密码“4000”(数值输入方法如下:连续按4次“DATA” 键,增加数值。然后按3次“STEP“移动光标即输入了4000) →长按“DATA”确认,输入密码成功,输入密码后,可更改电

空气流量计波形分析

空气流量计(MAF)按结构原理可分为翼板式、热丝式、卡门涡旋式及电压位计式等几种,按信号输出类型又分为数字式和模拟式两种。 1)翼板式空气流量计,参见图1。 BOSCH翼板式空气流量计主要有两种:一种是随着空气流量的增加输出信号的电压升高,另一种是当空气流量加大时输出信号电压降低,这两种类型属于模拟电压量输出。 翼板式空气流量计的核心是一个可变电阻(电位计),它与空气翼板同轴连接,当空气流动的翼板也随之开启,随着翼板的开启角度变化,可变电阻(电位计)也随之转动。 翼板式空气流量计是一个三线传感器,其中两条是参考电压的正负端,另一条是可变电阻器的滑动触点臂,它向电脑提供与翼板转动角度成正比的输出电压信号。急加速时,翼板在空气流动动压作用下,超过正常摆动角度的过量信号,这就为控制电脑提供混合气加浓的控制信号。 这是一个非常重要的传感器,因为控制电脑依据这个信号来计算发动机负荷、点火正时、排气再循环控制及发动机怠速控制和其他参数,不良的空气流量计会造成喘振和怠速不良,以及发动机性能和排放问题。 试验方法一: 关闭所有附属电气设备,起动发动机,并使其怠速运转,当怠速稳定后,检查怠速时输出信号电压(图1中左侧波形)。做加速和减速试验,应有类似图中的波形出现。 ·将发动机转速从怠速加至油门全开,(加速时不宜太急)油门全开后持续2秒钟,但不要使发动机超速运转; ·再将发动机降至怠速运转,并保持2秒钟; ·再从怠速急加速发动机至油门全开,然后再收油门使发动机回至怠速; ·定住波形去察看机器。 波形结果(方法一) 测量出的电压值波形可以参照维修资料进行对比分析,正常翼板式空气流量计怠速时输出电压约为1V,油门全开的应超过4V,全减速(急抬油门)的输出电压并不是非常快地从全加速电压回到怠速电压,通常(除TOYOTA汽车外)翼板

空气流量计故障分析检测

空气流量计故障分析检测 空气流量计是用来计量发动机进气量的传感器,在汽车电控燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。空气流量计的发展大体上经历了4代:L 型、D型、热线式、热模式。发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要,下面通过两个例子加以说明。 一、故障一 凌志LS400轿车高速闯车。发动机在原地加速时运转正常。当汽车行驶速度在120~14 0公里左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机 间歇断火。故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸气回收系统、进气控制系统、氧传感器闭环控制系统等在高速时工作不正常造成的。检修:读取故障代码,无码检查点火系统,将示波器接到一个点火线圈的中央高压线,试车、闯车时点火高压为8KV~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都止常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车该气缸的喷油时间正常,为3.5ms左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。接上电脑检测故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h左右,是容易出现闯车的时候。断开氧传感器接线, 强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发

空气流量计的检测方法

空气流量计的检测方法 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气流量计的检测方法空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU根据空气计量传感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传感器——空气流量计。②间接测量方法传感器——进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1)机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2)卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3)热线式空气流量计。热线式空气流量计按其热线形又分为3种。 ①热丝式——将加热丝均匀分布在计量通道内。热丝式空气流量计(图1)精度高、分布均匀,可精确计量空气量,但由于热丝很细~且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。

②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导较差,影响计量精度。 ③热阻式——将加热丝绕成线圈形式固定在石英玻璃管内或暴露在空气通道内。由于热阻式空气流量计热丝被固定,故热线寿命延长,但由于热阻面积很小,只能部分采空气流量,要求空气通道内空气流速均匀,所以常在进气侧安装梳流格栅。 由于热膜式和热阻式空气流量计均是部分采集空气计量空气量,故精度较热丝式较差。另外,热丝式、热膜式和热阻式空气流量计还都易受空气中水分及灰尘的污染,所以在控制电路上都做了专门的设计,每次打开点火开关或关闭点火开关后,流量计中的热丝会由电路提供瞬时大电流加热,使热丝瞬间产生高温(700-1 000℃),烧掉污染在热丝、热膜或热阻表面的杂质,保持空气流量计量精度。 轿车使用的空气流量计,属“L”型热膜式空气流量计,安装在空气滤清器壳体与进气软管之间。其核心部件是流量传感元件和热电阻(均为铂膜式电阻)组合在一起构成热膜电阻。在传感器内部的进气通道上设有一个矩形护套,相当于取样管,热膜电阻设在护套中。为了防止污物沉积到热膜电阻上而影响测量精度,在护套的空气入口一侧设有空气过滤层,用以过滤空气中的污物。为了防止进气温度变化使测量精度受到影响,在护套内还设有一个铂膜式温度补偿电阻,温补电阻设置在热膜电阻前面靠近空气入口一侧。温度补偿电阻和热膜电阻与传感器内部控制电路连接,

电磁流量计使用方法

电磁流量计的应用 作者:任溢 摘要:本文简要介绍了电磁流量计的测量原理、结构与分类、特点,较具体地分析了其选型及安装注意事项。 关键字:电磁流量计测量范围测量介质励磁系统衬里材料接地 电磁流量计是利用电磁感应原理造成的流量测量仪表,可用来测量导电液体体积流量(流速)。变送器几乎没有压力损失,内部无活动部件,用涂层或衬里易解决腐蚀性介质流量的测量。检测过程中不受被测量介质的温度、压力、密度、粘度及流动状态等变化的影响。没有测量滞后的现象。 1 电磁流量计的工作原理 电磁流量计是依据法拉第电磁感应定律来测量管内流体流量的测量装置。当流体在管道中流动时,相当于一根具有一定电导率的导体的切割磁力线,于是液体柱两端会产生感应电动势。它的大小与流量成正比,并通过电极将此信号引至电路转换器。 E=4BQ/πD式中:E――感应电动势;Q――流量;B――磁感应强度;D――流量计公称通径。由上式可知,管道直径D和磁感应强度B不变时,感应电势E和体积流量Q之间成正比。 sinωt,得 但是上式是在均匀直流磁场条件下导出的,由于直流磁场易使管道中的导电介质发生极化,会影响测量精度,因此工业上常采用交流磁场,B=B m sinωt Q=πDE/4B m 式中:ω――交变磁场的角频率; B ――交变磁场磁感应强度最大值。 m 由上式可知,感应电势E与被测量介质的体积流量Q成正比。但变送器输出的E是一个微弱的交流信号,其中包含有各种干扰成分,而且信号内阻变化高达几万欧姆,因此,要求转换器是一个高输入阻抗,且能抑制各种干扰成分的交流毫伏转换器,将感应电动势转换成4~20mADC的统一信号,以供显示、调节和控制,也可送到计算机进行处理。 2 电磁流量计的结构 电磁流量计一般由四部分组成:测量管、励磁系统、检测部分、变送部分。 考虑到防腐蚀的要求,测量管内部一般都加衬里材料。电磁流量计的励磁方式主要有高频励磁、低频励磁、脉冲DC励磁。由于工业的不断发展,有的厂家已经一种新的励磁方式—双频励磁,它克服了高频、低频励磁的缺点,具有“不受流量噪声影响”,“响应速度快”,“零点稳定性高”,“精度高”等优点。 检测部分主要包括电极和干扰调整部分,由于电极要和被测介质直接接触,要具有较强的抗腐蚀性。 变送器的主要作用是将传感器信号转换成与介质体积流量成正比的标准信号输出(0~20mA、4~20mA、0~10KHz)。并且要有较高的稳定性、精度和较强的抗干扰能力。 3 电磁流量计的主要性能参数和特点

空气流量计 空气流量计的作用原理简述

空气流量计空气流量计的作用原理简述 空气流量计的作用原理简述 在探头后部孕育发生一个低压散布区,颠末传感器在流体中所制作生的差压发展流量丈量。精度高,并压迫由管线振动引起的侵害;安装用度低,仪表参数能且则稳定。输出一个分稳定、无脉动的差压信号。压力略高于管道静压,流体在管道静压感召下,当流体流过探头时,可以或是直接丈量出饱与蒸汽的温度并计算出压力传感手艺不但是仪器仪表实现检测的基础底细高压分布区的压力略高于管道的静压。Take the children of ultra-low power single-chip microputer technology, you can directly measure the temperature of the saturated steam and care about the pressure, as the “equipment” of scientific instruments are often carried out with the renovation of the birth of an important ponent of science and technology renovation、 The existence of rectification, travel velocity and velocity distribution of multiple probation tering, and the input pulse signal or current signal and puter working、流体流过探头时速度减速,并被动实时跟踪补偿和缩短因子修改;蒸汽流量计输出的脉冲频次信号不受流体物性和组分更换的影响,采纳双检测技术可无效地前进检测信号强度,管道永世压损低绕道而行,探头高压

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

科隆电磁流量计检测过程报告

电磁流量计首先要满足的要求:①满管②流态稳定原理:法拉第电磁感应定律 传感器的检查方法 1、励磁线圈(7-8)阻值30-170欧姆。少于此范围,接线错误,高于此范围接线断路。 2、励磁线圈(7、8)对地1的绝缘电阻>20M 欧姆,用兆欧表。 3、1-2和1-3间电阻的阻值1K-1M欧姆。两阻值应当大致相等,偏差10%。少于此范围,排出管内流体再次测量,如果仍然很低,电极线路短路。高于此范围,电极接线断路或电极污损。如果极大差异,电极接线断路或电极污损。 工具:万用表、兆欧表 注意点: 1、记录下接线的位置 7 紫色 8 绿色 9 黄色 1 黑色 2 白色 3 红色 2、测量阻值前万用表、兆欧表调零 3、有时需线1、2、3搭一起放电 4、拆卸信号输出线时,防止接线头搭在一起,可能烧坏PLC 5、打开箱、壳体时要断电 转换器的检查方法 X=Q100%*7074/GK*DN2,通过比例算出理论值,根据档位测出实际值,算出偏差, 误差在1%以内为正常。(GS8A) 工具:GS8A\GS6A模拟信号发生器 注意点: 1、记录下转换器上仪表的信息: 仪表的编号 瞬时流量 累计流量 2、在C菜单的1.1.X中查看: 励磁频率 GK GKL 3、C菜单的5.3.3中查看: 量程

4、在打档位前GS8A/GS6A调零。 实例: 1:温岭市供水有限公司。将励磁频率由1/6改为1/18后,瞬时流量由开始300m3/h 左右,降到275m3/h左右,原流量计瞬时流量在275m3/h左右时,存在25m3/h 左右的偏差,现已正常。 2:温州绿地污水处理有限公司。正负波动4000~5000m3/h。对仪表传感器进行检查,发现流量波动是由信号干扰引起,没充分接地,将转换器外壳接地后,波动消失。

电磁流量计传感器的检查方法

电磁流量计传感器的检查方法流量系统0003.10 电磁流量计传感器的检查方法 1 适用范围 该方法适用于上海威尔泰工业自动化股份有限公司生产的分体型或一体型电磁流量计 传感器的检查.该检查仅针对传感器正常工作的物理参数,不涉及安装条件,流体条件等使 用条件. 2 术语和定义 2.1 励磁线圈 传感器中用于产生励磁工作磁场的部件. 2.2 信号电极 传感器中用于感应流量信号的部件. 3 测试设备 万用表(数字式) 兆欧表(500V) 4 测试条件 温度:室温 相对湿度:45%~85% 5 技术要求 5.1 目测传感器外观良好,无断裂,碰撞等明显机械损伤. 5.2 励磁线圈(M1,M2)阻值大于5.5欧姆,小于110欧姆. 5.3 励磁线圈(M1,M2)对地(3)的绝缘电阻>20M欧姆. 5.3 流体充满管路时,两信号电极(1,2)对地(3)电阻阻值分别大于500欧姆,小于2M 欧姆,且两值之比不超过10;传感器拆离管道清洁干燥后该值大于20M欧姆. 6 测量及记录 6.1 依据用户现场情况,选择合适的测试点进行测量. 6.2 符合要求可不必记录,对不符合要求的项目记录测量项目及测量值. 7 测量注意事项 7.1 技术要求的阻值为通常条件下值,边界条件时应考虑温度补偿. 7.2 测量时接线盒处保持干燥,同时考虑空气湿度对测量的影响. 7.3 对运行无明显异常的在用仪表或已作灌封处理的,建议从转换器断开处仅测量信号电极 的对地电阻. 8处置 8.1 符合技术要求的传感器可以正常使用. 8.2 超出技术要求时,应充分考虑第7条的测量注意事项,综合现场因素采取现场修复,现 场补充等措施,如电极清洗,可靠接地等,尽量避免更换传感器给用户造成的再次施工的不

空气流量计检测

空气流量计在电喷轿车上的重要作用,它是喷油控制的基本信号,也是决定信号。此信号的好坏将影响混合气的配比,也直接影响发动机的动力性、稳定性及污染性。当空气流量计信号发生故障时,电控单元将故障码存贮的同时,也将进气量的测量权交于节气门位置信号替代,这是电控单元的一大功能,即失效保护功能。可想而知,好的空气流量计信号与节气门位置信号有着一定的差距。前者精度高,发动机各工况均好,后者精度差,相比之下,发动机各工况的控制稍有差别。当空气流量计信号出现偏差(不准确)时,电控单元将按错误信号进行控制喷油,使混合气浓了或是稀了,造成发动机转速不稳及动力不足。此种故障在我国国产车型上经常发生,特别是大众车系,更换空气流量计的工作是普遍现象。由于热膜式空气流量计不设自洁功能,常常被脏物影响,同样造成信号不准确。信号不准确的传感器比损坏的传感器危害更大。为了准确有效的检测空气流量计是好是坏还是信号偏差,我们通过理论的探讨及实际经验的积累而总结出一套行而有效的检查方法,供大家参考。 如:一辆大众车系的轿车怠速不稳,加速不良,怀疑热膜式空气流量计信号有问题。可以在发动机运转的状况下拔下空气流量计的插头,观察发动机的变化情况,将会出现以下三种情况。 (1)故障消失。说明此空气流量计信号有偏差,并没有损坏,电控单元一直按有偏差的错误信号进行控制喷油。由于混合比失调。发动机燃烧不正常,将会出现发动机转速不稳或动力不良现象。当拔下空气流量计插头时,电控单元检测不到进气信号,便会立即进入失效保护功能,以节气门位置传感器信号替代空气流量计信号,使发动机继续以替代值进行工作。拔下流量计插头,故障消失,正是说明了拔插头前信号不正确,拔插头后信号正确,故障消失。 一般情况下,故障现象可以表明混合气的浓度。为了确认,我们用检测的方法,以数据说话。在插头的信号端测量动态信号电压,怠速工况下,标准电压为0.8~1.4V;加速到全负荷时,电压信号可接近4V。此车实测值.怠速时为0.3V,加速到满负荷时只有3V。由此可以确认,空气流量计有问题,信号电压整体偏低,故障原因有两种能:①零件质量问题,应更换。②脏污问题,只要用清洗剂清洗即可恢复。 (2)故障依旧。说明此空气流量计早已损坏或线路不良,造成电控单元根本没收到信号或收到的是超值信号,电控单元确认空气流量计信号不良,进入到失效保护功能,同时将故障码存入存贮器,故障指示灯闪烁(指装有指示灯的发动机)。此时拔下空气流量计插头与不拔插头结果是一样的,故障现象不会发生变化。那么当前的故障不应是流量计信号不良所影响的,而是由其他原因所致。当真正的原因找到后,务必更换空气流量计。 (3)故障现象稍有变化。说明此空气流量计是好的。拔下空气流量计插头前,电控单元根据空气流量计信号进行控制,喷油量准确,发动机各工况均好;当拔下空气流量计插头时,电控单元根据节气门位置传感器信号进行控制,喷油量有差异(可从数据流中读出这微小的变化值),发动机工况相对稍差。

说明热线式空气流量计的组成与工作原理

一、说明热线式空气流量计的组成与工作原理。 答:热线式空气流量计主要由取样管、铂丝线、温度补偿电阻、控制电路接线插头和防护网等组成。 工作原理:在热线式空气流量计电路中,热线是惠斯登桥式电路的一部份,功率放大器控制供给电桥四个臂的电流,使电桥保持平衡,当空气通过流量计时进入小管的空气流流过热丝周围,使其冷却、温度下降、电阻值也随之减小,热丝电阻的减速小使电流失去平衡,此时放大器会自动增加供给丝电流,使热丝恢复原来的温度和电阻值直使电桥恢复平衡,放大器所增加的电流大小取决于热丝被冷却的程度,即取决于通过流量计空气流速,由于电流增加精确电阻的电压降也增加,这就将电流的变化,转换成电压变化,电控单元根据电压变化计算出进入气缸的空气量。 二、计算机控制点火系与普通电子点系的主要区别是什么? 答:电子点系统利用晶体二极管的开关代替断电器的触点控制点线圈初级电流(电路)的通断和点火系的工作,其点火信号(点火时刻的调节)仍由机械和真空装置的,而计算机控制点火系统由于废真空离心提前装置,由微机控制点火提前角从而使发动机在各种工况下都可最佳地调整点火时刻而不影响其它范围的点火调整,再则计算机点火系统可将点火提前到发动机刚好不致于产生爆震的范围。 三、汽车修竣出厂的规定有哪些? 答:1、送修汽车和总成修竣检验合格后,承修单位应签发出厂合格证,并将技术档案、维修技术资料和合格证移交托修方。2、汽车或总成修竣出厂时,不论送修时装备(附件)状况如何,均应按照有关规定配备齐全,发动机应安装限速装置。3、接车人员应根据合同规定,就汽车或总成的技术状况如何和情况等进行验收,如发现有不符合竣工要求的情况,承修单位应立即查明,及时处理。4、送修单位必须严格执行车辆磨合期的规定,在保修期内因维修质量发生故障或提前损坏时,承修方应及时排除,免费维修。 四、说明OBD-II型解码器的特点。 答:1、制定OBD-II标准的目的很大程度上是出于环境保护的考虑2、OBD-II型具有广泛的监测功能,特别是能监测汽车制动系统运行工况 3、具有统一的诊断座和统一的故障代码,即诊断座、数据连接器统一为双排共16针; 4、具有行车记录技术数据变化的功能; 5、具有重新显现记忆故障的功能 6、具有用仪器直接读取和清除故障码的功能。 五、爆震传感器的作用与工作原理。 答:作用:是用来检测发动机的爆震情况,并将信号传给ECU,ECU根据爆震信号对点火提前角进行修正,从而使点火提前角保持最佳。 工作原理:当发动机产生爆震时,随着发动机的振动波及压电元件使变形而产生电压信号,其电压信号的大小与发动机的振动频率和振动强度有关,当ECU收到此信号时即对点火提前角进行修正。 六、电控燃油喷射系统的组成与工作原理 答:1、组成:根据EFI系统的控制原理电控燃油喷射系统由电控单元、传感器和执行器三大部份组成;按部件功能电控燃料喷射系统由空气供给系统、燃油供给系统和电子控制系统三个子系统组成。2、工作原理:在电控燃油喷射系统ECU的存储器(ROM)中储存了各种燃油喷射控制用的控制程序,根据发动机转速和空气量(或进气压力或气门开度)求得基本喷射量及各种控制修正计算用的数据,在进行燃油喷射时,ECU接到传感器输入的空气流量信号和发动机的转速信号计算出基本喷油量(对应的喷油时间)再根据其它各种信号输入装置输入的冷却液温度、进气温度、节气门位置、废气中氧含量等与发动机有关的信号,对基本喷油量进行修正,从而确定出与各种工况相适应的最佳喷油量,并输入出一个与该最佳喷油量相对应的有一定脉冲宽度的喷油控制信号,该信号经驱动电路放大控制电磁式喷油器的时间,将适量的燃油喷入进气管内或气缸内。 七、汽车修理的作业方式 答:汽车修理的作业方式可分:就车修理法、总成互换修理法和混装修理法三种。 1、就车修理法其优点是保持原车的特点,可满足客户的要求,不需要备用总成,对一些中小企业比较适合。缺点是生产周期长,不便于组织大规模的流水生产、经济效益低。 2、总成互换修理法其优点是大大缩短了汽车的停厂时间,便地采用流水作业,从而可以提高工效,降低成本,保证质量。对生产规模较大,承修车型比较单一,工艺装备完善,具有周转总成的大厂,宜采用此法。它的缺点是要具备有质量符合要求的总成,质量不符合要求时,用户意见较大。 3、混装修理法是指在进行汽车修理作业时,根据实际情况,既不采用就车修理也不采用总成互换修理,而是把二种方法结合起来的综合修理法。它的优点是“扬长避短”,不但可以缩短停厂车日,提高工效,又可满足用户的要求。 八、汽车底盘二级维护之前主要检测哪几个项目? 答:对汽车底盘不解体主要检测项目有:1、前轮定位参数的检测。2、车身、车架和悬挂技术状况完好的检测。3、轮胎表面状况的检测。4、车轮平衡的检测。5、转向轮横向侧滑量的检测。6、转向盘自由行程的检测。7、制动性能的检测。 8、轴距的检测。9、底盘密封状况的检测。 九、简答光电式转速与曲轴位置传感器的组成与工作原理。 答:组成:光电耦合件(发光二极管、光敏二极管)和波形电路的光电传感器和转盘组成。 工作原理:二只发光二极管分别正对着二只光电晶体管,发光二极管以光电晶体管为照射目标。信号盘位于发光二极管

如何验证电磁流量计

如何验证电磁流量计 由于电磁流量计必须是在线连续使用,几乎不可能拆除再运输到国家计量检测中心进行检定。因此,对于现场使用的大口径电磁流量计的精度验证是很有必要的。电磁流量计的精度验证对于电磁流量计的管理,保证其精确度和可靠性,积累原始的比对数据,做日后的验证和核对也是非常有用的。电磁流量计的精度验证可利用清水池容积和电磁流量计校验设备。对电磁流量计精度进行全面验证,以确定电磁流量计在水厂应用过程中的精度,确保计量数据真实可信或是否更换电磁流量计。 1.采用目测法和仪表法,用GS8 检查传感器的励磁线圈阻值、信号线之间的绝缘电阻、接地电阻等项目是否符合出厂前的标准,电磁流量计转换器零点、输出电流等是否满足精度要求。具体检测方法为:(1)测量励磁线圈阻值判断励磁线圈是否有匝间短路现象(测线号“7”与“8”之间的电阻值),电阻值应在30 欧~170 欧之间。若电阻与出厂记录相同,则认为线圈良好,进而间接评估电磁流量计传感器的磁场强度未发生变化。(2)测量励磁线圈对地(测线号“1”和“7”或“8”)绝缘电阻来判断传感器是否受潮,电阻 值应大于20 兆欧。(3)测量电极与液体接触电阻值(测线号“1”和“2”及“1”和“3”),间接评估电极、衬里层表面大体状况。如电极表面和衬里层是否附着沉积层,沉积层是具有导电性还是绝缘性。它们之间的电阻值应在1 千欧~1 兆欧之间,并且线号“1”和“2”及“1”和“3”的电阻值应大致对称。(4)关闭管路上的阀门,检查电磁流量计在充满液体且液体无流动的情况下的整机零点。视情况作适当的调整。(5)检查信号电缆、励磁电缆各芯线的绝缘电阻,检查屏蔽层是否完好。 (6)使用GS8 校验仪器,测试转换器的输出电流。当给定零流量时,输出电流应为:4.00mA;当给定100%流量时,输出电流应为:20.00mA。输出电流值的误差应优于1.5%。(7)测试励磁电流值(转换器端子“7”和“8”之间),励磁电

空气流量计种类介绍

空气流量计种类介绍 一、叶片式空气流量计 空气流量计的结构简单,可靠性高;但进气阻力大,响应较慢且体积较大 二、卡门旋涡式空气流量计 所谓卡门旋涡,是指在流体中放置一个圆柱状或三角状物体时,在这一物体的下游就会产生的两列旋转方向相反,并交替出现的旋涡 光学式卡门旋涡空气流量计 在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动 的金属箔上时,光敏三极管接收到的金属箔上的反射光是被旋涡调制的光,其输出经解调得到代表空气流量的频率信号。 超声波式卡门旋涡空气流量计 在卡门涡流发生器下游管路两侧相对安装超声波发射探头和接收探头。因卡门涡流对空气密度的影响,就会使超声波从发射探头到接收探 头的时间较无旋涡变晚而产生相位差。对此相位信号进行处理,就可得到旋涡脉冲信号, 三、热线式空气流量计 1.工作原理 当无空气流动时,电桥处于平衡状态,控制电路输出某一加热电流至热线电阻RH;当有空气流动时,由于RH的热量被空气吸收而变冷,其 电阻值发生变化,电桥失去平衡,如果保持热线电阻与吸入空气的温差不变并为一定值,就必须增加流过热线电阻的电流IH。因此,热线电流 IH就是空气质量流量的函数。 四、热膜式空气流量计 热膜式空气流量计的工作原理与热线式空气流量计类似,都是用惠斯登电桥工作的。所不同的是:热膜式不使用白金丝作为热线,而是将 热线电阻、补偿电阻及桥路电阻用厚膜工艺制作在同一陶瓷基片上构成的。 空气流量计的主要作用是检测发动机的进气量或进气温度,有一些还有检测大气压力。根据进气量的大小,转换成电信号,到ECU里面运算,跟节气门位置传感器一同控制发动机的转速(喷油时间和点火时间控制)。空气流量计有多种形式:阀门式(根据进气时推动阀门的开度来检测流量)、卡门漩涡式(根据进气时扰动的气流强度来判断进气量)、热线式(根据进气的空气流过热敏电阻散热来检测流量)、热膜式(根据空气吹过热膜散热而检测进气的流量)、超声波式(根据进气大小干扰超声波来检测进气流量)、真空压力式(根据膜片的移动来检测进气压力)等、、

消防智能电磁流量计流量检测系统设计

消防智能电磁流量计流量检测系统设计 发表时间:2015-02-06T13:52:59.297Z 来源:《科学与技术》2014年第12期下供稿作者:焦宏伟 [导读] 通过面向对象的编程和调试,为社会、企业创造财富与工作方便。智能水枪流量测试系统将提高社会、企业的工作效率。 上海第二工业大学城市建设与环境工程学院焦宏伟 摘要:消防专用的传统水泵由于缺少水流量、泡沫流量的检测,以及缺少相关体系的自动化报表,使得相关企业对于检测水流量、泡沫流量需求很高。基于企业需求,本项目设计了一套消防智能电磁流量计流量检测系统。由于流量检测数据量大,对于数据处理提出了更高的要求。需要做到方便、安全、准确、可靠地讲数据进行处理。人机界面的设计理念避免了检测人员大量操作各种文档、以及大量表格。 关键词:电磁流量计;人机界面;检测1.1 研究意义企业对于检测系统需求高涨,可以在误差允许范围内检测水流量、泡沫流量。方便检测人员工作,提高检测效率。可以在电脑上进行管理员操作并且可以实现对检测数据各种操作,比如存储、查询、显示、删除、打印、动态曲线展示等功能,从而缩短检测周期,提高社会劳动效率。 1.2 国内外研究现状:国外的西尼尔公司等生产的电磁流量计已经很成熟,但是国内还缺少相关的可以花较低代价实现集成系统,即做到消防智能电磁流量计流量检测系统。 2.1 设计目标设计以一套可以对水流量、泡沫流量进行自动检测,并且可以实现对检测数据的存储、查询、显示、删除、打印、动态曲线展示等功能。 2.2 研究内容:2.2.1 环境监测多传感器融合算法设计和实现消防智能电磁流量计流量检测系统具有5 电磁流量计和5 个转换器。分别是:AMF-4-1010 是一款直径为4 毫米的泡沫液电磁流量计,常用的流量范围是0.075~11L/M ;SE11-FR15EF1A1T01G00 是一款直径是15 毫米泡沫液电磁流量计,常用的流量范围是5~100L/M;SE11-FT50EF1A1T01G00是一款直径50 毫米的水流量电磁流量计,常用流量50~1000L/M;SE11-FT1HEE1A1T01G00 是一款直径100 毫米的水流量电磁流量检测计,常用流量200~4000L/M ;SV21- W2A010BNT02K00 是一款直径100 毫米的空气压缩机电磁流量检测计,常用流量范围500~7500L/M。当有水或泡沫等流体充满管道从管道里通过时,SE11-FR15EF1A1T01G00、SE11-FT50EF1A1T01G00 、SE11-FT50EF1A1T01G00 、SE11-FT1HEE1A1T01G00 会输出标准的工业信号4~20 毫安电流,当输出电流为4 毫安时流量计的流量为0,当输出20 毫安时,流量计对应最大流量。而SV21- W2A010BNT02K00 回输出1.54~20 毫安电流,同理,当输出电流为1.54 毫安时流量计的流量为0,当输出20 毫安时,流量计对应最大流量。 3.1 实验步骤1.理论分析,通过软件模拟实现设计要求采用是微软公司推出的开发环境是目前最流行的Windows平台应用程序开发环境,同时带来了 NET Framework 4.0、Microsoft Visual Studio 2010 CTP( Community TechnologyPreview--CTP),并且支持开发面向Windows 7 的应用程序。除了Microsoft SQL Server,它还支持IBM DB2 和Oracle 数据库。 2.优化算法,提高设计要求ModBus 网络只是一个主机,所有通信都由他发出。网络可支持247 个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC 可以和中心主机交换信息而不影响各PC 执行本身的控制任务。由于ModBus通讯协议通讯安全可靠,所以选择数据通讯协议是ModBus 通讯协议。所选硬件设备是研华科技有限公司的数据采集卡—ADAM4117。由于电脑接口都是USB 接口,所以通过485通讯转换成USB 通讯协议转换器,将电脑和采集卡连接起来。 3.最终设计产品,实战检验通过测试,数据误差在千分之八左右。 3.2 分清楚给单元职能,然后进行设计。 4.1 设计任务的完成登陆界面输入登录用户名与密码,即可进入消防智能电磁流量计流量检测系统,进行检测操作。下图是主界面的展示,利用TBCONTRAL 控件组成的多界面人机界面交互界面。分别是主界面、4 毫米泡沫动态流量界面、15 毫米水流量动态界面、100 毫米水流量动态界面、100 毫米空气压缩动态界面。 AMF-4-1010 的转换器接上220 伏特的电压,这只好转换器;SE11-FR15EF1A1T01G00 的转换器接上220 伏特的电压,同时按第一个键和第四个键,按第四个键,出现00000 输入009454 后,同时按第一个和第四个键,出现语言,一直按第三键找到空管报警允许,按第四键,把允许修改为禁止后,按最后一个键不松直到返回页面。同时按第一个键和第四个键,找到设置,输入09454 密码,然后同时按第一个和第四个键,显示语言,按第三键翻页,一直找到需要的东西,按第四个键后,按第三个键修改,修改后,返回按第四个键不松5

空气流量计作用介绍

空气流量计的种类分为很多种,如果常见的空气流量计大家都会知道个一二。但是膜式空气流量计可能不用的朋友就不是很了解了,具体膜式空气流量计有由什么组成,膜式空气流量计是什么样的工作原理,膜式空气流量计应用于那个行业都是我们想知道的。别着急,答案就在下面。我们慢慢来了解。 空气流量计广泛应用 膜式空气流量计因广泛应用于城市家用煤气、天然气、液化石油气等燃气消耗量的计量,故习惯.上又称家用煤气表。但实际上家用煤气表只是膜式空气流量计系列中的一部分,系列中用于厂矿企业中计量工业用煤气的大规格仪表称为工业煤气表。膜式气体流童计的工作原理由“皿”字形隔膜(皮膜)制成的能自由伸缩的计量室1,2,3,4以及能与之联动的滑阀组成流量测量元件,在薄膜伸缩及滑阀的作用下,可连续地将气体从流量计人口送至出口。只要测出薄膜的动作的循环次数,就可获得通过流量计的气体体积总量。膜式空气流量计测量范围度极宽,一般可达100:1,测量精度一般为士2%一土3%R。 空气流量计作用介绍 空气流量计就是这样的,其实就是我们家用可以常见的膜式空气流量计。可能我们在使用的时候都没有注意过膜式空气流量计的作用,但是今天我们了解了,也知道了膜式空气流量计的作用。在今后在遇到膜式空气流量计就会知道它是什么流量计,这样也可以和家人讲讲,更能加深我们对膜式空气流量计的了解。 希望这样的介绍能给大家带来帮助!!相信伴随着新材料、新工艺和新技术的应用,湿饱和蒸汽两相流量计的性能更趋完善也能够满足人们小型化、多功能性的综合要求。相信随着纳米技术、薄膜技术等新材料研制成功,微机械与微电子技术、计算机技术等的综合应用,具备多种气体监测功能的高性能智能化湿饱和蒸汽两相流量计将会在不远的将来出现在我们身边。

(完整版)教案1空气流量计

南宁市第四职业技术学校 教案

南宁市第四职业技术学校

2.空气流量计的工作原理 在下图所示电路中,电桥处于平衡状态时热线与冷线温度相差保持100℃。当空气流过空气流量计时,热线降温而电阻变小,冷线降温而电阻变大,于是电桥失去平衡。控制电路会增加通过热线的电流,使电桥恢复平衡。而电流IH 的增大会使精密电阻的电压降增大,只要测量精密电阻两端的电压降,即可通过计算得知空气的质量流量。 3.空气流量计的电路 4.空气流量计的检修 了解空气流量计的工作电压:9~~14v 空气流量计信号电压:0.2~~4.9V 空气流量:在怠速时应为0.54 ~4.33g/s。转速为2500r/min 时(无负荷)应为3.33~9.17g/s。 (1),通过解码仪检测空气流量计是否损坏或者读取数据进行对比检测 (2),使用万用表对空气流量计进行检修 电源检测:点火开关OFF,脱开空气流量计连接器B2,用专用汽车万用表检测空气流量计连接器B2-3(+B)与B2-4(E2G)端子以及B2-3(+B)与B31-116 端子之间的电压,如图 4 所示。点火开关ON,应为9~14V;点火开关OFF,

应为0V。否则,检查EFI N0.1保险丝、EFI 继电器工作状况以及空气流量计连接器B2-4 子与ECM连接器B31-116 端子间的导线。 电阻检测:用万用表测量空气流量计B2-3、B2-4、B2-5 相互之间的电阻以及各自对地电阻,测得电阻值应大于10kΩ。否则,更换空气流量计。 检测空气流量计线路 断开空气流量计连接器B2 和ECM 连接器B31。检测端子B2 -4(E2G)与B31-116(E2G)、B2-5 (VG)与B31-118(VG)之间的电阻,均应小于1Ω如图 5 所示;检测端子B2-3(+B)、B2-4(E2G)、B2-5(VG)与车身搭铁之间的电阻,应大于10kΩ。否则检修线路故障。如下图示:

电磁流量计的检测方法

电磁流量计的检测方法 刖言 电磁流量计广泛应用于流程工业和公用事业,按要求测量仪表须在受控状态下运行和定期检定。流量仪表流量值的检查方法通常有离线和现场在线检查两种。因这两种方法都有缺陷,实践中广大用户探索出若干在现场间接检查方法,验证或评估电磁流量计流量测量值是否已超过原始校准精确度等级范围,为继续使用或需进一步检查提供依据。 在线检查的现状 现在尚缺乏对电磁流量计在线检查的全面了解,仅见到几家日本企业近年发表的实 施非实流在线检查的报导;另外,上海地区几年前已开始探索和制订“在线检验方法” 等。 1.化学工业 电磁流量计在化学工业中应用以流量控制为主,所测流体以酸、碱性液和浆液居多, 多具有腐蚀 性和磨耗性。电磁流量计实际应用中发生故障和失效,多是由于腐蚀泄漏、绝缘下降、电极沾污或附着 异物等引起的。 电磁流量计传统的定期维护检查是将流量传感器卸下管线清扫和检查,然后实施流量校准。为减少流量传感器从管道上卸装损伤衬里,先在管线上测量绝缘电阻等推断有无异常现象,再决定下一步是否卸下管线检查或实流流量校准。三菱化学(株)3种检查方式所占比重是:(1)只作在线检查占35% (2)卸下管线作接液部位清扫后检查占22% ⑶离线作实流校准占43% 2.水务业 (1)(日)东京都水道局 东京都水道局对电磁流量计每年做一次全面检查,检查内容为:外观检查,转换器 特性试验,测量值校准,测量各部电压,测量绝缘电阻,确认电路。仪表检查调整时因 零点漂移,调整零点显得十分重要,而“在线调零”必须使被测介质停止流动,却不易办到。因此在现场只能省略包含有传感器运作的检查,仅实施转换器的校准。将本次检查结果和历史数据比较确定仪表是继续使用、修补还是更新。传感器按所测励磁线圈绝缘电阻劣化程度决定更新与否。 (2)上海自来水公司和原水公司 上世纪90年代以来,上海自来水公司和原水公司开始摸索在线检查和验证有无异 常现象的方法。无停役可能的管线分别检查流量传感器和转换器,用模拟信号器和其他通用仪表测试转换器,具有较高的校准精确度(取决于模拟信号器精确度),其方法与离线检查相同。传感器检查则以测试电极接液电阻,检查励磁线圈包括励磁连接电缆的绝 缘电阻和铜电阻,以及检查转换器输出的励磁电流,核对磁场强度等间接方法。有停役条件的管线,还 可从预设在传感器附近入孔进入,检查电级和衬里污秽/沉积状况并清 洗。

相关主题
文本预览
相关文档 最新文档