当前位置:文档之家› 中考二次函数面积最值问题(含答案)

中考二次函数面积最值问题(含答案)

中考二次函数面积最值问题(含答案)
中考二次函数面积最值问题(含答案)

二次函数最值问题

例1、小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这

条边上的高之和为40 cm ,这个三角形的面积S(单位:cm 2)随x(单位:cm)的变化而变化.

(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?21世纪教育网

解:(1)x 02x 21

2+-=S

(2)∵a=21

-<0 ∴S 有最大值

∴022120

2a

2b x =-?-=-=)

∴ S 的最大值为2002002202

1

2=?+?-=S

∴当x 为20cm 时,三角形面积最大,最大面积是200cm 2。 2.如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).

(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.

解:(1)∵S △PBQ =2

1

PB ·BQ,

PB=AB -AP=18-2x ,BQ=x ,

∴y=2

1

(18-2x )x ,即y=-x 2+9x (0

(2)由(1)知:y=-x 2+9x ,

∴y=-(x -29)2 +4

81,∵当0

时,y 随x 的增大而增大,

而0

3.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以 1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm/s 的速度移动,如 果P ,Q 两点同时出发,分别到达B ,C 两点后就停止移动.

(1)设运动开始后第t 秒钟后,五边形APQCD 的面积为Scm 2,写出S 与t 的函数关

系式,并指出自变量t 的取值范围. (2)t 为何值时,S 最小?最小值是多少?

解:(1)第t 秒钟时,AP=tcm ,故PB=(6﹣t )cm ,BQ=2tcm , 故S △PBQ =?(6﹣t )?2t=﹣t 2+6t

∵S 矩形ABCD =6×12=72.∴S=72﹣S △PBQ =t 2﹣6t+72(0<t <6);

(2)∵S=t 2﹣6t+72=(t ﹣3)2+63,∴当t=3秒时,S 有最小值63cm .

4.在某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园 的一边靠墙,另三边用总长为40m 的栅栏围成如图,若设花园的BC 边长为x (m )花园 的面积为y (m 2)

(1)求y 与x 之间的函数关系式,并求自变量的x 的范围. (2)当x 取何值时花园的面积最大,最大面积为多少?

解:(1)∵四边形ABCD 是矩形, ∴AB=CD ,AD=BC ,

∵BC=xm ,AB+BC+CD=40m ,∴AB=,

∴花园的面积为:y=x ?

=﹣x 2+20x (0<x ≤15);

∴y 与x 之间的函数关系式为:y=﹣x 2+20x (0<x ≤15); (2)∵y=﹣x 2+20x=﹣(x ﹣20)2+200,

∵a=﹣<0,∴当x <20时,y 随x 的增大而增大,

∴当x=15时,y 最大,最大值y=187.5.

∴当x 取15时花园的面积最大,最大面积为187.5.

5.已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1. 试在AB 上求一点P ,使矩形PNDM 有最大面积.

解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x ≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴

PH

BH

BF AF =

,即3412--=y x , ∴521

+-=x y ,

x x xy S 52

1

2+-==)42(≤≤x ,

此二次函数的图象开口向下,对称轴为x=5,∴当x ≤5时,函数值y 随x 的增大而增大,

对于42≤≤x 来说,当x=4时,124542

1

2=?+?-=最大S .

6.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.

(1)要使鸡场面积最大,鸡场的长度应为多少m ?

(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?

解:(1)∵长为x 米,则宽为

3

50x

-米,设面积为S 平方米. )50(31

3502x x x x S --=-?

= 3

625

)25(312+

--=x ∴当25=x 时,3

625

max =S (平方米) 即:鸡场的长度为25米时,面积最大.

(2) 中间有n 道篱笆,则宽为2

50+-n x

米,设面积为S 平方米.

则:)50(21

2502x x n n x x S -+-=+-?=

2

625

)25(212++

-+-=n x n ∴当25=x 时,2

625

max +=n S (平方米)

由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关. 7.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.

A

B

C

D Q

解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,

∴∠QPC=∠BAP ,∠B=∠C=90° ∴△ABP ∽△PCQ.

,86,y x

x CQ BP PC AB =-=∴x x y 3

4612+-=. 8.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.

(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?

解:(1)根据题意,得x x x x

S 302

2602+-=?-=

自变量的取值范围是

(2)∵01<-=a ,∴S 有最大值

当时,

答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.

9.较难如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向

点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<)

秒.解答如下问题:

(1)当t为何值时,PQ∥BO?

(2)设△AQP的面积为S,

①求S与t之间的函数关系式,并求出S的最大值;

解:(1)∵A、B两点的坐标分别是(8,0)、(0,6),则OB=6,OA=8,

∴AB===10.

如图①,当PQ∥BO时,AQ=2t,BP=3t,则AP=10﹣3t.

∵PQ∥BO,∴,即,解得t=,

∴当t=秒时,PQ∥BO.

(2)由(1)知:OA=8,OB=6,AB=10.

①如图②所示,过点P作PD⊥x轴于点D,则PD∥BO,

∴,即,解得PD=6﹣t.

S=AQ?PD=?2t?(6﹣t)=6t﹣t2=﹣(t﹣)2+5,

∴S与t之间的函数关系式为:S=﹣(t﹣)2+5(0<t<),

当t=秒时,S取得最大值,最大值为5(平方单位).

Welcome !!! 欢迎您的下载,资料仅供参考!

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

初三数学二次函数知识点总结及经典习题含答案

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随 x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.

中考数学二次函数-经典压轴题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E 113 +113 + 3)点Q的坐 标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1?x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=1 2 CD=CE.利 用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛 物线的解析式联立,得出方程组 223 33 y x x y x ?=-- ? =-+ ? ,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1?x2=﹣(m+1),

(完整版)初三数学二次函数较难题型

一、二次函数解析式及定义型问题 ( 顶点式中考要点 ) . 把二次函数的图象向左平移 2 个单位, 再向上平移 1 个单位, 所得到的图象对应的二次函数关系式是 y (x 则 b 、 c 的值为 10. 抛物线 y x 2 ax 4的顶点在 X 轴上,则 a 值为 11. 已知二次函数 y 2(x 3)2 ,当 X 取 x 1和 x 2时函数 值相等,当 X 取 x 1+x 2时函数值为 12. 若二次函数 y ax 2 k ,当 X 取 X1 和 X2( x 1 x 2)时函数值相 等 , 则当 X 取 X1+X2时,函数值为 13. 若函数 y a (x 3)2 过(2 . 9)点,则当 X =4时函数值 Y = 14. 若函数 y (x h )2 k 的顶点在第二象限则, h 0, k 0 15. 已知二次函数当 x=2 时 Y 有最大值是1 . 且过(3 . 0)点求解析式? 17. 已知抛物线在 X 轴上截得的线段长为6 二、一般式交点式中考要点 18. 如果抛物线 y=x 2-6x+c-2 的顶点到 x 轴的距离是 3, 那么 c 的值等于( ) (A ) 8 (B ) 14 (C ) 8 或 14( D )-8 或 -14 19. 二次函数 y=x 2-(12-k )x+12, 当 x>1 时, y 随着 x 的增大而增大, 当 x<1 时, y 随着 x 的增大而减小, 则 k 的值应取 ( (A ) 12 ( B )11 ( C )10(D ) 9 20. 若 b 0 ,则二次函数 y x 2 bx 1的图象的顶点在 ( A ) ( A )第一象限( B )第二象限 ( C )第三象限( D )第四象限 21. 不论 x 为何值 , 函数 y=ax 2+bx+c (a ≠ 0) 的值恒大于 0 的条件是 ( ) A.a>0, △ >0 B.a>0, △ <0 1)2 则原 . 如果函数 y (k 3)x k2 . ( 08 绍兴)已知点3k 2 y 1 ) , 2, 1 ),形状开品与抛物线 y= - 2x 2相同,这个函数解析式为 kx 1 是二次函数 , 则 k 的值是 _ .( 兰州 A .若 y 1 B .若 C .若 x 1 0 y 2,则 x 1 x 2,则 x 2 y 2 D .若 x 1 10) 抛物线 x 1 x 2 x 2 ,则 y 1 y 2 y 1 b y 2 c 图像向右平移 2 个单位再向下平移 3 个单位, 所得图像的解析式为 y 2x 3, A . b=2 C . b= -2 . 抛物线 c=2 , c=-1 (m 1)x 2 ax B. b=2 D. b= -3 c=0 , (m 2 3m 4)x 5以 Y 轴为对称轴则。 M = 8. 函数 y (a 5)x a 2 a 4a 5 的图象顶点在 Y 轴负半轴上。且函数值有最小值,则 m 的取值范围 5 2x 9. 抛物线 y (3x 1)2 当 x 时, 1 , 当 a ____ 时 , 它是一次函数 ; 当 a 时 , 它是二次函数 . 16. 将 y 2x 2 12x 12 变为 y a(x 2 m ) n 的形式,则 m . 且顶点坐标为(2,3)求解析式?(讲解对称性书写)

最新2021学年九年级中考数学复习--二次函数中三角形面积问题教案

二次函数中三角形面积问题 教案 教学目标: 1. 掌握在平面直角坐标系中求三角形面积的两种基本方法:直接法与割补法,会用割补法把一般位置的三角形转化为特殊位置的三角形; 2. 会把三角形面积问题转化为线段问题,把线段问题转化为点的坐标问题; 3. 提高运算能力、分析问题与解决问题的能力,养成良好的思维习惯,规范答题; 4. 体会数形结合、转化化归、函数建模等数学思想在解题中的应用。 教学重点:求三角形面积的两种基本方法:直接法与割补法及其应用。 教学难点:理解如何进行割补,并会进行有效的割(或补),把一般位置的三角形转化为特 殊位置的三角形,会表示所割(或补)三角形的底或高。 教学过程: 一、课前预习: 1、知识与方法回顾: 在平面直角坐标系中,求下列特殊位置三角形的面积: 高底三角形面积公式:??= ?2 1 ABC S 应用条件:有一条边在坐标轴上或者平行坐标轴(特殊位置三角形)。 解题方法:直接法,即以在坐标轴上或平行坐标轴的边为底边,过另一个顶点作高,然后用 三角形面积公式直接进行求解。 2、基础训练: 如图1,在平面直角坐标系中,已知抛物线与x 轴相交于点)0,1(),0,3(B A -,与y 轴相交于点)3,0(C ,过点C 作x CD //轴交抛物线于点D 。 (1)求该抛物线的解析式; A B C D y x 图1 O C B A y O x y O x B A C y O x B A C y O x B A C

(2)连接AC 、BC ,求ABC ?的面积; 注意事项:利用点的坐标求线段(底、高)长度时,要用大的减去小的,即在x 轴上或平行x 轴的线段长度等于右边点的横坐标减去左边点的横坐标,在y 轴上或平行y 轴的线段长度等于上面点的纵坐标减去下面点的纵坐标。 (3)如图2,点E (-4,-5)是抛物线上一点,求CDE ?的面积。 解题基本思路:点(坐标)——线段(底、高)——面积 二、专题复习,能力提升: 1、知识归纳提升: 在平面直角坐标系中,求一般位置三角形的面积: =?ACP S ; =?ACP S ; =?ACP S ;=?ACP S ; 教师引导学生完成,展示学生成果。 归纳小结: ①应用条件:三角形的边都不在坐标轴上,也不平行坐标轴。 ②方法:割补法,即用割(或补)的方法把一般位置的三角形转化为特殊位置的三角形(预 习中有边在坐标轴上或平行坐标轴的三角形),然后用直接法求两个(或几个)三角形面积之和(或差)。 ③ 关键:怎么割,如何补,才能把一般位置的三角形转化为特殊位置的三角形。 2、提升训练(应用): (4)如图3,若点M 是抛物线的顶点,求ACM ?的面积。 A B C D y x 图2 F E O D A C P y x O A C P y x O D A C P y x O D A C P O y x

北师大版中考复习二次函数经典总结及典型题

二 次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

)2 h k +方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值 244ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点

初三数学二次函数的最值问题一(线段和周长最值)

二次函数的最值问题(一) 【课题】二次函数的最值问题 _____ 分校______年级讲师:_____ 授课时间:____年____月___日 【学习目标】 1、二次函数多与线段长度最值,多边形的周长,面积最值结合综合考查 2、掌握分类讨论思想,数形结合思想在二次函数中的应用 3、学生应具备基本的计算能力,待定系数法求解析式的步骤,利用参数发表示长度或面积的表达式。 【知识回顾】 1、表示图形面积的方法:直接代公式,分割法、补全法等。 2、常用到的公式:两点坐标距离公式,中点坐标公式。 3、线段最短问题涉及到的知识点是做对称 【新知点击】 考点一最大(小)值何处取得: (1)二次函数的一般式 c bx ax y ++=2(0≠a ) 化成顶点式 a b ac a b x a y 44)2(2 2-++=, 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当 a b x 2-=,a b ac y 442-=最小值; 当0

中考专题训练二次函数中的面积计算问题

(D) 中考专题训练二次函数中的面积计算问题 [典型例题]例. 如图,二次函数2y x bx c =++图象与x 轴交于A,B 两点(A 在 轴交于点C ,顶点为M ,MAB ?为直角三角形, 图象的对称轴为直线2-=x 上位于,A C 两点之间的一个动点,则 PAC ?的面积的最大值为( C ) A . 274 B .112 C . 278 D .3 二次函数中面积问题常见类型: 一、选择填空中简单应用 二、不规则三角形面积运用S= 三、运用 四、运用相似三角形 五、运用分割方法将不规则图形转化为规则图形 例1. 如图1,已知:正方形ABCD 边长为1,E 、F 、 G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是 ( B ) 例2. 解答下列问题: 如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △P AB =8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 例3. (贵州省遵义市)如图,在平面直角坐标系中,Rt △AOB 的顶点坐标分别 为A (0,2),O (0,0),B (4,0),把△AOB 绕点O 逆时针方向旋转90° 得到△COD (点A 转到点C 的位置),抛物线y =ax 2 +bx +c (a ≠0)经过 C 、 D 、B 三点.(1)求抛物线的解析式;(2)若抛物线的顶点为P , 求△P AB 的面积;(3)抛物线上是否存在点M ,使△MBC 的面积等于△P AB 的面积?若存在,请求出点M 的坐标;若不存在,请说明理由. 图2

中考数学复习指导:解二次函数中三角形面积最值问题

解二次函数中三角形面积最值问题 一、灵割巧补,间接转化求最值 这里的割补法分为两部分,割是指将图形分解成几部分分别求解,补是指将所求图形填上一部分然后用补后的图形面积减去所补的部分面积.两种做法的实质都是间接的求出所求图形的面积. 例1 在如图所示的直角坐标系中,有抛物线2424455 y x x =-+.连接AC ,问在直线AC 的下方,是否在抛物线上存在一点N ,使NAC V 的面积有最大值?若存在请求出此值;若不存在请说明理由. 解析 设N 点坐标为2424(,4)55 a a a -+,(0,5)a ∈,如图所示过点A 作直线平行于x 轴,过点N 作直线平行于y 轴,与x 轴交于点F ,与AC 相交于点G ,两直线相交于点D .容易求得直线 AC 的方程445y x =- +,得出G 点坐标(4(,4)5a a -+,求出NG 的长为2445 a a -+,111222 ACN ANG CGN S S S NG OF NG CF NG OC =+=?+?=?V V V 2210a a =-+,故当52a =时三角形面积有最大值252,此时N 点的坐标为5(,3)2-. 点拨 本题中将三角形割开求解的方法在应用中是较为常见的,此种方法也可视为是铅垂法,即三角形的面积等于三角形的水平宽与铅垂高的积的一半,本题中就是演示了整个的推理以及求解过程. 二、直线平移,化为切线求最值 切线法体现了数学中最为常见的数形结合思想,即通过平移直线,当直线与抛物线只有一个交点时(此时就是相切)存在长度的极值,借此来直接求出点的坐标.此法不用求出面积的解析式就可直接求解,是解题的新思路. 例2 如图所示,在平面直角坐标系中,有一抛物线2142 y x x =+-,在第三象限的抛物线上是否存在一动点M ,使ABM V 面积存在最大值?若存在,求出最值;若不存在,说明理由.

二次函数经典中考试题(含答案)

二次函数经典中考试题(含答案) —、解答题(共30小题) 1. (2013?武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物 分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表) : 温度 x/C … -4 - 2 0 2 4 4.5 … 植物每天高度增长量 y/mm … 41 49 49 41 25 19.75 … 由这些数据,科学家推测出植物每天高度增长量 y 是温度x 的函数,且这种函数是反比例函 数、一次函数和二次函数中的一种. (1) 请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理 由; (2) 温度为多少时,这种植物每天高度增长量最大? (3) 如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过 250mm ,那么 实验室的温度x 应该在哪个范围内选择?请直接写出结果. 2. (2013?莆田)如图所示,某学校拟建一个含内接矩形的菱形花坛 (花坛为轴对称图形).矩 形的四个顶点分别在菱形四条边上,菱形 ABCD 的边长AB=4米,/ ABC=60 °设AE=x 米 (0v x V 4),矩形EFGH 的面积为S 米2. (1) 求S 与x 的函数关系式; (2) 学校准备在矩形内种植红色花草,四个三角形内种植黄色花草?已知红色花草的价格为 20元咪2,黄色花草的价格为40元咪2?当x 为何值时,购买花草所需的总费用最低,并求 出最低总费用(结果保留根号)? y 的二元一次方程组 (1) 若a=3.求方程组的解; (2) 若S=a (3x+y ),当a 为何值时,S 有最值. 4. (2013?南宁)如图,抛物线 y=ax 2+c (a 旳)经过C (2,0),D (0,- 1)两点,并与直 线y=kx 交于A 、B 两点,直线I 过点E (0,- 2)且平行于x 轴,过A 、B 两点分别作直线 l 的垂线,垂足分别为点M 、N . (1) 求此抛物线的解析式; (2) 求证:AO=AM ; (3) 探究: ①当k=0时,直线y=kx 与x 轴重合,求出此时 的值; 3. (2013?资阳)在关于 x ,

中考数学复习二次函数与三角形的面积问题

二次函数与三角形的面积问题 1.运用2 铅垂高 水平宽?= s ; 2.运用y ; 3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。 类型一:三角形的某一条边在坐标轴上或者与坐标轴平行 例1.已知:抛物线的顶点为D (1,-4),并经过点E (4,5),求: (1)抛物线解析式; (2)抛物线与x 轴的交点A 、B ,与y 轴交点C ; (3)求下列图形的面积△ABD 、△ABC 、△ABE 、△OCD 、△OCE 。 解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。求出下列图形的面积△ABD 、△ABC 、△ABE 、△OCD 、△OCE 。 一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适 方法求出图形的面积。 训练1.如图所示,已知抛物线()02 ≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <, 与y 轴负半轴相交于点C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。 (1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。 类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。(歪歪三角形拦腰来一刀) 关于2 铅垂高 水平宽?= ?S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的 三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 2 1 =?,即三角形面积等于水平宽与铅垂高乘积的一半. 想一想:在直角坐标系中,水平宽如何求?铅垂高如何求? 例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ?;(3)是否存在一点P ,使S △P AB = 8 9S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; x A B O C y P B C 铅垂高 水平宽 h a 图1 图-2 x C O y A B D 1 1

二次函数的最值问题(中考题)(含答案)

典型中考题(有关二次函数的最值) 屠园实验 周前猛 一、选择题 1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( ) A. ab D 不能确定 答案:C 2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( ) A 、- 74 B 、 C 、 2或 D 2或或- 74 答案:C ∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m. 当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2 765 y x 416??=-++ ??? 此时,它在- 2≤x≤l 的最大值是 65 16 ,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符. 当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在- 2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m 的值为2或. 故选C . 3. 已知0≤x≤ 1 2 ,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

中考数学压轴题专题突破二次函数中的面积问题

【中考压轴题专题突破】 二次函数中的面积问题 1.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C. (1)求抛物线的表达式; (2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ. (Ⅰ)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标; (Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.

2.我们常见的炒菜锅和锅盖都是抛物面,经过锅心和盖心的纵断面是由两段抛物线组合而成的封闭图形,不妨简称为“锅线”.锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图1所示,如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2. (1)求C1和C2的解析式; (2)如图2,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC, 在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标; (3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ 的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.

3.如图1,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1. (1)求a,b的值; (2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC 于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围); (3)如图3,将直线AB绕点A顺时针旋转15度交抛物线对称轴于点C,点P为线段OA上的一个动点(与点O、点A不重合),以点O为圆心、以OP为半径的圆弧与线段OC交于点M,以点A为圆心、以AP为半径的圆弧与线段AC交于点N,连接MN.在点P运动的过程中,四边形OMNA的面积有最大值还是有最小值?请求出该值.

二次函数综合应用题(有答案)中考23题必练经典

函数综合应用题 题目分析及题目对学生的要求 1.求解析式:要求学生能够根据题意建立相应坐标系,将实际问题转化成数学问题。 需要注意的是: (1) 不能忘记写自变量的取值范围 (2) 在考虑自变量的取值范围时要结合它所代表的实际意义。 2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求学生能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。 最值的求法: (1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。 (2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。 3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。 推荐思路:画出不等式左右两边的图象,结合函数图象求出x的取值范围。 备选思路一:先将不等号看做等号,求出x的取值,再结合图象考虑将等号还原为不等号后x的取值范围; 备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。

一、求利润的最值 (2010·武汉)23. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为 每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间 空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天 的房价不得高于340元。设每个房间的房价每天增加x 元(x 为10的正整数倍)。 (1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围; (2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式; (3) 一天订住多少个房间时,宾馆的利润最大最大利润是多少元 解:(1) y=5010 1x (0x160,且x 是10的整数倍)。 (2) W=(50101x)(180x20)= 10 1x 234x8000; (3) W= 101x 234x8000= 10 1(x170)210890,当x<170时,W 随x 增大而增大,但0x160, ∴当x=160时,W 最大=10880,当x=160时,y=5010 1x=34。答:一天订住34个房间时,宾馆每天利润最大,最大利润是10880元。 (2009武汉)23.(本题满分10分)某商品的进价为每件40元,售价为每件50元,每个 月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高 于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元. (1)求y 与x 的函数关系式并直接写出自变量x 的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润最大的月利润是多少元 (3)每件商品的售价定为多少元时,每个月的利润恰为2200元根据以上结论,请你直接写 出售价在什么范围时,每个月的利润不低于2200元 解:(1)2 (21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数); (2)210( 5.5)2402.5y x =--+. 100a =-

中考数学解答专项二次函数与图形面积练习(九大专题)

二次函数与图形面积 1. 已知抛物线y =-x 2 +bx +c 的图象过点A (4,0)、B (1,3). (1)求抛物线的表达式; (2)求出抛物线的对称轴和顶点坐标; (3)抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于x 轴的对称点为F ,若以O 、A 、P 、F 四点组成的四边形的面积为20,求m 、n 的值. 解:(1)将点A (4,0)、B (1,3)代入抛物线y =-x 2 +bx +c 得???=++-=++-3 10 416c b c b ,解得 ???==0 4 c b , ∴抛物线的表达式为y =-x 2 +4x ; (2)对称轴为直线x =-b 2a =- () 124 -? =2,顶点坐标为(2,4); (3)抛物线的对称轴为直线x =2,设抛物线上的点P (m ,n )在第四象限,则点P 关于直线l 的对称点为E (4-m ,n ), 点E 关于x 轴的对称点为F (4-m ,-n ), 若以O 、A 、P 、F 四点组成的四边形的面积为20, 则S 四边形OPAF =S △AOF +S △AOP =12×4×(-n )+1 2×4×(-n )=-4n =20,得n =-5,将(m ,-5) 代入y =-x 2 +4x , 解得m =5或m =-1. ∵点P (m ,n )在第四象限, ∴m =5,n =-5. 2. 抛物线y =ax 2 +bx +c 经过原点O 、B (1,3)、C (2,2),与x 轴交于另一点N . (1)求抛物线的表达式; (2)连接BC ,若点A 为BC 所在直线与y 轴的交点,在抛物线上是否存在点P ,使得S △OAP = 8 15 S △ONP ,若存在,请求出点P 的坐标;若不存在,请说明理由. 解:(1)将0(0,0)、B (1,3)、C (2,2)三点的坐标分别代入抛物线 y =ax 2 +bx +c ,可得?????==++=++02243c c b a c b a ,解得?? ? ??==-=052c b a , ∴所求抛物线的表达式为y =-2x 2 +5x ; (2)存在,

2018届重庆中考复习:二次函数相关的最值问题练习(含答案)

二次函数相关的最值问题 2 例1.如图,抛物线y = —x —4x+ 5与x轴交于点A、B,与y轴交于点C,点D为抛物线的顶点. 求直线AC的解析式及顶点D的坐标; 若Q为抛物线对称轴上一动点,连接QA QC求|QA—QC|的最大值及此时点Q的坐标; (3)连接CD点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE//x轴交直线AC于点 E,作PF//CD交直线AC于点F,当线段PE+ PF取最大值时,求点P的坐标及线段EF的长;

⑷在⑶K,连接0L 3问的条件下,将 KH求线段 (5)在⑶+ P' E'+ E 问的条件下,将线段PE沿着直线B取最小值时点E'的坐标.

针对训练 2 1 .如图,直线y= kx + b(k、b为常数)分别与x轴、y轴交于点A( —4, 0)、B(0 , 3),抛物线y=—x + 2x + 1与y 轴交于点C. ⑴求直线y = kx + b的解析式; (2) 若点P(x , y)是抛物线y = —x2+ 2x+ 1上的任意一点,设点P到直线AB的距离为d,求d关于x 的函数解析式,并求d取最小值时点P的坐标; (3) 若点E在抛物线y = —x2+ 2x + 1的对称轴上移动,点F在直线AB上移动,求CE+ EF的最小值.

2 .如图①,已知抛物线y =—身x2+ ^3~x + 3与x轴交于A, B两点(点A在点B的左侧),与y轴 交于点C,点D是点C关于抛物线对称轴的对称点,连接CD过点D作DH Lx轴于点H,过点A作AEL AC 交DH的延长线于点E. ⑴求线段DE的长度; (2)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为线段PF上方抛物线上的一点,求当△ CPF的周长最小时,△ MPF面积的最大值是多少. ① ②

历年中考数学易错题汇编-二次函数练习题附答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线22343 23y x x =- -+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C . (1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ; (2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标; (3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323 y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】 【分析】 (1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵2343 2333y x x =- -+a=233 - ,则抛物线的“衍生直线”的解析式为

人教版中考数学二轮复习专题练习上二次函数与分割面积

二次函数与分割面积 1.已知如图,ABC △中,AC BC =,BC 与x 轴平行,点A 在x 轴上,点C 在y 轴 上,抛物线2 54y ax ax =-+经过ABC △的三个顶点. (1)求出该抛物线的解析式; (2)若直线7y kx =+将四边形ACBD 面积平分,求此直线的解析式. (3)若直线y kx b =+将四边形ACBD 的周长和面积同时分成相等的两部分,请 你确定y kx b =+中k 的取值范围. 解析:(1)由题意可知,抛物线的对称轴为:55 22 a x a -=- =,与y 轴交点为(0,4)C , ∴(3,0)A -,(5,4)B , 把(3,0)A -代入2 54y ax ax =-+得:91540a a ++=, 解之得:16 a =- , ∴215 466 y x x =-++. (2)直线7y kx =+将四边形ACBD 面积平分,则直线一定经过OB 的中点P . 根据题意可求P 点坐标为5 ( ,2)2 ,

把5 ( ,2)2 P 代入7y kx =+得:2k =-, ∴直线的解析式为:27y x =-+. (3)45k - ≤或45 k ≥. 2.如图,在平面直角坐标系中,点 A 的坐标为(1,3),点 在 x 轴的负半轴上, 30ABO ∠=?. (1)求过点A 、O 、B 的抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点C ,使AC OC +的值最小?若存在,求出点C 的坐标;若不存在,请说明理由; (3)在(1)中x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴的垂线,交直线 AB 于点D ,线段OD 把AOB △分成两个三角形.使其中一个三角形面积与四边形 BPOD 面积比为2:3?若存在,求出点P 的坐标;若不存在,请说明理由. 解析:(1)过点A 作AF x ⊥轴于点F , ∵30ABO ∠=?,A 的坐标为(1,3), ∴3BF =. ∵1OF =, ∴2BO =.

相关主题
文本预览
相关文档 最新文档