当前位置:文档之家› 高效记忆1.雄性不育基因(s)与雄性可育

高效记忆1.雄性不育基因(s)与雄性可育

高效记忆1.雄性不育基因(s)与雄性可育
高效记忆1.雄性不育基因(s)与雄性可育

高效记忆1.雄性不育基因(s)与雄性可育

高效记忆 1.雄性不育基因(s)与雄性可育基因(n)的记忆。学习细胞质遗传时,介绍了植物中的雄性不育,是由核质基因共同决定的。细胞核中可育基因(r)对不育基因(r)为显性,这点易记;细胞质中的可育基因(n)与不育基因(s)无显隐关系,就容易混淆了。可把“n”理解成英文单“no”,“s”理解英文单词“yes”,然后再把这两个单词的含义反一下,“yes”为不育、“no”可育,这样就易记多了。

高效记忆2.支原体无细胞壁,衣原体有细胞壁。常见的原核生物中只有支原体没有细胞壁,但学生常将支原体和衣原体混淆,搞不清两者谁有谁无细胞壁。我就对他们说,“衣”原体就像穿了一层衣服,因此衣原体有细胞壁,支原体也就无细胞壁了。

高效记忆 3.常见的七种微量元素。可采用谐音记忆法,“甜梦童心盆沐浴”即“fe、mn、cu、zn、b、mo、cl”七种微量元素。

高效记忆 4.人体必需的八种氨基酸。采用联想记忆法,“苏赖甲、本色亮、洁异亮”,想象出意义:苏赖(人名)的指甲,本来颜色就亮,清洁之后异常亮了。即“苏氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、色氨酸、亮氨酸、缬氨酸、异亮氨酸”八种氨基酸。

高效记忆5.细胞有丝分裂五期的变化特征多而零碎,直

接记忆难度很大。可以把各期的变化归纳为一句口诀,借助口诀记忆。间期:“复制合成暗准备”,意为在间期细胞表面没有变化,但实质上在进行染色质复制,包括了dna复制和有关蛋白质合成,为分裂期作物质上的准备。

前期:“膜仁消失显两体”,意为在前期核膜、核仁消失,形成纺锤体及染色质变成染色体。

中期:“形定数晰赤道齐”,意为到中期,染色体不再缩短变粗,形态固定,数目清晰,便于观察,并整齐排列在细胞中央的赤道板上。

后期:“点裂数加均两极”,意为后期着丝点分裂,两条姐妹染色单体分裂成两条染色体,染色体数目加倍,在纺锤丝的牵引下移向细胞两极,实现平均分配。

末期:“两消三现生二子”,在植物细胞有丝分裂末期,纺锤体消失,染色体变回染色质,核膜、核仁重现,细胞中央出现细胞板,形成新的细胞壁,把一个细胞分隔成两个子细胞(动物细胞中归纳为“两消两现生二子”,因为不会出现细胞板了)。

高效记忆6.滤纸条上四色素带记忆用纸层析法分离绿叶中色素时,滤纸条上会出现4条色带,从上到下依次为胡萝卜素、叶黄素、叶绿素a、叶绿素b,可用概括记忆法,概括为“胡黄ab”四个字记住。

高效记忆7.神经纤维静息时细胞膜内外的电荷分布神经纤维在未受到刺激时,细胞膜内外的电位表现为“内负外正”,学生很易跟“内正外负”混淆。可采用联想记忆法,联想“内含丰富(负)、外树正气”这句话,从而记住“内负外正”。

高效记忆8.大脑皮层言语区四中枢的记忆人类大脑皮层言语区可分成蝶形的四区,分别是书写中枢(w区)、阅读中枢(v 区)、说话中枢(s区)、听觉中枢(h区),学生很难直接把四区的位置与名称对应起来记住(如下左图)。可以采用联想记忆法,把大脑皮层图想象成人的头部,前下方的的s区对应口所在位置,口用来说话的,因此为说话中枢;后下方的h区对应耳所在位置,耳用来听的,因此为听觉中枢;后上方的v区对应眼睛所在位置,阅读用眼睛的,因此为阅读中枢;前上方的w区对应手在位置,人写字时手是在眼睛前方的,因此为书写中枢(如下右图)。

高效记忆9.原肠胚的分化原肠胚的外、中、内三胚层将来分化成高等动物个体哪一部分,可采用口诀记忆法,归纳为“外表感神系、内消呼肝胰、剩下是中胚”,含义是外胚层将来分化成表皮、感觉器官及神经系统,内胚层将来分化成消化系统、呼吸系统、肝脏、胰脏,剩下的都由中胚层分化而来。

高效记忆10.核酸中五种碱基英文缩写与中文名称的对应如果死记硬背会很困难,即使勉强记住,过后也易忘记混淆。可采用形象记忆法帮助记忆。“g”的英文手写体挺像鸟头,从而记住它代表鸟嘌呤;“c”的形状具有包围之势,从而记住它代表胞嘧啶;“t”的形状像西方人胸前挂的十字架,从而记住它代表胸腺嘧啶;“u”的形状较像尿壶,从而记住它代表尿嘧啶(有些不雅,但便于记忆);剩下一个“a”,还找不到合适的形象记忆法,就多读几遍强记住,这样就不会混淆了。

高效记忆11.雌、雄性符号的记忆在生物学中雌性用符号“♀”表示,雄性用符号“♂”表示,在这两个符号记忆时也容

易混淆,可采用联想记法。想象精子是可以游动的,雄性符号“♂”中的箭头表示精子在向前游动;卵细胞中一般是不动的,雌性符号“♀”正像一个靶子,等待精子前去结合受精。

采用口诀记忆法,伴x隐性遗传特点归纳为“一女病则其父其子必病”,伴x显性遗传特点归纳为“一男病则其母其女必病”,伴y遗传归纳为“男性病、父传子、子传孙”。这些归纳成的口诀,用在遗传系谱图的分析中非常有效。

雄性不育性及其在杂种优势中的应用

第五节雄性不育性及其在杂种优势中的应用尽管利用杂种优势已成为提高农业生产效益的主要途径之一,但除了像玉米等少数雌雄异株或雌雄同株异花作物外,在未解决人工去雄的困难以前,难以在生产上大面积推广。而解决这一困难的有效途径是利用植物的雄性不育性。目前水稻、玉米、高粱、洋葱、油菜等作物已经利用雄性不育性进行杂交种子的生产,并产生了巨大的经济效益和社会效益。 一、雄性不育的类别 (一)细胞质不育不育由细胞质基因控制,而与核基因无关。其特征是所有可育品系给不育系授粉,均能保持不育株的不育性,也就是说找不到恢复系。这对营养体杂优利用的植物育种有重要的意义。如:Ogura萝卜细胞质不育系。 (二) 核不育不育性是由核基因单独控制的(简称GMS)。 1、一对隐性核基因控制的雄性不育性蔬菜不育材料大都属于此类。msms 不育,MsMs或Msms可育,共有三种基因型。msms与MsMs交配后代全部可育;msms与Msms交配后代可育、不育株1:1分离;Msms自交后代可育、不育株按3:1分离。只有用Msms作父本与msms不育株测交,可以获得50%的雄性不育株和50%的雄性可育株。 由于在一个群体里,有50%的可育株用于保持不育性。通常称其为“两用系”(ABline)或甲型两用系。将其用于杂种一代制种,则需要拔除50%的可育株。因此,隐性核不育后代不能得到固定(100%)的不育类型。 2、一对显性基因控制的雄性不育性有杂合的不育株Msms、纯合的可育株两种基因型,纯合不育株(MsMs)理论上存在但实际上无法获得。用Msms不育株与msms可育株杂交后代是半不育群体,此种两用系也叫乙型两用系。 3、由多个核基因控制的雄性不育中的一些组合可育成全不育系。有核基因互作假说和复等位基因假说(曹书142或景书159)。 (三)核质互作雄性不育(简称CMS) 不育性由核基因(msms)和细胞质基因(S)共同控制的,又简称为胞质不育型。 一个具有核质互作不育型的雄性不育植物,就育性而言,有一种不育基因型和五种可育基因型。不育基因型S(msms);可育基因型:N(MsMs)、N(Msms)、N(msms)、S(MsMs)、S(Msms)。因此有不育系S(msms)、保持系N(msms)、恢复系

雄性不育

雄性不育系 几乎所有的二倍体植物,不论是野生或栽培的,都可以找到导致雄性不育的核基因。据不完全统计,现已发现近200种植物存在着核质互作型的雄性不育性,其不育程度和遗传稳定性颇不相同。育种上需要的是对环境条件不敏感,能够稳定遗传的雄性不育系。 雄性不育系主要在杂种优势利用(植物)上作母本,可以省去去雄工作,便于杂交制种,为生产上大规模利用杂种一代优势创造条件。核、质互作型不育系的种子繁殖,须靠一个花粉正常而又能保持不育系不育特性的雄性不育保持系授粉。杂交制种则须有一个花粉可育,并能使杂种恢复育性的育性恢复系。这样,不育系、保持系和恢复系(分别简称A、B和R 系)三系配套,就成为利用不育系以大量配制杂交种子的重要前提。 雄性不育系主要可分两类: 一、细胞核雄性不育系 即由控制花粉正常育性的核基因发生突变而形成的不育系。 1、不育机制:一般由1对隐性基因控制,但也有由2~3 对隐性基因互作而产生的雄性不育性(如莴苣)。假如控制花粉正常育性是一对显性基因RfRf,则由于隐性突变,杂合体Rfrf自交后将会分离出纯合基因型rfrf,表现为雄性不育。大麦、玉米、高粱、大豆、番茄、棉花等很多作物都有这样的突变体。但偶尔还发现有杂合的显性核不育现象。其正常可育的基因型为msms,而经显性突变后产生的杂合基因型Msms会由于Ms的显性作用表现为雄性不育,当它被正常育性植株msms授粉结实时,其子代按1:1比例分离出显性不育株和隐性可育株,并依此方法代代相传。1972年中国在山西省发现的由显性单基因控制的太谷核不育小麦就属于此类。 2、利用:因隐性核不育系难以找到有效的保持系,故不能大量产生不育系种子供制种用;但可用杂合可育株给不育株授粉,在正常育性受 1对显性基因控制的情况下,其子代将按1:1比例分离出纯合不育株和杂合可育株。用杂合可育株对不育株授粉,下一代育性分离仍是1:1的比例。采用这种作法可以较大量地繁殖不育株与可育株的混合群体。这种群体内既有不育株又有保持不育性能力的植株,有人因此称之为两用系。杂交制种时,必须在开花前剔去母本群体内的可育株,以保证制种的纯度。一般栽培品种都可作隐性核不育系的恢复系,因此易于配出强优势组合。但要在混合群体开花前的短促时间内剔除全部可育株,对于繁殖系数低、用种量大的作物常因十分费工而不易做到。 1965年,美国R.T.拉梅奇为解决大麦核不育系种子繁殖的困难,提出利用“平衡三级三体”的遗传机制:即在正常染色体上具有隐性雄性不育和隐性稃色正常的基因,在额外染色体上有相应的显性可育基因,并在其附近设法引入一个能使稃壳有色的显性标志基因,两者紧密连锁。额外染色体一般不能由花粉传递,只能以30%的比例由雌配子传给下代。这样的三级三体自交后将产生二体和三体两类植株,二体植株具纯合的雄性不育基因和正常稃色;三体植株带有一个显性可育基因和有色稃壳。通过光电比色装置对种子稃色进行筛选,可将带雄性可育基因的有色种子剔除,以繁殖纯不育系。这一设想后得到实现,育成了1个大麦杂交种,并在生产上推广。但后来在推广繁殖过程中,发现额外染色体通过雄配子的传递率比预期的高,上述机制受到干扰,而且杂种优势不够强,因而停止应用。对于繁殖系数高、用种量少的作物如番茄等,则可直接应用两用系作母本,于开花前逐株检查育性并剔除可育株,授以父本恢复系花粉,产生杂交种子。总之,核不育系由于难以找到保持系,目前在生产上仍不能有效利用。而单基因控制的太谷显性核不育小麦在没有作出标志基因之前,只能作为常规育种中开展轮回选择和回交育种的亲本之用。

植物细胞质雄性不育育性恢复基因研究进展

分子植物育种,2008年,第6卷,第4期,第733-738页Molecular Plant Breeding,2008,Vol.6,No.4,733-738 专题介绍Review 植物细胞质雄性不育育性恢复基因研究进展 马勇邢朝柱*吴建勇 郭立平 中国农业科学院棉花研究所,农业部棉花遗传改良重点实验室,安阳,455000 *通讯作者,xingcz@https://www.doczj.com/doc/5a5037022.html, 摘要植物杂种优势在生产上已被广泛应用,对提高产量和改善品质有重要意义,而生产杂交种的重要途径是细胞质不育及其恢复系统。在杂交品种选育过程中,优良恢复系选育至关重要。近年来植物细胞质雄性不育性恢复的分子机理一直是分子生物学的研究热点。本文综述了目前恢复基因研究的主要进展,讨论了恢复基因的遗传与定位。认为细胞质雄性不育恢复基因一般为单基因或少数显性效应主效基因,且恢复基因间作用方式多样化。目前,玉米Rf2基因、矮牵牛Rf 基因、水稻Rf-1基因、萝卜Rfo 基因都已被克隆。在这些恢复基因的克隆与分离基础上,本文讨论了恢复基因的结构特征及分子机理,认为恢复基因的可能分子机理,一种是恢复基因抑制细胞质雄性不育(CMS)特异ORF 的表达,另一种是恢复基因补偿线粒体功能的缺陷。本文最后对恢复基因在植物分子育种上的应用前景提出了看法。关键词植物,细胞质雄性不育,恢复基因,分子生物学 Advances in the Fertility Restoration Gene for Cytoplasmic Male Sterility in Plants Ma Yong Xing Chaozhu *Wu Jianyong Guo Liping Cotton Research Institute of the Chinese Academy of Agricultural Sciences,Key Laboratory for Cotton Improvement,Affiliated to Ministry of Agriculture,Anyang,455000 *Corresponding author,xingcz@https://www.doczj.com/doc/5a5037022.html, Abstract Plant heterosis that leads to higher yields and fine quality has been wildly utilized,and cytoplasmic male sterility and fertility restorer (Rf )is essential to produce hybrid seeds.To develop elite fertility restorer lines is es-sential to selecting a hybrid combination with high heterosis.In recent years,the mechanism of fertility restoration has become a study hot spot.This paper reviewed the major development of molecular biological research on the Rf gene for cytoplasmic male sterility in plant.Based on analysis of the Rf gene heredity and the localization,it con-cluded the fertility restorer genes are the single gene or the minority dominant effect gene of main effect gene,and the interaction between genes showed diversification.Up to now,the Rf2,Rf ,Rf-1and Rfo have been cloned from maize,petunia,radish and rice respectively.Based on the basis of cloning and separating these Rf genes,the paper discussed the molecular structure and their potential mechanism of fertility restoration,and assumed that one of the possible molecular mechanism is the expression of CMS special ORF is suppressed by Rf gene,the other is the func-tion flaw of mitochondrial of Rf gene compensation.Some viewpoints were brought forward on the prospect of the utilization of Rf genes in the molecular breeding in plants. Keywords Plant,Cytoplasmic male sterility (CMS),Restoring gene,Molecular biologyl 基金项目:本研究由国家支撑计划项目(2006BAD01A00)资助 利用细胞质雄性不育系进行三系配套育种是作物杂种优势利用的重要途径,而恢复系的选育是利 用CMS 配制杂交种的前提之一。 选育恢复系比常规育种具有更多的困难,主要表现在恢复基因的有无 只能在测交后代中鉴定,加上分离世代不可能逐株 测交,造成农艺性状优良的品系常常不含有恢复基因,且恢复力稳定较慢。因而,从分子水平上揭示恢复基因的作用机理,将为生物技术应用到恢复系的 w w w .m o l p l a n t b r e e d .o r g

细胞质遗传和植物雄性不育练习

细胞质遗传和植物雄性不育练习 一、名词解释 细胞质遗传: 植物雄性不育: 核不育: 质核互作不育: 二、填空题 1紫茉莉纸条颜色遗传属于,若用花斑纸条接受白色枝条植株的花粉,发育成的植株的表现型为。 2、透明金鱼(T)和普通金鱼(t)杂交试验,正交和反交的结果一样,F1均为五色鱼,金鱼的体色遗传属于。 3、椎实螺外壳的螺旋方向,右旋对左旋为显性,杂交实验,当右旋与左旋杂交时,F1为右旋,当左旋与右旋杂交时,F1为左旋,则椎实螺外壳螺旋方向的遗传为。 6、植物雄性不育是指由于生理上或遗传上的原因所造成的花粉败育,前者被称为 主要有和引起,是暂时的,不遗传的,后者被称为 ,根据遗传机制的不同可分为和。随着研究的深入人们 又发现了第三种形式的雄性不育,即。 7植物雄性不育的特点是。 4、核基因的主要载体是,细胞质基因的载体是。 5、三系指、、。 三、选择题 1、甲性状和乙性状为细胞质遗传,下列四种组合中能说明这一结论的是() ①甲×乙---F1呈甲性状②甲×乙---F1呈乙性状 ③乙×甲---F1呈甲性状④乙×甲—-F1呈乙性状 A、①② B、③④ C、①④ D、②③ 2、在形成卵细胞的减数分裂过程中,细胞质遗传物质的分配特点是() ①有规律分配②随机分配③均等分配④不均等分配 A、①③ B、②③ C、①④ D、②④ 3、植物的雄性不育现象在()中非常普遍。 A被子植物 B草本植物 C观赏植物 D木本植物 4、多数核不育型均受简单的一对隐性基因(rf)所控制,下列属于雄性不育的是() A、rfrf B、RfRf C、Rfrf D、rfRf 5、关于核基因与质基因的叙述正确的是() A、二者由于存在的场所不同,相互之间完全独立,互不联系。 B、细胞核遗传受质基因的控制。 C、在生命的全部遗传体系中,核基因居主导和支配地位 D、细胞质基因决定细胞器的存在。 6、下列对“三系”间的关系叙述正确的是() A、不育系雌蕊发育正常可自交繁殖后代。 B、不育系依靠保持系繁殖后代。 C、保持系和恢复系的雌蕊和雄蕊发育都正常,故可自交繁殖后代。 D、不育系和恢复系杂交可产生具有杂种优势的杂交种子。 7. 质核互作型雄性不育系的恢复系基因型为() (1)S(Rr) (2)N(rr)(3)S(rr) (4)N(RR) 四、判断题 1、雄性不育系的特点是雄蕊发育不正常,雌蕊发育正常,能接受外来花粉而受精结实。() 2、核不育型一般由一对隐性基因控制的,它只能依靠杂合体自交分离产生雄性不育株。()

第十一章雄性不育及其杂种品种的选育.docx

第十一章雄性不育及其杂种品种的选育 1.概念:雄性不育:是指雄性器官发育不良,失去生殖功能,导致不育的特性。 2.雄性不育性在植物界普遍存在。据 Kaul(1988) 报道,已经在 43 科 162 属 617 个物 种及种间杂种中发现了雄性不育,其中包括玉米、水稻、小麦、高粱、油菜、棉花 等主要农作物。 3.雄性不育可作为重要工具用于各种作物的杂交育种和杂种优势利用。 4.当杂交母本获得了雄性不育性,就可以免去大面积繁殖制种时的去雄劳动,降低生 产成本,提高杂种种子质量,带来更大的经济效益。 5.雄性不育可分为能遗传的和不能遗传的。 第一节雄性不育的遗传遗传的雄性不育分为质核互作不育和核不育两种类型。 一、质核互作雄性不育的遗传解释 (一 )质核互作雄性不育的遗传解释 1.概念:质核互作雄性不育是受细胞质不育基因和对应的细胞核不育基因共同控制的不 育类型,常被简称为胞质不育(CMS)。 2.遗传:①当胞质不育基因S 存在时,核内必须有相对应的隐性不育基因rr,才表现不育。②在杂交或回交时,只要父本核内没有显性可育基因R,则杂交子代一直保持雄性不育,表现细胞质遗传的特征。③如果细胞质基因是正常可育基因N,即使核基因是 rr ,仍然正常可育;④如果核内存在显性可育基因R,不论细胞质是S 或 N,个体均表现育性正常。 按照细胞质中有可育基因N 或不育基因 S,细胞核中有显性可育基因RR,隐性不育基因rr,杂合基因 Rr,质核结合后将会组成 6 种基因型如表 11-1。 6 种基因型中只有 S(rr)一种不育,具有这种基因型的品系或自交系就称雄性不育系,简称不育系(A)。其余 5 种基因型都是可育的,如果以不育型为母本,分别与 5 种可育型杂交将会出现以下三种情况:

高效记忆1.雄性不育基因(s)与雄性可育

高效记忆1.雄性不育基因(s)与雄性可育 高效记忆 1.雄性不育基因(s)与雄性可育基因(n)的记忆。学习细胞质遗传时,介绍了植物中的雄性不育,是由核质基因共同决定的。细胞核中可育基因(r)对不育基因(r)为显性,这点易记;细胞质中的可育基因(n)与不育基因(s)无显隐关系,就容易混淆了。可把“n”理解成英文单“no”,“s”理解英文单词“yes”,然后再把这两个单词的含义反一下,“yes”为不育、“no”可育,这样就易记多了。 高效记忆2.支原体无细胞壁,衣原体有细胞壁。常见的原核生物中只有支原体没有细胞壁,但学生常将支原体和衣原体混淆,搞不清两者谁有谁无细胞壁。我就对他们说,“衣”原体就像穿了一层衣服,因此衣原体有细胞壁,支原体也就无细胞壁了。 高效记忆 3.常见的七种微量元素。可采用谐音记忆法,“甜梦童心盆沐浴”即“fe、mn、cu、zn、b、mo、cl”七种微量元素。 高效记忆 4.人体必需的八种氨基酸。采用联想记忆法,“苏赖甲、本色亮、洁异亮”,想象出意义:苏赖(人名)的指甲,本来颜色就亮,清洁之后异常亮了。即“苏氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、色氨酸、亮氨酸、缬氨酸、异亮氨酸”八种氨基酸。 高效记忆5.细胞有丝分裂五期的变化特征多而零碎,直

接记忆难度很大。可以把各期的变化归纳为一句口诀,借助口诀记忆。间期:“复制合成暗准备”,意为在间期细胞表面没有变化,但实质上在进行染色质复制,包括了dna复制和有关蛋白质合成,为分裂期作物质上的准备。 前期:“膜仁消失显两体”,意为在前期核膜、核仁消失,形成纺锤体及染色质变成染色体。 中期:“形定数晰赤道齐”,意为到中期,染色体不再缩短变粗,形态固定,数目清晰,便于观察,并整齐排列在细胞中央的赤道板上。 后期:“点裂数加均两极”,意为后期着丝点分裂,两条姐妹染色单体分裂成两条染色体,染色体数目加倍,在纺锤丝的牵引下移向细胞两极,实现平均分配。 末期:“两消三现生二子”,在植物细胞有丝分裂末期,纺锤体消失,染色体变回染色质,核膜、核仁重现,细胞中央出现细胞板,形成新的细胞壁,把一个细胞分隔成两个子细胞(动物细胞中归纳为“两消两现生二子”,因为不会出现细胞板了)。 高效记忆6.滤纸条上四色素带记忆用纸层析法分离绿叶中色素时,滤纸条上会出现4条色带,从上到下依次为胡萝卜素、叶黄素、叶绿素a、叶绿素b,可用概括记忆法,概括为“胡黄ab”四个字记住。 高效记忆7.神经纤维静息时细胞膜内外的电荷分布神经纤维在未受到刺激时,细胞膜内外的电位表现为“内负外正”,学生很易跟“内正外负”混淆。可采用联想记忆法,联想“内含丰富(负)、外树正气”这句话,从而记住“内负外正”。

水稻不育系、保持系和恢复系是怎么回事

水稻不育系、保持系和恢复系 早在1926年J· W·琼期就报道了水稻的杂种优势现象。但是由于水稻是自花授粉作物,花器小且雌雄同花,靠人工去雄生产大量的杂交种是不可能的。难怪有人曾一度认定,即使水稻有了强优势的亲本组合,也没有办法大量生产杂交种。 20年代未有人发现了水稻雄性不育现象,后经多年的研究,人们了解了水稻雄性不育的某些规律。从50年代末到60 年代末,日本学者先后培育出了水稻的细胞质与细胞核互作所导致的不育类型,继而实现了水稻不育系、保持系和恢复系的“三系”配套,为水稻杂交种的生产开创了一条道路。1958年日本学者胜尾清用中国的野生稻为母本与日本粳稻藤坂5号杂交,结果发现野生稻的细胞质可使杂种的雄花败育(花粉没有授精能力),为了获得纯合稳定的不育材料,他让野生稻与藤坂5号的杂种后代始终接受藤坂5号的花粉——这种杂种与其亲本之一的杂交称做回交。如此回交几代之后,杂种除了细胞质来自原母本野生稻(杂种的细胞质由母本提供),其细胞核基因几乎都来自藤坂5号,遗传特性也几乎完全象藤坂5号,只是由于其细胞质来自野生稻,花粉不能正常发育,这便育成了藤坂5号雄性不育系。与此同时藤坂5号便是该不育系的保持系,因为它与该不育系的杂交后代可以保持雄花不育性。与之相反,另外一些品种与此不育系杂交的Fl代其雄花可能“恢复”可育,并可以自交结实,我们称这些品种为该不育系的恢复系。如果不育系与恢复系匹配合适,便可以生产出具有强大优势的F1代杂种用于农业生产。所遗憾的是,日本尽管在60年代末就实现了粳稻三系配套,但终因杂种优势不明显而未能应用于生产。 1964年我国湖南的袁隆平在洞庭早籼等品种中发现了一批天然不育材料,并提出了通过选育“三系”利用水稻杂种优势的设想,当时只是苦于找不到理想的保持系。197O年他的合作者李必湖在海南省的野生稻群落中发观了一雄花败育株(简称野败),为水稻三系法制种提供了宝贵的种质资源。通过这个野败材料很快育成了一批籼型不育系,继而筛选出了强优势的恢复系,从而揭开了水稻杂种优势利用的新篇章。 三系中不育系的不育性是受细胞质和细胞核基因共同控制的,只有细胞质和细胞核中都不含可育基因,才表现为雄花败育;保持系与恢复系的差别之一就是前者的细胞核中所含是隐性不育基因(但细胞质可育),而后者的细胞核则含有显性可育基因。三系法所制出的杂种Fl代核基因是杂合的。所以杂种只能用一代,F2代会发生性状分离,对于某些育性类型还会发生育性分离,不能再做种用。

水稻不育相关基因

HSA1a和HSA1b 【定位与克隆】 hsa1位点由两个互作基因HSA1a和HSA1b组成,利用Asominori/IR24和 Koshihikari/W0106-2构建的两个分离群体将hsa1位点定位在87.1-kb区域内,互补实验证实Os12g39880和Os12g39920是引起高度不育的原因(Kubo et al. 2016)。 粳稻等位基因HSA1a-j编码一个高度保守未知功能的植物特异结构域蛋白DUF1618,而籼稻等位基因HSA1a-i s包括6个SNPs和两个删除突变,导致结构域结构的破坏(Kubo et al. 2016)。 【时空表达谱】 HSA1a在幼穗和单核期的生殖器官包括雌蕊、雄蕊中表达,在叶片、茎、根中没有表达,HSA1a蛋白在单核期的幼穗中表达(Kubo et al. 2016)。 【生物学功能】 HSA1a和HSA1b具有遗传互作,DUF1618蛋白在配子发育中可能发挥作用(Kubo et al. 2016)。 Takahiko Kubo;Tomonori Takashi;Motoyuki Ashikari;Atsushi Yoshimura;Nori Kurata, Two Tightly Linked Genes at the hsa1 Locus Cause Both F1 and F2 Hybrid Sterility in Rice.Molecular Plant, 2016, 9(2): 221-232 pms3; p/tms12-1; IncRNA; LDM 控制粳稻农垦58S光敏型雄性不育和控制籼稻培矮64S温敏雄性不育的基因,克隆证实它们位于同一个位点,是一个非编码RNA。 【基因的发现、命名与定位】 以―农垦58S×农垦58‖及―农垦58S×1514‖两个F2群体为材料,通过BSA分析找到了农垦58S 所携带的另1个光敏核不育基因pms3,并将其定位于第12 染色体上(梅明华等, 1999);对农垦58S/大黑矮生标记基因系FL2 组合组建可育集团和不育集团,并以亲本对照进行了RFLP、RAPD和双引物RAPD分析,结果发现第12 染色体的1个单拷贝标记G2140 与光敏核不育基因连锁遗传,二者之问的遗传图距为14.1cM(李子银等, 1999);陈亮等筛选出与光敏不育基因pms3连锁的标记F3和V4,其与pms3的遗传距离分别为5.80cM和7.75cM;李香花等则进一步将pms3定位在12号染色体上的RFLP标记M36和RZ261之间,与两标记的遗传距离分别为1.5cM 和3.05cM。 【基因的克隆、功能研究】 华中农业大学张启发研究团队指出控制农垦58S不育的是一个长的非编码RNA,LOC_12g36030的转录本1即pms3。研究表明一个长度为1236bp,且与长光照下特异的雄性不育相关的RNA分子(LDMAR)。长日照条件下,足够的LDMAR 转录量是维持正常花粉发育所必需的,但由于一个单碱基突变造成LDMAR 二级结构改变,导致了LDMAR 在

雄性不育系

雄性不育系:是一种雄性退化(主要是花粉退化)但雌蕊正常的母水稻, 由于花粉无力生活,不能自花授粉结实,只有依靠外来花粉才能受精结实。因此,借助这种母水稻作为遗传工具,通过人工辅助授粉的办法,就能大量生产杂交种子。 保持系:是一种正常的水稻品种,它的特殊功能是用它的花粉授给不育系后,所产生后代,仍然是雄性不育的。因此,借助保持系,不育系就能一代一代地繁殖下去。 恢复系:是一种正常的水稻品种,它的特殊功能是用它的花粉授给不育系所产生的杂交种雄性恢复正常,能自交结实,如果该杂交种有优势的话,就可用于生产。 三系杂交水稻:是指雄性不育系、保持系和恢复系三系配套育种,不育系为生产大量杂交种子提供了可能性,借助保持系来繁殖不育系,用恢复系给不育系授粉来生产雄性恢复且有优势的杂交稻。 两系杂交稻:一种命名为光温敏不育系的水稻,其育性转换与日照长短和温度高低有密切关系,在长日高温条件下,它表现雄性不育;在短日平温条件下,恢复雄性可育。利用光温敏不育系发展杂交水稻,在夏季长日照下可用来与恢复系制种,在秋季或在海南春季可以繁殖自身,不再需要借助保持系来繁 殖不育系,因此用光温敏不育系配制的杂交稻叫做两系杂交稻。 超级杂交稻:水稻超高产育种,是近20多年来不少国家和研究单位的重点项目。日本率先于1981年开展了水稻超高产育种,计划在15年内把水稻的产量提高50%。国际水稻研究所1989年启动了“超级稻”育种计划,要求2000年育成产量比当时最高品种高20%-25%的超级稻。但他们的计划至今未实现。我国农业部于1996年立项中国超级稻育种计划,其中一季杂交稻的产量指标为,第一期(1996-2000年)亩产700公斤,第二期(2001-2005年)亩产800公斤。 三系杂交水稻 三系杂交水稻是水稻育种和推广的一个巨大成就,所谓三系是:(1)雄性不育系。雌蕊发育正常,而雄蕊的发育退化或败育,不能自花授粉结实。(2)保持系。雌雄蕊发育正常,将其花粉授予雄性不育系的雌蕊,不仅可结成对种子,而且播种后仍可获得雄性不育植株。(3)恢复系。其花粉授予不育系的雌蕊,所产生的种子播种后,长成的植株又恢复了可育性。

植物雄性不育类型及其遗传机制的研究进展

植物雄性不育类型及其遗传机制的研究进展 李泽福1) 夏加发2) 唐光勇2)  (1)安徽省农业科学院省部共建水稻遗传育种重点开放实验室,合肥230031;2)安徽省农业科学院水稻研究所) 摘要 对植物雄性不育分类方法和类型进行了概述;对细胞质雄性不育的经典遗传及其分子遗传机制、细胞核雄性不育的遗传及不育基因的定位等研究进展进行了综述。 关键词 植物雄性不育;类型;遗传机制 Types and G enetic Mechanisms of P lant M ale Sterility Li Z efu et al (K ey Lab of Rice G enetics and Heredity,Anhui Academy of Agricultural Sciencs Hefei230031) Abstract The classification methods and types of plant male sterility was concluded;Classic genetic researches and m olecular mechanisms of cyto2 plasm ic male sterility(C MS),classic genetic researches and m olecular-marked sterile genes of genetic male sterility(G MS)were reviewed in this paper. K ey w ords Plant male sterility,Classification,G enetic mechanism 植物雄性不育是一种植物在有性繁殖过程中不能产生正常的花药、花粉或雄配子的遗传现象,它广泛存在于开花植物中。早在1763年K olreuter就观察到雄性不育现象,一个世纪后,C oleman(1876)首先引入“植物雄性不育”概念。据K aul(1988)报道,已经在43科、162属、320个种的617个品种或种间杂种中发现雄性不育[1]。植物雄性不育是作物杂种优势利用的重要途径,杂种优势利用已成为许多作物育种的主要方向和目标,并在生产上取得了很大地成功,如我国杂交水稻种植面积占水稻总面积的46%~55%,其产量比常规品种增产20%~30%[2]。植物雄性不育性状的分类和遗传机制是杂种优势利用的基础,在这方面已取得许多研究进展,尤其是在不育性遗传上,已形成了较为科学的理论,并且用于指导雄性不育系的选育和改良。基于此,笔者对植物雄性不育的类型及其遗传机制的研究进展作一综述,以期为雄性不育系的选育提供理论参考。 1 植物雄性不育的类型 1.1 植物雄性不育类型概述 导致雄性不育的因素是多种多样的,因此,在分类上也因标准不同出现不同的分类系统。Sears(1947)根据雄性不育材料基因型的差异,将雄性不育划为3类,即细胞质不育型、细胞核不育型和质核互作不育型,即“三型学说”;Edwarson(1956)将“三型学说”修改为“二型学说”,即核不育型和核质互作不育型两类;G abelman(1956)根据花粉、雄蕊的形态将雄性不育划分为花粉型、雄蕊型和功能型3类;Heslop-Harrison(1971)按世代交替把雄性不育划分为孢子体不育和配子体不育2种类型。这说明只要分 作者简介:李泽福(1965-),男,安徽霍邱县人,副研究员,主要从事水稻遗传育种研究。 收稿日期:2000210226类的依据和标准不同,分类的结果就不同。即使在同一作物内,也会因分类标准不同而有不同分类系统。如水稻雄性不育就有4种分类方法[3],分别是按恢保关系、不育细胞质来源、花粉败育形态和遗传特点来划分的。 K aul[1]在总结前人研究的基础上将植物雄性不育归纳为非遗传型和可遗传型2大类。非遗传的类型根据不育性诱发原因被分为化学诱导、生理诱导和生态诱导3个类型;可遗传型又分为表现型雄性不育和基因型雄性不育2类。前者是以不育性表现为基础的,后者是以不育性的遗传本质为基础的。表现型雄性不育又根据导致雄性不育的表现型异常的不同划分为孢子发生型、结构型和功能型3类;基因型雄性不育又分为核不育型、胞质不育型和核质互作型。随着与细胞质不育基因特异作用的核基因的发现,已经证实,细胞质雄性不育仅仅是核质互作雄性不育的一个短暂的过程,不能被认为一种雄性不育类型,因此,从不育性的基因型组成角度上划分,植物雄性不育有核质互作雄性不育和细胞核雄性不育2种类型。 1.2 核质互作雄性不育 雄性不育性由核不育基因和细胞质不育基因相互作用而产生的,为了与核雄性不育对应,称为细胞质雄性不育(C ytoplasm ic m ale sterility,C M S)。根据水稻、玉米、小麦和油料等作物C M S分类研究情况,C M S可进一步做以下分类。 1.2.1 按不育胞质来源分类。核置换法是C MS选育的重要方法,大多数的C MS都是通过该方法选育成的,因此,按细胞质来源不同进行分类具有简单明了、易于应用的特点,而被广泛应用。水稻C MS可分为种间核置换,野生稻和栽培稻之间的核置换,栽培稻和野生稻之间的核置换,籼稻和粳稻亚种间的核置换,粳稻和籼稻亚种间的核置换及进化程度不同或地理上远距离的籼籼间或粳粳间的核置换等6种类型[4]。傅寿仲[5]按细胞质来源的不 安徽农业科学,2000,28(6):742-746 Journal of Anhui Agricultural Sciences

基因组学

课程名称基因组学 硕士课程论文 题目:基因枪技术在植物学研究中的应用 学科专业: 植物学 年级: 2012 学号: 2012210632 研究生:侯敏指导教师:查笑君 论文提交时间: 2012 年 12 月 11 日 基因枪技术在植物学研究中的应用

摘要基因枪是当今研究中一种重要的基因转移方法,在各个应用领域都显示出了其独特的优越性,因而广受重视;与此同时,基因枪技术本身也在实践中不断发展和完善。本文在回顾和总结基因枪技术使用原理的基础上,综述了基因枪在植物学研究中的应用。 关键词基因枪;植物学;基因转移;应用 Appl ication of Particle Bombardment in the Research of Botany Abstract As an important means of gene delivery , gene gun technology has showed its superiority in many application fields of gene engineering , and so has gained wide attention. At the same time , gene gun technology is also evolving in practice. Upon the retrospection and of the gene gun principles , the application of the gene gun in the Botanical Research was summaried. Key words Gene gun ; botany ; gene delivery ;application 1 基因枪技术的转化原理与发展 近年来转基因技术以前所未有的速度进步人们已经不再满足于单个基因成功插入原有生物的基因组中而是把目光放在插入基因的成功表达和产。然而自然界的生物体是十分复杂的有机整体许多的功能性状并不是单个基因可简单调控的即使像海藻一样简单的双糖在酵母中的代谢途径也需要个基因产物的直接参与。目前进行多基因转化研究的主要技术手段有两种一种是单质粒载体的转化即几个目的基因和标记基因在同一载体质粒上另一种是目的基因和标记基因位于不同的载体上的共转化研究后者的主要优点在于能在分离的世代中把在生产中没有意义的基因分离同时也可以转入更多的外源基因基因枪转化方法则是实现其转化的主要途径。 基因枪技术( Particle gun) ,又称生物弹或生物发射法(Biolistic process) 、粒子轰击技术( Particle bombardment) 和高速微粒子发射技术( High - velocity microprojectile) 。其原理是利用高速飞行的微米或亚微米级惰性粒子(钨或金粉) ,将包被其外的目的基因直接导入受体细胞,并释放出外源DNA ,使DNA 在受体细胞中整合表达,从而实现对受体细胞的转化。根据动力来源不同,基因枪可大体分为火药式( Gunpowder )、放电式( Elect ric discharge) 和气动式(Pneumatic) 3 种类型。1987 年美国康乃尔大学的J . C. Santord 等设计制造的火药式基因枪是最初的基因枪。到目前为止还有以化学推进剂为动力(弹药枪) 和以放电为动力(电子枪) 用于粒子轰击细胞的新工具,特点是能转化有细胞壁的植物细胞,并能直接向细胞器中输入DNA ,或用来转化花粉以避开组织培养的操作。在全面推广粒子枪之前还要进行开发和改良,更有效的电子枪会取代弹药枪。 2 基因枪法在禾谷类作物遗传转化中的应用 2.1 转化目的基因改良作物性状在用基因枪法转化禾谷类作物的研究中,转化的目的基因主要有抗除草剂基因、抗虫基因、抗病基因、雄性不育基因等。 2.1.1 转化抗除草剂基因 抗除草剂基因既可用作选择标记基因建立遗传转化系统,又能作为目的基因,使转基因作物在生长期间可使用除草剂除草,从而免去人工除草工作,节省了大量劳力。常用的抗除草剂基因是PPT 乙酰转移酶基因(又称bar 基因) ,抗除草剂bialaphos。用基因枪法将bar 基因转化小麦[、水稻、玉米、高粱,均获得了抗除草剂植株。 2.1.2 转化抗虫基因 在禾谷类作物中,用基因枪法转化的抗虫基因主要是苏云金芽孢杆菌的晶体蛋白基因(Bt 基因) ,而且在玉米中报道得较多,王国英等用基因枪法将Bt 基因转化玉米胚性愈伤组织,获得了转Bt 基因的植株,对一个转Bt 基因植株的杂交后代进行了玉米螟抗性的田间鉴定,抗虫和感虫植株的比例接近1∶1 ,符合孟德尔单显性基因的遗传规律。在水稻中,用改良的苏云金杆菌δ—内毒素[cryIA(b) ]基因经基因枪法转化,获得了能育的抗黄茎钻蛀虫转基因粳稻植株。 2.1.3 转化抗病基因 简玉瑜等用基因枪法将抗菌肽B(cecropin B) 基因导入水稻得到了转基因植株,对T3 代抗白叶枯

雄性不育细胞学观察综述

农学院 本科课程论文 题目:玉米雄性不育的细胞学机理 专业班级:农学1002班 学号: 2010014010220 学生姓名:倪志玲 指导教师:祝丽英 职称:副教授 二O一三年十月二十日

玉米雄性不育的细胞学机理 摘要:随着生产和科研的需求,玉米雄性不育的细胞学机理及其利用已成为国内外众多学者研究的热点。本文从玉米细胞质雄性不育的分类、败育的细胞学特征、败育机理等方面对近年来国内外关于玉米雄性不育细胞学机制研究的最新进展进行了综述,并探讨了今后该领域的研究前景。 关键词:玉米;雄性不育;败育;小孢子 Cytological Mechanism of Male Ster ility in Maize Abstracts: With the need of production and research, the study of cytological mechanism of male sterility and its use has become a hot at home and abroad.This article summarized the latest progress on the cellular mechanisms of male sterility in maize from the classification of maize cytoplasmic male sterility, abortion cytologic features, mechanism and other aspects of abortion at home and abroad in recent years. It also recapitulated the development foreground of this research fields. Key words:Maize; male sterility; abortion; small spores 1.前言 雄性不育是指植物本身不能产生正常可育花粉的一种生物学现象。雄性不育系是保证杂交种纯度、降低种子生产成本的最佳材料。雄性不育生产杂交种是作物育种中利用杂种优势的重要途径。利用雄性不育系生产杂交种不仅节省了人工去雄环节,减轻了劳动强度, 降低了种子生产成本;同时, 由于雄性不育使玉米生长发育节省了大量的养分消耗,雌穗发育得到充足的养分,从而大幅度地提高玉米制种的产量[1]。玉米是最早应用雄性不育性的作物之一,但大部分玉米不育系并不是全部不育,因此生产的杂交种中会混有大量自交系种子,严重影响种子质量。随着生产和科研的需求,寻找和创造育性稳定、败育彻底的新材料仍是育种专家们亟待解决的问题之一。 2.雄性不育的分类 雄性不育可由环境因素诱导形成,如高温、干旱、盐碱害、低温冻害等,但是这些不育不能遗传给后代。可遗传的雄性不育按照遗传特点的不同,分为细胞核雄性不育(genome male sterility,GMS)和胞质雄性不育(cytopiastic male sterility,CMS)。

作物雄性不育系的鉴定

实验十作物雄性不育系的鉴定 一、实验目的 学习和初步掌握雄性不育系的植物学形态特征和花粉育性鉴定技术. 二、内容说明 雄性不育是指雌雄同株作物中,雄性器官发育不正常,不能产生有功能的花粉,但它的雌性器官发育正常,能接受正常花粉而受精结实的现象。雄性不育一般可分为3种类型:①细胞质雄性不育型,简称质不育型,表现为细胞质遗传。②细胞核雄性不育型,简称核不育型,表现为细胞核遗传。③核-质互作不育型,表现为核-质互作遗传。无论植物的不育性是那种类型,它们都会在一定的组织中表现出来。雄性不育系花粉的败育,一般出现在造孢细胞至花粉母细胞增殖期、减数分裂期、单抱花粉期(或单抱晚期)、双核和三核花粉期。其中出现在单孢花粉期较为普遍。雄蕊败育大概可分成以下几种类型: (一)花药退化型一般表现为花冠较小,雄蕊的花药退化成线状或花瓣状,颜色浅而无花粉。 (二)花粉不育型这一类花冠、花药接近正常,往往呈现亮药现象或褐药现象,药中无花粉或有少量无效花粉、镜检时,有时会发现少量干瘪、畸形以及特大花粉粒等,大多数是无生活力的花药。 (三)花药不开裂型这类不育型虽然能形成正常花粉,但由于花药不开裂不能正常散粉,花粉往往由于过熟而死亡。 (四)长柱型功能不育这一类型花柱特长,往往花蕾期柱头外露,虽然能够形成正常花粉但散落不到柱头上去。 (五)嵌合型不育在同一植株上有的花序或花是可育的,而有的花序或花则是不育的,在一朵花中有可育花药,也有不育花药。 作物雄性不育系则是具有雄性不育现象,并能将雄性不育性遗传给后代的作物品系。 我们都知道,杂种优势普遍存在,在很多植物由于单花结籽量少,获得杂交种子很难,从而是杂交种子生产成本太高而难以在生产上应用,利用雄性不育系配制杂交种是简化制种的有效手段,可以降低杂交种子生产成本,提高杂种率,扩大杂种优势的利用范围。因此,雄性不育在杂交过程中有着重要的作用。当前,农作物杂种优势主要是利

相关主题
文本预览
相关文档 最新文档