当前位置:文档之家› 一种基于PWM的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计
一种基于PWM的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计

原作者:韩金刚史新乾汤天浩王小明

一、前言

振动测试系统是模拟某种产品的实际使用环境,在产品出厂前检验其结构特性和可靠性,这对于新产品开发起着重要作用,因此,被广泛应用于军事,自动化,半导体,汽车,航空航天等行业。

采用开关功率放大器的电动式振动测试系统是目前应用广泛的一种振动试验系统。通常能提供正弦、随机和冲击试验环境,它的频率范围广,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。

功率放大器是电动振动试验系统的重要组成部分,其性能和与振动台的匹配状况直接关系着系统的性能。功率放大器发展到现在已经历了3代:电子管功率放大器、晶体管线性功率放大器及开关功率放大器。目前电子管功率放大器已经很少使用,晶体管线性功率放大器效率通常只有50%左右,而其他的能量则转化为热能,不但效率低,而且散热是个很大问题。开关功率放大器如果采用功率场效应管(PMOSFET),则损耗很小,效率可达到90%,发热少,冷却设备简单。由于开关功率放大器输出电压容易调节,且电流的波峰系数较大,这样就可以直接与振动台耦合,而不需要输出变压器。而且PMOSFET的开关频率高,因此放大器体积小,功率密度大,容易实现模块化。

本文应用PWM技术设计并实现了5kW的功率放大器模块。由于采用PMOSFET,开关频率达到50 kHz,体积比较小,效率高。输出电感铁芯采用钻基非晶合金,频率响应范围广。2主电路设计2.1主电路结构

开关式功率放大器主电路结构如图1所示。三相交流电经过工频变压器隔离、降压送入三相全桥滤波器,然后通过电容滤波得到低纹波直流电源V in。主电路由4只PMOSFET组.成一个全桥变换器。输出的电压波经过常模和共模扼流线圈滤波后输出到振动台。

开关功率放大器输出正弦波(5Hz~5kHz)或随机波形。采用提高开关频率的方法来抑制谐波虽然有效,但是会增加PMOSFET的开关损耗,从而导致变换器的效率下降。本文采用倍频PWM技术,即三角载波的频率为100 kHz,而MOSFET的开关频率为50 kHz,这样不仅能够有效地降低谐波,而且也可以减少开关损耗。变换器工作时,同一个桥臂上的MOSF ET交替导通,当Q1,Q3同时导通时输出为零,只有对角线上的Q1,Q4或Q3,Q2同时导通时才输出电压波形。

二、控制逻辑

由于开关功率放大器是通过输入信号来改变输出结果的,所以是开环控制。其控制逻辑如图2所示,由载波发生,调制信号,比较单.元和延时单元组成。载波是频率为50 kHz三角波,由模拟振荡电路获得。调制信号由振动台控制系统给定,滤波后送到比较器的同相端。载波以及反相的载波分别送到比较器的反相端。调制后的信号通过一个由RC电路和与非门组成的延时单元,防止同一桥臂的MOSFET的直通,最后经过缓冲器到驱动电路。

三、驱动电路

变换器输出电流有效值为50 A,输出电压有效值为100V。采用IR公司的HEXFET IRFP250N,VDS=200V,ID=30A,开关频率大于100kHz。考虑到能提供一定的裕量和过载能力,每个桥臂用4只MOSFET并联。驱动电路原理如图3所示。

四、输出滤波电路设计

开关功率放大器中MOSFET的导通和关断,电容的充放电都产生很强的电磁干扰。为了减少EMI发射量以及避免外部干扰对本机的影响,输出滤波电路非常关键。输出滤波电路如图4所示。图4中L l,L2和C ol用来减少常模干扰,而L3,C o2和C o3用来减少共模干扰,其中L l=L2,C o2=C o3。功率放大器输出最高频率为5kHz,可以选择截止频率为10kHz,则L1和L2可由下式计算

C ol由两个2.2μF的高频薄膜电容并联所得,计算可知,L l和L2取30μH。C a2和C o3则取0.22μF的高频薄膜电容,截止频率为10kHz,计算可知,L3取1.15mH。

非晶态合金具有软磁性能好,强度和硬度高,韧性、耐蚀性和耐磨性好,饱和磁密度高,矫顽力小,电阻率高,损耗小等特点,适宜电抗器和高频开关电源变压器。考虑到开关功率放大器的输出频率范围较宽(5Hz~5kHz),所以铁芯采用钻基非晶合金。饱和磁密达到1.54T,磁导率达到100 kH/m,而且损耗小。另外,在进线和出线上添加磁环,可减少噪声。

五、监控电路设计

图5是监控系统的原理框图,核心是Atmel公司的8位单片机AT89C52,主要功能是监测模块状态,检测输出电压电流以及故障显示。模块的故障信号经过RS触发器保持后送到单片机。对输出电压和电流进行电阻取样,然后经过A/D转换送到单片机。单片机另一作用是管理液晶显示器,该显示器的显示方式为中文显示,主要内容包括输出电压电流值、故障、系统的运行状态等。

七、结论

试验证明,采用全桥PWM技术的开关功率放大器具有效率高(大于90%),体积小,失真度低,信噪比高,容易实现多机并联使用,大大提高功率放大器的总容量。本文研制的功率放大器,已应用在电动振动台系统中,具有较好的应用前景。

开关功放的调制技术

时间:2011-05-14 14:17:09阅读:17

在电磁FAG轴承中应用的开关功放主要工作于两电平模式,最近三电平功放也是研究的热点,但无论是工作于两电平还是三电平的功放,其基本调制原理都是一样的,常见的调制方式主要有PWM调制型、采样保持型、滞环比较型、最小脉宽型等,下面以常见的两电平工作模式为例,介绍这四种最常用的调制方法。PWM型功放调制方法是将功放的电流误差信号与一个固定频率和幅值的三角波或锯齿扳相比较,当三角波信号一大于电流误差信号时,输出高电平驱动开关管导通,线圈电流随之上升;三角波信号低于误差信号时,停止输出高电平,开关管截止,线圈电流随之下降,采用PWM调制方式,由于开关管的开关频率

固定,功放容易实现同步。适当地提高PWM功率放大器的开关频率,可以减小电流纹波,提高系统的稳定性。另外,在PWM功率放大器中引入电流负反馈,可以抑制负载变化对电流的影响,拓宽功率放大器的频带,提高电彼力的响应速度。

若使用具有保护功能的调制芯片来产生PWM波,还可以简化电路,提高系统的可靠性。总之,这种结构的功率放大器具有了所有工业应用必须的特征,目前市场上的电磁FAG进口轴承系统功放大多是基于PWM技术构建的。PWM功放一个明显的缺点就是电流纹波较大,调制频率越低,纹波越大。另外一个问题是当电流增益太大时,PWM调制可能失败,导致输出脉宽只在O%和100%两个状态振荡。具体情况是这样的:当电流增益很大时,参考信号或外界扰动的微小变化就可能使PWM功放的输出脉宽到达100%,电流很快上升到达饱和,此时实际电流远超过参考值,为减沙电流,控制器接着只能输出脉宽O%,电流又马上回落远低于参考值,控制器要求输出脉宽又回到100%,电流又马上上升,如此循环,脉宽只在0%和100%两个状态振荡。德国FAG轴承当电流增益大到一定程度时,PWM功放就会工作于ballg一bang模式,只存在开和关两种状态,达不到所希望的连续脉宽调制

PWM功率放大电路

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室 一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于电源电压,即||=。图1描绘了电枢的电压波形和电流波形。在图中,为PWM UU T CAB脉冲周期,为正脉冲宽度,为负脉冲宽度。电枢两端的电流是一个脉动的连TT hP续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM 的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设

计PWM功率放大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,为转矩系数,(为电机电磁常数、为励磁磁通),U?KC?KC?CTMMT.为功放电源,为电枢电感,为电机静摩擦力矩。TL SA另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于,则要求切换频率满足下式:?式中,为电机及负载的转动惯量。J(2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,是电机电枢电阻。R A(3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz至数万Hz的范围内选取PWM切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM功率放大器 图2举出了一个实际的标准双极性PWM功率放大器。它是一个典型的H型功放,四个功放管分别采用NPN型达林顿管TIP122和PNP 型达林顿管TIP127。PWM脉冲信号通过光电耦合器件4N35加到晶

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.doczj.com/doc/5a210524.html, 查询1203P60供应商

开关稳压电源设计说明书

开关稳压电源设计说明书 学生姓名: 学号: 专业班级:物电学院电子2班报告提交日期: 2014年5月20日 湖南理工学院物电学院

目录 一、设计任务及要求 (2) 1、设计任务 (2) 2、设计要求 (2) 二、基本原理与分析 (2) 三、方案设计 (5) 1、开关器件的选择 (5) 2、参数的设定 (5) 四、电路设计 (5) 1、电路整体设计 (5) 2、电路工作原理 (5) 五、总结 (7) 六、参考文献 (7)

一、设计任务及要求 1、设计任务 设计一手机开关型电池充电器,满足: (1)开关电源型充电; (2)输入电压220V,输出直流电压自定; (3)恒流恒压; (4)最大输出电流为:I max=1.0 A; 2、设计要求 (1)合理选择开关器件; (2)完成全电路理论设计、绘制电路图; (3)撰写设计报告。 二、基本原理与分析 随着电子技术和集成电路的飞速发展,开关稳压电源的类型越来越多,分类方法也各不相同,如果按照开关管与负载的连接方式分类,开关电源可以分为串联型、并联型和变压器耦合(并联)型3种类型。下面分别对这三种类型的开关电源做一些简单的介绍。 (1)串联型。 图1所示的开关电源是串联型开关电源,其特点是开关调整管VT与负载R L串联。因此,开关管和续流二极管的耐压要求较低。且滤波电容在开关管导通和截止时均有电流,故滤波性能好,输出电压U0的纹波系数小,要求储能电感铁心截面积也较小。其缺点是:输出直流电压与电网电压之间没有隔离变压器,即所谓“热地盘”,不够安全;若开关管部短路,则全部输入直流电压直接加到负载上,会引起负载过压或过流,损坏元件。因此,输出端一般需加稳压管加以保护。 根据稳压条件可得:(U i-U0)T1/L=U0T2/L 即 U0=U1T1/(T1+T2)=(T1/T)U i,σ=T1/T 由上式可见,可以通过控制开关管激励脉冲的占空比σ来调整开关电源的输出电压U0。

pwm开关型功率放大器

电力电子技术 课程设计报告 题目PWMf关型功率放大器的设计 专业电气工程及其自动化 班级电气 学号 学生姓名 指导教师 2008年春季学期 起止时间:2008年6月23日至2008年6月27日

一、总体设计 1 ?主电路的选型(方案设计)

经过对设计任务要求的总体分析,明确应该使用电力电子组合变流中的间接交流变流的思想进行设计,因为任务要求频率是可变的,故选择交直交变频电路(即VVVF 电源)。交直交变频电路有两种电路:电压型和电流型。在逆变电路中均选用双极性调制方式。 方案一:采用电压型间接交流变流电路。其中整流部分采用单相桥式全控整流电路,逆变部分采用单相桥式PWM e变电路,滤波部分为LC滤波,负载为阻感性。电路原理图如下所示: 方案二:采用电压型间接交流变流电路。其中整流部分采用单相全桥整流电路,逆变部分采用单相桥式PWM K变电路,滤波部分为LC滤波,负载为阻感性。电路原理图如下所示: 方案三:采用电压型间接交流变流电路。其中整流部分采用单相桥式PWM 整流电路,逆变部分采用单相桥式PWM e变电路,滤波部分为LC滤波,负载为阻感

性。电路原理图如下所示: 分析: 方案一中整流电路与逆变电路都采用全控型可以通过控制a角的大小来控制Ud 的大小。 方案二中的整流电路是单相全桥整流电路,属于不可控型。Ud大小不可变。 方案三采用双PWM&路。整流电路和逆变电路的构成可以完全相同,交流电源通过交流电抗器和整流电路联接,通过对整流电路进行PWMI制,可以使输入电流为正弦波并且与电源电压同相位,因而输入功率因数为1,并且中间 直流电路的电压可以调整。但由于控制较复杂,成本也较高,实际应用还不多,故此处没有选用。 经过分析我选用了方案一。其中控制部分采用双极性PWM波控制触发,从而控制负载电流和电压。由于逆变部分采用电压型逆变电路,所以当选用电阻性负载时其电流大致呈正弦波,电压呈矩形波。

开关可调稳压电源的设计与制作

开关可调稳压电源的设计与制作 设计思想: 交直流转换,稳压:变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)变压器由铁芯(或磁芯)和线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器输送的电能的多少由用电器的功率决定. 将 220V 交流电压首先通过隔离变压器降压为 18V 的交流电压,隔离变压器的主要作用是:使一次侧与二次侧的电气完全绝缘,也使该回路隔离。另外,利用其铁芯的高频损耗大的特点,从而抑制高频杂波传入控制回路。用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合,此时,系统的对地电容电流小得不足以对人身造成伤害。还有一个很重要的作用就是保护人身安全。足以对人身造成伤害。隔离危险电压.18V 交流电压经过滤波二极管和电容 C2 进行滤波,经过lm7818 输出稳定的 18V 电压,电容 C1C3 是为了滤掉直流电压的毛刺,使其输出稳定 设计方案: 方案中使用隔离变压器提高抗电磁干扰能力,使用脉宽调制电路控制电压输出,采用 DC-DC 变换器,提高电源效率。 设计原理图如下: 电路原理图如下:

电路仿真结果如下: 各元器件与模块: N7818 稳压芯片介绍: 共有三种外形封装形式,,管脚 1 是电压输入脚,2 是接地脚,3 是稳定电压输出脚,用于稳压,原件如图所示: DC—DC 升压模块,DC-DC 升压变换器的工作原理:DC-DC 功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的 DC-DC 变换器又可分为降压式、升压式、极性反转式等几种;隔离型的 DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等

一种基于pwm的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计 一、前言 振动测试系统是模拟某种产品的实际使用环境,在产品出厂前检验其结构特性和可靠性,这对于新产品开发起着重要作用,因此,被广泛应用于军事,自动化,半导体,汽车,航空航天等行业。 采用开关功率放大器的电动式振动测试系统是目前应用广泛的一种振动 试验系统。通常能提供正弦、随机和冲击试验环境,它的频率范围广,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。 功率放大器是电动振动试验系统的重要组成部分,其性能和与振动台的匹配状况直接关系着系统的性能。功率放大器发展到现在已经历了3代:电子管功率放大器、晶体管线性功率放大器及开关功率放大器。目前电子管功率放大器已经很少使用,晶体管线性功率放大器效率通常只有50%左右,而其他的能量则转化为热能,不但效率低,而且散热是个很大问题。开关功率放大器如果采用功率场效应管(PMOSFET),则损耗很小,效率可达到90%,发热少,冷却设备简单。由于开关功率放大器输出电压容易调节,且电流的波峰系数较大,这样就可以直接与振动台耦合,而不需要输出变压器。而且PMOSFET的开关频率高,因此放大器体积小,功率密度大,容易实现模块化。 本文应用PWM技术设计并实现了5kW的功率放大器模块。由于采用PMOSFET,开关频率达到50 kHz,体积比较小,效率高。输出电感铁芯采用钻基非晶合金,频率响应范围广。2主电路设计2.1主电路结构 开关式功率放大器主电路结构如图1所示。三相交流电经过工频变压器隔离、降压送入三相全桥滤波器,然后通过电容滤波得到低纹波直流电源V in。

主电路由4只PMOSFET组.成一个全桥变换器。输出的电压波经过常模和共模扼流线圈滤波后输出到振动台。 开关功率放大器输出正弦波(5Hz~5kHz)或随机波形。采用提高开关频率的方法来抑制谐波虽然有效,但是会增加PMOSFET的开关损耗,从而导致变换器的效率下降。本文采用倍频PWM技术,即三角载波的频率为100 kHz,而MOSFET的开关频率为50 kHz,这样不仅能够有效地降低谐波,而且也可以减少开关损耗。变换器工作时,同一个桥臂上的MOSF ET交替导通,当Q1,Q3同时导通时输出为零,只有对角线上的Q1,Q4或Q3,Q2同时导通时才输出电压波形。 二、控制逻辑 由于开关功率放大器是通过输入信号来改变输出结果的,所以是开环控制。其控制逻辑如图2所示,由载波发生,调制信号,比较单.元和延时单元组成。载波是频率为50 kHz三角波,由模拟振荡电路获得。调制信号由振动台控制系统给定,滤波后送到比较器的同相端。载波以及反相的载波分别送到比较器的反相端。调制后的信号通过一个由RC电路和与非门组成的延时单元,防止同一桥臂的MOSFET的直通,最后经过缓冲器到驱动电路。

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

开关稳压电源设计报告

开关稳压电源设计报告 成员名字:方愿岭段洁斐梅二召 摘要:为提高电源的利用效率和缩小设计电源的尺寸,本文介绍一种含有MC3406集成芯片的开关稳压电源,并对成芯片内部结构和外部电路作简要介绍,最终给出一个完整的开关稳压电路设计电路并对电路作具体论证最终完成开关稳压电源的实物制作。 A switching power supply design report Abstract:In order to improve the efficiency in the use of the power supply and reduce the size of the power source design, this paper introduces a kind of contains MC34063 integrated chips of a switching power supply, and the integrated chip internal structure and external circuit is briefly introduced, finally give a complete a switching circuit design circuit to make concrete demonstration and circuit switching power supply finally complete the making of objects. 关键词:开关稳压电源;整流滤波电路;PWM控制电路;MC34063 引言 电源是各种电子设备的核心,因此电源的优劣直接关系到电子设计的好坏。另外电子设计者不得不考虑的一个问题就是效率问题,所

PWM功率放大电路

P W M功率放大电路集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于 电源电压,即| U|=C U。图1描绘了电枢的电压波形和电流波形。在图 AB 中,T为PWM脉冲周期, T为正脉冲宽度,h T为负脉冲宽度。电枢两端 P 的电流是一个脉动的连续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设计PWM功率放

大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,T K 为转矩系数,Φ=M T C K (M C 为电机电磁常数、Φ为励磁磁 通),C U 为功放电源,A L 为电枢电感,S T 为电机静摩擦力矩。 另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于δ,则要求切换频率满足下式: 式中,J 为电机及负载的转动惯量。 (2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,A R 是电机电枢电阻。 (3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz 至数万Hz 的范围内选取PWM 切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM 功率放大器 图2举出了一个实际的标准双极性PWM 功率放大器。它是一个典型的H 型功放,四个功放管分别采用NPN 型达林顿管TIP122和PNP 型达

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计 600W半桥型开关稳压电源设计 摘要 本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供 电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源; 第1章绪论1.1 电力电子技术概况 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和 控制技术的发展而发展的。 电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电 子器件运行的特点。 电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成 的。这一观点被全世界普遍接受。 电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换, 后者用于信息处理。

开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。 而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况

下不需要加装散热片,从而减少了对MCU工作环境的有害影响。 采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。 LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。 一、LM2576简介 LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。各系列产品均提供有3.3

PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。

开关稳压电源设计word文档

编号:E甲0904 2007全国大学生电子设计竞赛题目E: 《开关稳压电源》 参赛学生:李泉泉、满中甜、董学峰 指导教师:刘晓军、郑亚民、周强 学校:山东大学威海分校 院系:信息工程学院 2007年9月6日

开关稳压电源(E题) 摘要 该电源以单端反激式DC-DC变换器为核心。市电通过自耦式调压器,隔离变压器,整流滤波后产生直流电压,经DC-DC变换得到题目所需输出电压,实现了开关稳压电源的设计。DC-DC变换器采用脉宽调制器(PWM)UC3842,通过调节 在30V~36V范围内可调;微控制器与键盘显示构成了占空因数使得输出电压U O 控制显示模块,能对输出电压进行键盘设定和步进调整,并显示输出电压、电流的测量和数字显示功能,形成了良好的人机界面。 关键词:DC-DC变换器,脉宽调制器(PWM) 1方案论证 1.1DC-DC主回路拓扑 适合本系统的DC-DC拓扑结构为单端反激式DC-DC变换器,利用UC3824芯片作为控制核心,该芯片抗电压波动能力强,并可使负载调整率得到明显改善,而且其频响特性好,稳定裕度大,过流限制特性好,具有过流保护和欠压锁定功能。 1.2控制方法及实现方案 手动输出电压调节采用电位器改变取样回路的上下比电阻比值来改变输出电压,使其满足题目要求,该方案电路结构简单,实现方便。 键盘设定通过单片机改变模拟开关接通通道,选取取样回路的电阻节点位置,改变取样回路的上下比电阻比值来改变输出电压,实现发挥部分的键盘设定功能。 1.3提高效率的方法及实现方案 在DC-DC变换器中,主要消耗功率的元件有主回路的开关管、续流二极管、储能电感等部件。本设计中提高效率的措施主要有: 通过增加电感线径减小电感阻值; 采用低内阻的高效率MOSFET作为主回路的开关元件; 采用高速低正相压降的肖特基二极管降低其功耗。 2电路设计与参数计算 2.1电路整体设计 本设计以DC-DC变换器为核心,辅以隔离变压、整流滤波、控制显示等功能模块,完成开关稳压电源各项功能(见图1 系统框图)。

完整word高效率PWM音频功率放大器

高效率PWM 音频功率放大器 本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放 大器部分采用D 类功率放大器确保高效,在 5V 供电情况下输出功率大于 1W ,且输出波形 无明显失真,低频输出噪声电压很低 (输出频率为20kHz 以下时,低频噪声电压约 1mV ); 信号变换部分采用差分放大电路,将双端输出信号变为 1 : 1的单端输出信号;输出功率显 1、题目分析及设计方案论证与比较 根据题目要求,整个系统由D 类PWM 功率放大器、信号转换电路及功率测量显示装置 组成。其中核心部分为 D 类PWM 功率放大器。之所以选择此方案是因为 D 类PWM 功放 能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高 频干扰, 从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图 3.1 所示。下面我们分别论述框图中各部分设计方案。 图3.1系统组成框图 2、总体设计思路 根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器 (即D 类功 率放大器)。脉宽调制电路(PWM )的脉宽调制原理 如图3.2所示。 图3.2脉宽调制原理图 一般的D 类放大器电路的工作原理是用 “振荡发生器”输出的三角波与来自外部的模拟 音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正 比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。 在音频信号的前半周 (正电压),脉宽调制方波的占空比小于 50%,使高端MOS 管饱和导通,输出瞬间脉冲电压 V ec — 0=V cc 。在音频信号的后半周(负电压),低端MOS 饱和导通,电压 0— V ec = — V cc o 将输 亠 PWM — 高速开关电路 及滤波网络 D 类功率放大器 796D Vin=O,占空比-50%

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

高频开关稳压电源的设计

电子设备离不开电源,电源供给电子设备所需要的能量,这就决定了电源在 电子设备中的重要性。电源的质量直接影响着电子设备的工作可靠性,所以电子设备对电源的要求日趋增高。 现有的电源主要由线性稳压电源和开关稳压电源两大类组成。这两类电源由于各自的特点而被广泛应用。线性稳压电源的优点是稳定性好、可靠性高、输出电压精度高、输出纹波电压小。它的不足之处是要求采用工频变压器和滤波器,它们的重量和体积都很大,并且调整管的功耗较大,是电源的效率大大降低,一般情况均不会超过50%。但它的优良的输出特性,使其在对电源性能要求较高的场合仍得到广泛的应用。相对线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求,从20世纪中期开关电源问世以来,由于它的突出优点,使其在计算机、通信、航天、办公和家用电器等方面得到了广泛的应用,大有取代线性稳压电源之势。 本课题是设计一种基于SG3525 PWM控制芯片为核心构成的高频开关电源电 路。 关键词:高频开关稳压电源、SG3525、PWM

1高频开关稳压电源概述 (1) 1.1高频开关稳压电源简介 (1) 1.2高频开关稳压电源的发展状况 (2) 1.3高频开关稳压电源的基本原理 (3) 2设计任务与分析 (4) 2.1任务要求 (4) 2.2任务分析 (4) 3 系统设计方案 (5) 3.1系统总体方案设计 (5) 3.2功率变换器电路设计 (6) 3.2.1全桥功率变换器工作原理 (6) 3.2.2全桥功率变换器控制方式 (7) 3.3控制电路设计 (8) 3.3.1 SG3525结构和功能介绍 (8) 3.3.2控制电路的设计 (9) 3.4驱动电路设计 (10) 3.5辅助电源电路设计 (11) 3.6过流检测及保护电路设计 (13) 3.6.1电力电子器件的缓冲电路 (13) 3.6.2电力电子器件的保护电路 (13) 3.7整流器输出电路设计 (15) 小结与体会 (16) 附录 (18)

一种基于PWM的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计 原作者:韩金刚史新乾汤天浩王小明 一、前言 振动测试系统是模拟某种产品的实际使用环境,在产品出厂前检验其结构特性和可靠性,这对于新产品开发起着重要作用,因此,被广泛应用于军事,自动化,半导体,汽车,航空航天等行业。 采用开关功率放大器的电动式振动测试系统是目前应用广泛的一种振动试验系统。通常能提供正弦、随机和冲击试验环境,它的频率范围广,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。 功率放大器是电动振动试验系统的重要组成部分,其性能和与振动台的匹配状况直接关系着系统的性能。功率放大器发展到现在已经历了3代:电子管功率放大器、晶体管线性功率放大器及开关功率放大器。目前电子管功率放大器已经很少使用,晶体管线性功率放大器效率通常只有50%左右,而其他的能量则转化为热能,不但效率低,而且散热是个很大问题。开关功率放大器如果采用功率场效应管(PMOSFET),则损耗很小,效率可达到90%,发热少,冷却设备简单。由于开关功率放大器输出电压容易调节,且电流的波峰系数较大,这样就可以直接与振动台耦合,而不需要输出变压器。而且PMOSFET的开关频率高,因此放大器体积小,功率密度大,容易实现模块化。 本文应用PWM技术设计并实现了5kW的功率放大器模块。由于采用PMOSFET,开关频率达到50 kHz,体积比较小,效率高。输出电感铁芯采用钻基非晶合金,频率响应范围广。2主电路设计2.1主电路结构

开关式功率放大器主电路结构如图1所示。三相交流电经过工频变压器隔离、降压送入三相全桥滤波器,然后通过电容滤波得到低纹波直流电源V in。主电路由4只PMOSFET组.成一个全桥变换器。输出的电压波经过常模和共模扼流线圈滤波后输出到振动台。 开关功率放大器输出正弦波(5Hz~5kHz)或随机波形。采用提高开关频率的方法来抑制谐波虽然有效,但是会增加PMOSFET的开关损耗,从而导致变换器的效率下降。本文采用倍频PWM技术,即三角载波的频率为100 kHz,而MOSFET的开关频率为50 kHz,这样不仅能够有效地降低谐波,而且也可以减少开关损耗。变换器工作时,同一个桥臂上的MOSF ET交替导通,当Q1,Q3同时导通时输出为零,只有对角线上的Q1,Q4或Q3,Q2同时导通时才输出电压波形。 二、控制逻辑 由于开关功率放大器是通过输入信号来改变输出结果的,所以是开环控制。其控制逻辑如图2所示,由载波发生,调制信号,比较单.元和延时单元组成。载波是频率为50 kHz三角波,由模拟振荡电路获得。调制信号由振动台控制系统给定,滤波后送到比较器的同相端。载波以及反相的载波分别送到比较器的反相端。调制后的信号通过一个由RC电路和与非门组成的延时单元,防止同一桥臂的MOSFET的直通,最后经过缓冲器到驱动电路。

PWM功率放大电路

P W M功率放大电路 Modified by JACK on the afternoon of December 26, 2020

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于 电源电压,即| U|=C U。图1描绘了电枢的电压波形和电流波形。在图 AB 中,T为PWM脉冲周期, T为正脉冲宽度,h T为负脉冲宽度。电枢两端 P 的电流是一个脉动的连续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设计PWM功率放

大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,T K 为转矩系数,Φ=M T C K (M C 为电机电磁常数、Φ为励磁磁通),C U 为功放电源,A L 为电枢电感,S T 为电机静摩擦力矩。 另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于δ,则要求切换频率满足下式: 式中,J 为电机及负载的转动惯量。 (2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,A R 是电机电枢电阻。 (3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz 至数万Hz 的范围内选取PWM 切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM 功率放大器 图2举出了一个实际的标准双极性PWM 功率放大器。它是一个典型的H 型功放,四个功放管分别采用NPN 型达林顿管TIP122和PNP 型达

相关主题
文本预览
相关文档 最新文档