当前位置:文档之家› PWM功率放大电路

PWM功率放大电路

PWM功率放大电路
PWM功率放大电路

P W M功率放大电路集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

PWM功率放大电路

——卢浩天

LC梦创电子制作工作室一、PWM功率放大原理

PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。

若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于

电源电压,即|

U|=C U。图1描绘了电枢的电压波形和电流波形。在图

AB

中,T为PWM脉冲周期,

T为正脉冲宽度,h T为负脉冲宽度。电枢两端

P

的电流是一个脉动的连续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。

在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设计PWM功率放

大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即:

式中,T K 为转矩系数,Φ=M T C K (M C 为电机电磁常数、Φ为励磁磁

通),C U 为功放电源,A L 为电枢电感,S T 为电机静摩擦力矩。

另外,选择切换频率具体还应考虑以下几个方面:

(1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于δ,则要求切换频率满足下式:

式中,J 为电机及负载的转动惯量。

(2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求

式中,A R 是电机电枢电阻。

(3)应当远远大于系统的固有频率,防止系统固有振荡。

实际设计时应综合考虑上述条件,在1000Hz 至数万Hz 的范围内选取PWM 切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。

二、标准的PWM 功率放大器

图2举出了一个实际的标准双极性PWM 功率放大器。它是一个典型的H 型功放,四个功放管分别采用NPN 型达林顿管TIP122和PNP 型达

林顿管TIP127。PWM脉冲信号通过光电耦合器件4N35加到晶体管的输入端。4N35的作用是把控制电源与驱动电源隔离,以免驱动器电源不稳定影响整个控制系统;同时,4N35的输出端还提供功放管的基极驱动电流。

系统的工作过程如下:当PWM1端变为低电平且PWM2端为高电平时,功放管Q2/Q3导通,Q1/Q4截止,电流从电机两侧的B点流向A 点,此时电机正转;反之,反转。二极管D1、D2、D3、D4是续流二极管,在晶体管切换时提供电流通路,并联在二极管两端的电阻和电容也起续流作用。

PWM1和PWM2是两路控制信号。如果加上如图3所示的信号,则构成单极性功放电路。PWM信号由8051单片机的定时器产生,由输出。的高低电平代表电机的正反转。四个功放管采用MOS管。当电机要求正转时,单片机的输出高电平信号,该信号分为三路:第一路接与门Y1的输入端,使与门Y1的输出由PWM决定,所以开关管Q1栅极受PWM控制;第二路直接与开关管Q4相连使Q4导通;第三路经非门连接到与门Y2的输入端,使与门Y2的输出为0,结果开关管Q2截止。从非门输出的另一路信号与开关管Q3的栅极相连,其低电平信号也将使Q3截止。类似地,电机要求反转时,单片机输出低电平信号,各功放管的导通与截止与电机正转时正好相反。

双极性PWM电路中,PWM1和PWM2两路控制信号通常不是严格对称的,造成切换过程中有一个小的时间延迟

T,如图4所示。W T实际上

W

是功率管的开关时间,考虑时间延迟的目的是为了防止H桥同侧的功放管在开关切换时短路。

三、集成PWM功率放大器

目前,针对中小功率的PWM功放电路已经有现成的集成分立器件出售,由于所有的PWM功能集成在一块芯片上,使得这些集成分立器件可靠性高,性能好,使用方便。对于初学者而言,调定功放电路元器件各种参数既麻烦又需要经验,然而集成PWM功放器件的出现,简化了问题。下面以美国国家半导体公司的LMD18245为例来说一下。

LMD18245是采用DMOS工艺的H桥PWM集成功放电路芯片,专供直流电机或步进电机驱动,共有15个引脚,T-220封装。图5是该芯片的外形和引脚图。电源电压范围为12—55V,额定电流3A,峰值电流

6A。

图5:LMD18245外形和引脚

图6是LMD18245的内部结构图。BRAKE和DIRECTION两个控制信号的组合决定芯片工作于单极性PWM还是双极性PWM。表1描述了这两种组合对应的DMOS管的导通情况。在表1中,MONO为电流监测信号,如不考虑它的影响,在BRAKE端加上PWM信号,在DIRECTION 端加上一个固定电平,则LMD18245工作在单极性PWM方式;反之,如果在BRAKE端加上低电平,在DIRECTION端加上PWM脉冲,则LMD18245工作在双极性平PWM方式。从图6的内部结构来看,该芯片内部带有电流反馈控制电路,为保证电流反馈电路正常工作,必须在CS OUT端接一个电流取样电阻到地,该电阻值R决定了电压比较器

(COMPAPATOR )“-”端电压值-V 。该电压计算公式为:

()610250--??Ω=R V V 。电压比较器的“+”端电压+V 的计算公式为:

16

D V V DACREF ?=+ V 。式中DACREF V 是参考电压,D 是0—15的常数,由M1—M4决定。用户可以根据需要来设置M1—M4的大小,从而限制电机的电枢电流。

图6:LMD18245内部结构原理图

表1中MONO 表示单稳态触发器的状态,若电机电枢超过用户设定值,MONO 变为低电平;正常工作时,MONO 为高电平。

PWM功率放大电路

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室 一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于电源电压,即||=。图1描绘了电枢的电压波形和电流波形。在图中,为PWM UU T CAB脉冲周期,为正脉冲宽度,为负脉冲宽度。电枢两端的电流是一个脉动的连TT hP续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM 的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设

计PWM功率放大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,为转矩系数,(为电机电磁常数、为励磁磁通),U?KC?KC?CTMMT.为功放电源,为电枢电感,为电机静摩擦力矩。TL SA另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于,则要求切换频率满足下式:?式中,为电机及负载的转动惯量。J(2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,是电机电枢电阻。R A(3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz至数万Hz的范围内选取PWM切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM功率放大器 图2举出了一个实际的标准双极性PWM功率放大器。它是一个典型的H型功放,四个功放管分别采用NPN型达林顿管TIP122和PNP 型达林顿管TIP127。PWM脉冲信号通过光电耦合器件4N35加到晶

大功率功率放大器电路设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm 双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ 电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。

功率放大电路同步练习题

功率放大电路同步练习题 一、选择题: 1、功率放大管的导通角是 1800的放大电路是( B )功率放大电路。 A.甲类 B 乙类 C 丙类 D.甲乙类 2、 与甲类功率放大方式相比,乙类互补对称功放的主要优点是 A .不用输出变压器 B .不用输出端大电容 C.效率高 D .无交越失真 3、 互补输出级采用射极输出方式是为了使 A.电压放大倍数高 C.输出电阻增大 4、 乙类功率输出级,最大输出功率为 (D ) C )。 (D ) B.输出电流小 D.带负载能力强 1W ,则每个功放管的集电极最大耗散功率为 A.1W ; B.0.5W ; C.0.4W ; D. 0.2W 5、在OCL 乙类功放电路中,若最大输出功率为 1W ,则电路中功放管的 集电极最大功耗约为( C )o A . 1W B . 0.5W C . 0.2W D.无法确定 6、若OCL 功率放大器的输出电压波形如图 1所示,为消除该失真,应:(C ) A.进行相位补偿 B.适当减小功放管的静态工作点 C.适当增大功放管的静态 D.适当增大负载电阻的阻值 Uo ,静态时,其直流电位为( D. 2VCC 8、 对甲乙类功率放大器,其静态工作点一般设置在特性曲线的( A.放大区中部 B.截止区 C 放大区但接近截止区 D.放大区但接近饱和区 9、 乙类双电源互补对称功放电路的效率可达 (B ) 。 A.25% B.78.5% C.50% D.90% 10、 功率放大电路的最大输出功率是在输入电压为正弦波时, 载上获得的最大( A )。 A.交流功率 B.直流功率 C.平均功率 I 11、 功率放大电路与电压放大电路的主要区别是( C )。 A.前者比后者电源电压高 B.前者比后者电压放大倍数数值大 C 前者比后者效率高 D.没有区别 12、 .在单电源OTL 电路中,接入自举电容是为了( B ) A 、提高输出波形的幅度 B 、提高输出波形的正半周幅度 C 、提高输出波形的负半周幅度 D 、加强信号的耦合 7、OCL 功放电路的输出端直接与负载相联 A.VCC B. (1/2)VCC C. 0 C )。 输出基本不失真情况下负 D.有功功率

互补对称式功率放大电路

中山大学模拟电路实验报告 SUN YAT-SEN UNIVERSITY 实验题目:实验6 互补对称式功率放大电路 一、实验目的 在这个实验中,我们将讨论互补对称式功率放大电路的工作原理和性能测试方法。首先,我们对功放电路进行静态调整;其次,对调整好的电路进行电路功率和效率的测量。然后,我们将探讨自举电路的作用和观察“交越失真”现象。 通过这次实验,你能够 1)熟悉互补对称式功率放大器的性能测试方法。 2)了解自举电路的原理及其对改善互补对称式功率放大器的性能所起的作用。 二、实验仪器 (1)二踪示波器 1台 (2)函数发生器 1台 (3)交流毫伏表 1台 (4)直流稳压电源 1台 三、实验原理图 V CC v o R L v s 实验电路图3.1互补对称式功率放大电路 注意: 1)实验前应该先调好限流保护,电流控制在200mA。 2)电路调整时,应先调好电压、再调电流。

四、实验内容 1. 静态测试 合上开关K 、K1、K2,用万用表先测量直流稳压电源使输出V V CC 6=,调节1W R 使B 点的直流电位约为3V 。断开K 、K2,调节2W R 使23C I 约为mA 52- , (23C I 的测量可用万用表电流档串接测量,但要注意万用表笔的正负极性)测完后取走万用表合上K 。 检查电路中各个管是否工作正常。 注意:在接入稳压电源之前,2W R 应先调到最小值,电源接入后,在调节2W R 的过程中,应不时用手触摸2Q 、3Q 两管,若发现两管发热严重,则应马上断开电源,检查原因(如 2W R 开路,电路自激,或输出管性能不好等),以防烧毁管子。如无异常现象,可开始调试, 如无特殊情况,不得再随意旋动2W R 的位置。 调试数据如下表4.1.1 V cc V B I 23 6.0V 2.99V 3.5V 2. 测量放大器的质量指标 (1)最大不失真电压、最大不失真功率: 把示波器和交流毫伏表的输入端同时接入放大器的输出端(此时可同时测量输出幅度的大小和观察输出波形),然后将音频信号发生器的输出调节旋钮放到最小,并将它的输出端接入放大器的输入端,而音频信号发生器的频率放在Z KH 1上,以后逐渐增大输入信号幅度并同时观察输出波形,输入增大、输出亦增大,当输出波形增大到刚好出现失真时,就停止增大输入信号,以后减小输入信号,使输出信号刚好不失真。记下这时放大器的输出电压即为最大不失真电压,并计算最大不失真功率。 (2)电源供给的实际功率和效率: 在最大不失真输出时,用万用电表测量此时电源供给的直流平均电流C I (用万用表电流档串入CC V 的总线处测量,注意是在有输入信号下测量)记录C I 计算电源供给的功率和效率。 有自举情况下的测量数据 4.2.1

pwm开关型功率放大器

电力电子技术 课程设计报告 题目PWMf关型功率放大器的设计 专业电气工程及其自动化 班级电气 学号 学生姓名 指导教师 2008年春季学期 起止时间:2008年6月23日至2008年6月27日

一、总体设计 1 ?主电路的选型(方案设计)

经过对设计任务要求的总体分析,明确应该使用电力电子组合变流中的间接交流变流的思想进行设计,因为任务要求频率是可变的,故选择交直交变频电路(即VVVF 电源)。交直交变频电路有两种电路:电压型和电流型。在逆变电路中均选用双极性调制方式。 方案一:采用电压型间接交流变流电路。其中整流部分采用单相桥式全控整流电路,逆变部分采用单相桥式PWM e变电路,滤波部分为LC滤波,负载为阻感性。电路原理图如下所示: 方案二:采用电压型间接交流变流电路。其中整流部分采用单相全桥整流电路,逆变部分采用单相桥式PWM K变电路,滤波部分为LC滤波,负载为阻感性。电路原理图如下所示: 方案三:采用电压型间接交流变流电路。其中整流部分采用单相桥式PWM 整流电路,逆变部分采用单相桥式PWM e变电路,滤波部分为LC滤波,负载为阻感

性。电路原理图如下所示: 分析: 方案一中整流电路与逆变电路都采用全控型可以通过控制a角的大小来控制Ud 的大小。 方案二中的整流电路是单相全桥整流电路,属于不可控型。Ud大小不可变。 方案三采用双PWM&路。整流电路和逆变电路的构成可以完全相同,交流电源通过交流电抗器和整流电路联接,通过对整流电路进行PWMI制,可以使输入电流为正弦波并且与电源电压同相位,因而输入功率因数为1,并且中间 直流电路的电压可以调整。但由于控制较复杂,成本也较高,实际应用还不多,故此处没有选用。 经过分析我选用了方案一。其中控制部分采用双极性PWM波控制触发,从而控制负载电流和电压。由于逆变部分采用电压型逆变电路,所以当选用电阻性负载时其电流大致呈正弦波,电压呈矩形波。

南邮模拟电子第8章-功率放大电路习题标准答案

习题 1. 设2AX81的I CM =200mA ,P CM =200mW ,U (BR)CEO =15V ;3AD6的P CM =10W (加散热板),I CM =2A ,U (BR)CEO =24V 。求它们在变压器耦合单管甲类功放中的最佳交流负载电阻值。 解:当静态工作点Q 确定后,适当选取交流负载电阻值L R ',使Q 点位于交流负载线位于放大区部分的中点,则可输出最大不失真功率,此时的L R '称为最佳交流负载电阻。 忽略三极管的饱和压降和截止区,则有L CQ CC R I U '=。 同时应满足以下限制:CM CQ CC P I U ≤?,2 (BR)CEO CC U U ≤ ,2 CM CQ I I ≤ 。 (1)对2AX81而言,应满足mW 200CQ CC ≤?I U ,V 5.7CC ≤U ,mA 100CQ ≤I 。取 mW 200CQ CC =?I U 。 当V 5.7CC =U 时,mA 7.26CQ =I ,此时L R '最大,Ω=='k 28.07 .265 .7L(max)R ; 当mA 100CQ =I ,V 2CC =U 时,此时L R '最小,Ω=='k 02.0100 2 L(min)R ; 故最佳交流负载电阻值L R '为:ΩΩk 28.0~k 02.0。 (2)对3AD6而言,应满足W 10CQ CC ≤?I U ,V 12CC ≤U ,A 1CQ ≤I 。取 W 10CQ CC =?I U 。 当V 12CC =U 时,A 83.0CQ =I ,此时L R '最大,Ω=='46.1483.012 L(max)R ; 当A 1CQ =I 时, V 10CC =U ,此时L R '最小,Ω=='101 10L(min)R ; 故最佳交流负载电阻值L R '为:ΩΩ46.14~10。 2. 图题8-2为理想乙类互补推挽功放电路,设U CC =15V ,U EE =-15V ,R L =4Ω,U CE(sat)=0,输入为正弦信号。试求 (1) 输出信号的最大功率; (2) 输出最大信号功率时电源的功率、集电极功耗(单管)和效率; (3) 每个晶体管的最大耗散功率P Tm 是多少?在此条件下的效率是多少?

一种基于pwm的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计 一、前言 振动测试系统是模拟某种产品的实际使用环境,在产品出厂前检验其结构特性和可靠性,这对于新产品开发起着重要作用,因此,被广泛应用于军事,自动化,半导体,汽车,航空航天等行业。 采用开关功率放大器的电动式振动测试系统是目前应用广泛的一种振动 试验系统。通常能提供正弦、随机和冲击试验环境,它的频率范围广,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。 功率放大器是电动振动试验系统的重要组成部分,其性能和与振动台的匹配状况直接关系着系统的性能。功率放大器发展到现在已经历了3代:电子管功率放大器、晶体管线性功率放大器及开关功率放大器。目前电子管功率放大器已经很少使用,晶体管线性功率放大器效率通常只有50%左右,而其他的能量则转化为热能,不但效率低,而且散热是个很大问题。开关功率放大器如果采用功率场效应管(PMOSFET),则损耗很小,效率可达到90%,发热少,冷却设备简单。由于开关功率放大器输出电压容易调节,且电流的波峰系数较大,这样就可以直接与振动台耦合,而不需要输出变压器。而且PMOSFET的开关频率高,因此放大器体积小,功率密度大,容易实现模块化。 本文应用PWM技术设计并实现了5kW的功率放大器模块。由于采用PMOSFET,开关频率达到50 kHz,体积比较小,效率高。输出电感铁芯采用钻基非晶合金,频率响应范围广。2主电路设计2.1主电路结构 开关式功率放大器主电路结构如图1所示。三相交流电经过工频变压器隔离、降压送入三相全桥滤波器,然后通过电容滤波得到低纹波直流电源V in。

主电路由4只PMOSFET组.成一个全桥变换器。输出的电压波经过常模和共模扼流线圈滤波后输出到振动台。 开关功率放大器输出正弦波(5Hz~5kHz)或随机波形。采用提高开关频率的方法来抑制谐波虽然有效,但是会增加PMOSFET的开关损耗,从而导致变换器的效率下降。本文采用倍频PWM技术,即三角载波的频率为100 kHz,而MOSFET的开关频率为50 kHz,这样不仅能够有效地降低谐波,而且也可以减少开关损耗。变换器工作时,同一个桥臂上的MOSF ET交替导通,当Q1,Q3同时导通时输出为零,只有对角线上的Q1,Q4或Q3,Q2同时导通时才输出电压波形。 二、控制逻辑 由于开关功率放大器是通过输入信号来改变输出结果的,所以是开环控制。其控制逻辑如图2所示,由载波发生,调制信号,比较单.元和延时单元组成。载波是频率为50 kHz三角波,由模拟振荡电路获得。调制信号由振动台控制系统给定,滤波后送到比较器的同相端。载波以及反相的载波分别送到比较器的反相端。调制后的信号通过一个由RC电路和与非门组成的延时单元,防止同一桥臂的MOSFET的直通,最后经过缓冲器到驱动电路。

功率放大器电路设计资料

电子技术课程设计论文 ---功率放大器电路设计 院系:电气工程学院 专业:测控技术与仪器 班级: 姓名: 学号: 指导教师: 2014 年 6 月 24 日

目录 第一章绪论 (1) 第二章系统总体设计方案 (2) 2.1 功率放大电路 (2) 2.2放大器原理 (2) 2.3方案设计 (3) 2.3.1 前置放大极 (4) 2.3.3 三极管性能的简单测试 (4) 2.3.3 电路形式的选择 (4) 2.3.4 电路原理 (5) 第三章仿真及电路焊接及调试 (6) 3.1 Protues 简介 (6) 3.2 原理图绘制的方法和步骤 (6) 3.3 电路板的制作 (9) 3.4 电路焊接 (9) 3.5 元器件安装与调试 (10) 第四章元器件介绍 (11) 4.1 LM386 (11) 4.2 9013晶体管 (12) 4.3电容 (13) 4.4 扬声器 (13) 4.5驻极体 (14) 第五章总结 (15) 致谢 (16) 附录 (17)

第一章绪论 现在多用于高校功放课程设计的有两种电路,一种是集成功放 LM386组成的音频功率放大电路,一种是集成功放TDA2030A组成的音频功率放大电路。我们此次的课程设计所用的芯片是集成功放LM386。 本次音频功率放大系统的设计,我们采用了LM386音频功率放大器作为核心元件。它具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,主要应用于低电压消费类产品,广泛应用于录音机和收音机之中。应用LM386时,为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。

第3章 高频功率放大电路习题解答gyx

习题 3.1 高频功率放大器的主要作用是什么?应对它提出哪些主要要求? 答:高频功率放大器的主要作用是放大高频信号或高频已调波信号,将直流电能转换成交流输出功率。要求具有高效率和高功率输出。 3.2 为什么丙类谐振功率放大器要采用谐振回路作负载?若回路失谐将产生什么结果?若采用纯电阻负载又将产生什么结果? 答:因为丙类谐振功率放大器的集电极电流i c为电流脉冲,负载必须具有滤波功能,否则不能获得正弦波输出。若回路失谐集电极管耗增大,功率管有损坏的危险。若采用纯电阻负载则没有连续的正弦波输出。 3.3 高频功放的欠压、临界和过压状态是如何区分的?各有什么特点? 答:根据集电极是否进入饱和区来区分,当集电极最大点电流在临界线右方时高频功放工作于欠压状态,在临界线上时高频功放工作临界状态,在临界线左方时高频功放工作于过压状态。 欠压状态的功率和效率都比较低,集电极耗散功率也较大,输出电压随负载阻抗变化而变化,较少使用,但基极调幅时要使用欠压状态。 临界状态输出功率大,管子损耗小,放大器的效率也较高。 过压状态下,负载阻抗变化时,输出电压比较平稳且幅值较大,在弱过压时,效率可达最高,但输出功率有所下降,发射机的中间级、集电极调幅级常采用过压状态。 3.4 分析下列各种功放的工作状态应如何选择? (1) 利用功放进行振幅调制时,当调制的音频信号加到基极或集电极时,如何选择功放的工作状态? (2) 利用功放放大振幅调制信号时,应如何选择功放的工作状态? (3) 利用功放放大等幅度信号时,应如何选择功放的工作状态? 答:(1) 当调制的音频信号加到基极时,选择欠压状态;加到集电极时,选择过压状态。 (2) 放大振幅调制信号时,选择欠压状态。、 (3) 放大等幅度信号时,选择临界状态。 3.5 两个参数完全相同的谐振功放,输出功率P o分别为1W和0.6W,为了增大输出功率,将V CC提高。结果发现前者输出功率无明显加大,后者输出功率明显增大,试分析原因。若要增大前者的输出功率,应采取什么措施? 答:前者工作于欠压状态,故输出功率基本不随V CC变化;而后者工作于过压状态,输出功率随V CC明显变化。在欠压状态,要增大功放的输出功率,可以适当增大负载或增大输入信号。 3.6 一谐振功放,原工作于临界状态,后来发现P o明显下降,ηC反而增加,但V CC、U cm和u BEmax均未改变(改为:V CC和u BEmax均未改变,而U cm基本不变(因为即使Ucm变化很小,工作状态也可能改变,如果Ucm不变,则Uce不变,故工作状态不应改变)),问此时功放工作于什么状态?导通角增大还是减小?并分析性能变化的原因。 答:工作于过压状态(由于Ucm基本不变,故功率减小时,只可能负载增大,此时导通角不变);导通角不变 3.7 某谐振功率放大器,工作频率f =520MHz,输出功率P o=60W,V CC=12.5V。 (1) 当ηC=60%时,试计算管耗P C和平均分量 I的值;(2) 若保持P o不变,将ηC c0

互补对称功率放大电路原理

互补对称功率放大电路原理

————————————————————————————————作者:————————————————————————————————日期:

3.4 互补对称功率放大电路 教学要求 掌握甲类、乙类和甲乙类三类功率放大电路的工作原理; 理解交越失真形成机理; 了解复合管结构及其特性。 一、概述 对功率放大电路的基本要求 1.不失真情况下输出尽可能大的功率:I与U都大,管子工作在尽限状态。 2.提高效率: = P omax / P DC 要高 3.集电极最大功耗: P 0=P v -P C (管耗),另一部分消耗在管子上,功放管尽限应用,选管要 保 证安全。 二、放大电路的工作状态 放大电路按三极管在一个信号周期内导通时间的不同,可分为甲类、乙类以及甲乙类放大。在整个输 入信号周期内,管子都有电流流通的,称为甲类放大,如下表所示,此时三极管的静态工作点电流I CQ比较大;在一个周期内,管子只有半周期有电流流通的,称乙类放大;若一周期内有半个多周期有电流流通,则称为甲乙类放大。 状态一个信号周期 内导通时间 工作特点图示 甲类整个周期内导 通 失真小,静态电流大,管耗大,效率 低。 乙类半个周期内导 通 失真大,静态电流为零,管耗小,效 率高。 甲乙类半个多周期内 导通 失真大,静态电流小,管耗小,效 率较高。 三、乙类双电源互补对称功率放大电路(OCL) (OCL — Output Capacitorless)

(一)电路组成及工作原理 采用正、负电源构成的乙类互补对称功率放大电路如下动画所示,V1和V2分别为NPN型管和PNP型管, 两管的基极和发射极分别连接在一起,信号从基极输入,从发射极输出,R L为负载。要求两管特性相同,且V CC=V EE。 特点:去掉C,双电源,T1与T2交替工作,正负电源交替供电,输入与输出之间双向跟随。 原理:静态即u i = 0 时,V 1 、V 2 均零偏置,两管的I BQ、I CQ均为零,u o=0,电路不消耗功率。 u i > 0时,V 1 正偏导通,V2反偏截止,i o= i E1= i C1, u O= i C1R L; u i< 0 时,V 1 反偏截止,V2正偏导通,i o= i E2= i C2, u O= i C2R L; 问题:两管交替导电时刻,输入电压小于死区电压时,三极管截止,在输入信号的一个周期内,V1、 V2轮流导通时,基极电流波形在过零点附近一个区域内出现失真,称为交越失真。且输入信号幅度越小失真越明显。 产生交越失真的原因:静态时,U B E Q =0,u i 尚小时,电流增长缓慢。 (二)功率和效率 1.输出功率:输出电流和输出电压有效值的乘积,就是功率放大电路的输出功率。 最大输出功率 2.电源功率:两个管子轮流工作半个周期,每个电源只提供半周期的电流。 最大输出功率时P DC = 2V2 CC / R L 3.效率:效率是负载获得的信号功率P o与直流电源供给功率P DC之比。实用中,放大电路很难达到最 大效率,由于饱和压降及元件损耗等因素,乙类推挽放大电路的效率仅能达到60%左右。 4.管耗 直流电源提供的功率除了负载获得的功率外便为V 1、V 2 管消耗的功率,即管耗。V 1 、V 2两管消耗的 功

PWM功率放大电路

P W M功率放大电路集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于 电源电压,即| U|=C U。图1描绘了电枢的电压波形和电流波形。在图 AB 中,T为PWM脉冲周期, T为正脉冲宽度,h T为负脉冲宽度。电枢两端 P 的电流是一个脉动的连续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设计PWM功率放

大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,T K 为转矩系数,Φ=M T C K (M C 为电机电磁常数、Φ为励磁磁 通),C U 为功放电源,A L 为电枢电感,S T 为电机静摩擦力矩。 另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于δ,则要求切换频率满足下式: 式中,J 为电机及负载的转动惯量。 (2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,A R 是电机电枢电阻。 (3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz 至数万Hz 的范围内选取PWM 切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM 功率放大器 图2举出了一个实际的标准双极性PWM 功率放大器。它是一个典型的H 型功放,四个功放管分别采用NPN 型达林顿管TIP122和PNP 型达

第7章功率放大电路习题与解答

习题 1. 选择题。 (1)功率放大电路的转换效率是指。 A.输出功率与晶体管所消耗的功率之比 B.输出功率与电源提供的平均功率之比 C.晶体管所消耗的功率与电源提供的平均功率之比 (2)乙类功率放大电路的输出电压信号波形存在。 A.饱和失真B.交越失真C.截止失真 (3)乙类双电源互补对称功率放大电路中,若最大输出功率为2W,则电路中功放管的集电极最大功耗约为。 A.0.1W B.0.4W C.0.2W (4)在选择功放电路中的晶体管时,应当特别注意的参数有。 A.βB.I CM C.I CBO D.U(BR)CEO E.P CM (5)乙类双电源互补对称功率放大电路的转换效率理论上最高可达到。 A.25% B.50% C.78.5% (6)乙类互补功放电路中的交越失真,实质上就是。 A. 线性失真 B. 饱和失真 C. 截止失真 (7) 功放电路的能量转换效率主要与有关。 A. 电源供给的直流功率 B. 电路输出信号最大功率 C. 电路的类型 解:(1)B (2)B (3)B (4)B D E (5)C (6)C (7)C 2. 如图7.19所示电路中,设BJT的β=100,U BE=0.7V,U CES=0.5V,I CEO=0,电容C对交流可视为短路。输入信号u i为正弦波。 (1)计算电路可能达到的最大不失真输出功率P om? (2)此时R B应调节到什么数值? (3)此时电路的效率η=?

o u 12V + 图7.19 题2图 解:(1)先求输出信号的最大不失真幅值。由解题2图可知:ωt sin om OQ O U U u += 由C C om OQ V U U ≤+与C ES om OQ U U U ≥-可知: C ES C C om 2U V U -≤即有2 C ES C C om U V U -≤ 因此,最大不失真输出功率P om 为: ()W 07.281 8122 C ES C C L 2 om om ≈?-=???? ??=U V R U P (2)当输出信号达到最大幅值时,电路静态值为: ()C ES C C C ES C ES C C OQ 2 1 2U V U U V U +=+-= 所以 A 72.0825.0122L CES CC L OQ CC CQ ≈?-=-=-=R U V R U V I m A 2.7CQ BQ ==βI I k Ω57.12 .77 .012BQ BE CC B ≈-=-= I U V R (3) %24%10072 .01207.2CQ CC om V om ≈??=== I V P P P η 甲类功率放大电路的效率很低。 3. 一双电源互补对称功率放大电路如图7.20所示,已知V CC =12V, R L =8Ω,u i 为正弦波。 (1)在BJT 的饱和压降U CES =0的条件下,负载上可能得到的最大输出功率P om 为多少?每个管子允许的管耗P CM 至少应为多少?每个管子的耐压│U (BR)CEO │至少应大于多少?

功率放大电路)

3.1 功率放大电路 很多系统需要对输出信号进行放大,以便提高带负载能力、驱动后级电路,因此要对其进行功率放大。功率放大电路种类繁多,按原理分可分为甲类、乙类推挽、丙类谐振功率放大器等,可由三极管或集成运放芯片实现,应根据不同的功率放大指标,选择不同的方案。 甲类功率放大器中,在输入信号的一个完整的周期内三极管都是导通的,因而可保证无失真的电压输出,故甲类功率放大器有利于小信号的功率放大。缺点是晶体管的静态工作点较高,静态损耗相对较大,效率比较低。 丙类谐振放大器采用谐振网络选频进行功率放大,适合于对载波信号或高频已调波信号进行选频放大。缺点是谐振回路只能实现窄带选频。 当信号频带较宽时,可采用乙类推挽放大器。乙类推挽功率放大电路由功率对管搭建而成。在输入信号的一个周期内,两管半周期轮流导通,减小了单个管子的静态损耗,具有较高的输出功率与效率。同时由于电路的对称性,可以在输出负载端得到完整的双极性波形。电路如图3-24所示。 此电路的前级由AD811组成同相放大器,放大倍数为A V = 1+ R3。后级的 R1 功率对管构成乙类功率推挽输出形式,提供负载的驱动电流。通过D1、D2的电 压钳位及微调电位器R a2,可实现两功率管的微导通及上下电路的完全对称。 为保护晶体管及稳定B点输出电流,输出级串接6.8 Q的小电阻,同时保证输出信号波形对称。 经实验测试,整个电路的输出阻抗小于15Q,通频带大于10MHz,且带内平坦,通

带波纹小于O.ldB;空载时可对0?10MHz范围内峰峰值为20V的正弦信号无失真输出;输出端接50Q负载时,无失真的最大输出电压峰峰值达到10V, 并且在峰峰值为10V的输出状态下,频率大于2MHz仍无失真现象,效果良好。 需要注意的是,同相放大电路中的AD811放大倍数不能太大,否则芯片会存在一定程度的发热。 AD811是美国模拟器件公司推出的一种宽带电流反馈视频运算放大器。增 益G=+1 时,-3dB 带宽140MHz;增益G=+2 时,-3dB 带宽120MHz;增益G=10 时,-3dB带宽可达100MHz。电压转换速率(即压摆率)为2500V/US。输入阻抗为1.5兆欧,输出阻抗为11欧姆。采用土15V电源、负载为200欧姆时,输出的电压峰峰值可以达到25V,有较强的后级驱动能力,因此常用于功率放大电路中。 采用AD811实现的另一种简单功率放大电路如图3-25所示,通过采用两片 AD811组成桥式功率放大,驱动后级负载。 图3-25桥式功率放大电路 在电子设计实验中,较少涉及电力系统,因此对信号的功率放大要求不是很 高,因此本文仅对系统中较常使用的简单功率放大电路进行介绍。实际应用中的 功率放大电路远不会如此简单,除了复杂的电路构成外,还涉及到环境因素对功率 放大电路的影响等诸多因素,这些在此无法尽诉,需要设计者从实际实验中慢慢探索。

功率放大器加习题(供参考)

1.有一谐振功率放大器,已知晶体管的g c=2000ms,V b2=0.5V,V cc=12V,谐振回路电阻R P=130Ω,集电极效率ηC=74.6%,输出功率P~=500mW,工作于欠压状态,试求: (1),V CM ,C,C1 ,C0 ,CM (2),为了提高效率ηc,在保证V CC、R P、P o不变的条件下,将通角θC 减小到600,计算对于C =600的C1,CM,ηc (3),采用什么样的措施能达到将C变为600的目的? 题解: (1) P~==> V CM==11.4V C=g1(C) g1()=V CC=1.568 查表C =900 ∴0()=0.319 1()=0.5 C1m==87.69mA CM==175.38mA C0= I CM0()=55.95mA (2) P~和不变,则C1M和不变(∵P~==2C1M ∴CM==224.27mA CO= CM0(600)=48.89mA c=1(600)=85.5% (3)改变导通角,应改变偏量和V bm 由g c= ∵C1M不变,CM(900)=175.38mA CM(600)=224.27mA ∴V bm(900)==87.69mV =∴==0.5V

即在V bm=87.69mV, V bb=0.5s时,导通角900 由V bm(600)==0.24427V ==0.5 ∴V bb(600)=112.135mV ∴V bm由87.69mV变为244.27mV V bb由500mV变为112.135mV 可保证在输出不变时,C由900变为600 答案: (1)①V CM=11.4V ②C =900 ③C1=87.69mA ④CM=175.38mA ⑤CO=55.75mA (2)若V CC、R P、P o不变,C =600 C1=87.69mA ; CM=224.27mA ; CO=48.89mA

实验报告(互补对称功率放大电路)

实验报告 实验二十互补对称功率放大电路 一、实验仪器及材料 l.信号发生器 2.示波器 二、实验电路 三、实验内容及结果分析 1、V CC=12v,V M=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.18 R L=+∞R L=5.1KΩR L=8Ω V1 0.93 5.29 0.25 V O(V) 3.25 3.24 1.05 12.5 12.9 67.8 V2 6.69 11.98 6.03 总电流I (ma) V3 5.28 0 5.94 A V18.06 18 5.83 2、V CC=9V,V M=4.5V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.126v R L=+∞R L=5.1KΩR L=8Ω V1 0.85 3.80 0.18 V O(V) 2.19 2.18 0.82 9.1 9.1 41.9 V2 5.16 8.99 4.51 总电流I (ma) V3 3.80 0 4.45 A V17.38 17.30 6.51 3、V CC=6V,V M=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.08V R L=+∞R L=5.1KΩR L=8Ω V1 0.76 2.36 0.11 V O(V) 1.30 1.29 0.38

完整word高效率PWM音频功率放大器

高效率PWM 音频功率放大器 本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放 大器部分采用D 类功率放大器确保高效,在 5V 供电情况下输出功率大于 1W ,且输出波形 无明显失真,低频输出噪声电压很低 (输出频率为20kHz 以下时,低频噪声电压约 1mV ); 信号变换部分采用差分放大电路,将双端输出信号变为 1 : 1的单端输出信号;输出功率显 1、题目分析及设计方案论证与比较 根据题目要求,整个系统由D 类PWM 功率放大器、信号转换电路及功率测量显示装置 组成。其中核心部分为 D 类PWM 功率放大器。之所以选择此方案是因为 D 类PWM 功放 能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高 频干扰, 从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图 3.1 所示。下面我们分别论述框图中各部分设计方案。 图3.1系统组成框图 2、总体设计思路 根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器 (即D 类功 率放大器)。脉宽调制电路(PWM )的脉宽调制原理 如图3.2所示。 图3.2脉宽调制原理图 一般的D 类放大器电路的工作原理是用 “振荡发生器”输出的三角波与来自外部的模拟 音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正 比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。 在音频信号的前半周 (正电压),脉宽调制方波的占空比小于 50%,使高端MOS 管饱和导通,输出瞬间脉冲电压 V ec — 0=V cc 。在音频信号的后半周(负电压),低端MOS 饱和导通,电压 0— V ec = — V cc o 将输 亠 PWM — 高速开关电路 及滤波网络 D 类功率放大器 796D Vin=O,占空比-50%

音频功率放大电路设计(附仿真)

南昌大学实验报告 学生姓名: 学号: 专业班级: 实验类型:□验证□综合□设计□创新 实验日期: 实验成绩: 音频功率放大电路设计 一、设计任务 设计一小功率音频放大电路并进行仿真。 二、设计要求 已知条件:电源9±V 或12±V ;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干 基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截 止频率f L =300Hz ,f H =3400Hz 扩展性能指标:P o ≥1W (功率管自选) 三、设计方案 音频功率放大电路基本组成框图如下: 音频功放组成框图 由于话筒的输出信号一般只有5mV 左右,通过话音放大器不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L (扬声器)提 供一定的输出功率。 应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于 运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的 OTL (Output Transformerless )功率放大电路和OCL (Output Capacitorless )功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。

对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8 电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。 四、电路仿真与分析 黄色为输入信号,蓝色为输出信号。输出信号峰峰值放大,且波形基本不失真。 输出阻抗用8Ω电阻替代,输出功率为236mW>200mW

甲乙类互补对称功率放大电路

甲乙类互补对称功率放大电路 1 甲乙类互补对称功率放大电路 乙类放大电路的失真: 前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。当输入信号vi低于这个数值时,T1和T2都截止,i c1和i c2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。这种现象称为交越失真。 图1 交越失真的产生原因 2 甲乙类双电源互补对称电路 一、电路的结构与原理 利用图2所示的偏置电路是克服交越失真的一种方法。 图2 由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。由于电路对称,静态时i C1= i C2,I L= 0, v o =0。有信号时,由于电路工作在甲乙类,即使v i很小(D1和D2的交流电阻也小),基本上可线性地进行放大。 上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用V BE扩展电路。 二、VBE扩展电路

图3 利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用V BE扩展电路来解决,如图3所示。 在图3中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出 V CE4=V BE4(R1+R2)/R2 因此,利用T4管的V BE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。这种方法,在集成电路中经常用到。 3 单电源互补对称电路 图4 一、电路结构与原理 图4是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使I C3、V B2和V B1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位V K=V C=V CC/2 。 当加入信号v i时,在信号的负半周,T1导电,有电流通过负载RL,同时向C充电;在信号的正半周,T2导电,则已充电的电容C起着双电源互补对称电路中电源-V CC的作用,通过负载RL放电。只要选择时间常数RLC足够大(比信号的最长周期还大得多),就可以认为用电容C和一个电源V CC可代替原来的+V CC和-V CC两个电源的作用。 值得指出的是,采用一个电源的互补对称电路,由于每个管子的工作电压不是原来的V CC,而是V CC/2,即输出电压幅值V om最大也只能达到约V CC/2,所以前面导出的计算Po、P T、和P V的最大值公式,必须加以修正才能使用。修正的方法也很简单,只要以V CC/2代

相关主题
文本预览
相关文档 最新文档