当前位置:文档之家› 数据结构实验报告-最小生成树

数据结构实验报告-最小生成树

数据结构实验报告-最小生成树
数据结构实验报告-最小生成树

电子科技大学

实验报告

学生姓名:XXX 学号:2013220501018指导教师:刘峤

实验地点:信软楼306 实验时间:5月17日

一、实验室名称:软件实验室

二、实验项目名称:数据结构与算法—图

三、实验学时:4

四、实验原理:

Kruskal 算法是一种按照图中边的权值递增的顺序构造最小生成树的方法。其基本思想是:设无向连通网为G=(V,E),令G 的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T 由图G 中的n 个顶点构成,顶点之间没有一条边,这样T 中各顶点各自构成一个连通分量。然后,按照边的权值由小到大的顺序,考察G 的边集E 中的各条边。若被考察的边的两个顶点属于T 的两个不同的连通分量,则将此边作为最小生成树的边加入到T 中,同时把两个连通分量连接为一个连通分量;若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,如此下去,当T 中的连通分量个数为1 时,此连通分量便为G 的一棵最小生成树。

如教材153页的图4.21(a)所示,按照Kruskal 方法构造最小生成树的过程如图 4.21 所示。在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前未被选取的边集中权值最小的边。依据生成树的概念,n 个结点的生成树,有n-1 条边,故反复上述过程,直到选取了n-1 条边为止,就构成了一棵最小生成树。

五、实验目的:

本实验通过实现最小生成树的算法,使学生理解图的数据结构存储表示,并能理解最小生成树Kruskal 算法。通过练习,加强对算法的理解,提高编程能力。

六、实验内容:

(1)假定每对顶点表示图的一条边,每条边对应一个权值;

(2)输入每条边的顶点和权值;

(3)输入每条边后,计算出最小生成树;

(4)打印最小生成树边的顶点及权值。

七、实验器材(设备、元器件):

PC机一台,装有C/C++语言集成开发环境。

八、数据结构及程序

#include

#include

#include

typedef struct {

int vex;

int gno;

}TVex,*TpVex;

typedef struct {

int vhead, vtail;

int wght;

int flag;

}TEdge,*TpEdge;

typedef struct{

TpVex VexList;

TpEdge EdgeList;

int nvex, nedge;

}TGraph, *TpGraph;

void begin(TpGraph G){

int i;

for (i=1;i<=G->nvex;i++){

G->VexList[i-1].gno=i;

G->EdgeList[i-1].flag=0;

}

}

int findmin(TpGraph G){

int i,j;

int minwght=G->EdgeList[0].wght;

for (i=0,j=-1;inedge;i++){

if (G->EdgeList[i].wghtEdgeList[i].flag==0){

minwght=G->EdgeList[i].wght;

j=i;

}

}

return j;

}

void create(TpGraph G){

int i,j,minEdge;

for (i=0;invex-1;){

minEdge=findmin(G);

if (G->VexList[G->EdgeList[minEdge].vhead].gno==

G->VexList[G->EdgeList[minEdge].vtail].gno)

G->EdgeList[minEdge].flag=-1;

else{

G->EdgeList[minEdge].flag=1;

G->VexList[G->EdgeList[minEdge].vtail].gno=

G->VexList[G->EdgeList[minEdge].vhead].gno;

for (j=0;jnvex;j++){

if

(G->VexList[j].gno==G->VexList[G->EdgeList[minEdge].vtail].gno)

G->VexList[j].gno=G->VexList[G->EdgeList[minEdge].vhead].gno;

}

printf("head:%d tail:%d

weight:%d\n",G->EdgeList[minEdge].vhead,G->EdgeList[minEdge].vtail,G->EdgeList[ minEdge].wght);

i++;

}

}

}

void read_file(char *filename,char *message,TpGraph G){

int a = 0,b,c,i,j,vexlist[20]={0},m,k=0;

FILE *pfile=NULL;

pfile=fopen(filename,"r");

if (!pfile){

printf("Open file fail\n");

exit(0);

}

else

printf("Open file success!\n");

G->EdgeList=(TpEdge)malloc(sizeof(TpEdge)*21);

G->VexList=(TpVex)malloc(sizeof(TpVex)*7);

for(i = 0;i < 20;++i)

{

fscanf(pfile , "%d\t%d\t%d\n" , &a, &b, &c);

G->EdgeList[i].vhead=a;

G->EdgeList[i].vtail=b;

G->EdgeList[i].wght=c;

printf("%d\t%d\t%d\n", a, b, c);

vexlist[k]=a;

k++;

for (m=0;m

if (vexlist[m]==vexlist[k-1])

k--;

}

vexlist[k]=b;

k++;

for (m=0;m

if (vexlist[m]==vexlist[k-1])

k--;

}

}

for (j=0;j<6;j++)

G->VexList[j].vex=j+1;

G->nedge=20;

G->nvex=j;

}

int main()

{

char *filename="/Users/pro/Desktop/实验/数据结构实验3/graph.txt";

TGraph G;

int Edges[20][3] = {0};

read_file(filename,Edges,&G);

begin(&G);

create(&G);

return 0;

}

九、程序运行结果:

运行程序:

实验成功。

十、实验结论:

克鲁斯卡尔算法是一种能够体现“贪心”的精髓的贪心算法,它所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。

十一、总结及心得体会:

克鲁斯卡尔算法的时间复杂度为O(eloge),因此它相对于

普里姆算法而言,适合于求边稀疏的网的最小生成树。

数据结构实验报告格式

《数据结构课程实验》大纲 一、《数据结构课程实验》的地位与作用 “数据结构”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。本课程较系统地介绍了软件设计中常用的数据结构以及相应的存储结构和实现算法,介绍了常用的多种查找和排序技术,并做了性能分析和比较,内容非常丰富。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: (1)内容丰富,学习量大,给学习带来困难; (2)贯穿全书的动态链表存储结构和递归技术是学习中的重点也是难点; (3)所用到的技术多,而在此之前的各门课程中所介绍的专业性知识又不多,因而加大了学习难度; (4)隐含在各部分的技术和方法丰富,也是学习的重点和难点。 根据《数据结构课程》课程本身的技术特性,设置《数据结构课程实验》实践环节十分重要。通过实验实践内容的训练,突出构造性思维训练的特征, 目的是提高学生组织数据及编写大型程序的能力。实验学时为18。 二、《数据结构课程实验》的目的和要求 不少学生在解答习题尤其是算法设计题时,觉得无从下手,做起来特别费劲。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 为了帮助学生更好地学习本课程,理解和掌握算法设计所需的技术,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所用到的一些技术。数据结构中稍微复杂一些的算法设计中可能同时要用到多种技术和方法,如算法设计的构思方法,动态链表,算法的编码,递归技术,与特定问题相关的技术等,要求重点掌握线性链表、二叉树和树、图结构、数组结构相关算法的设计。在掌握基本算法的基础上,掌握分析、解决实际问题的能力。 三、《数据结构课程实验》内容 课程实验共18学时,要求完成以下六个题目: 实习一约瑟夫环问题(2学时)

数据结构实验答案1

重庆文理学院软件工程学院实验报告册 专业:_____软件工程__ _ 班级:_____软件工程2班__ _ 学号:_____201258014054 ___ 姓名:_____周贵宇___________ 课程名称:___ 数据结构 _ 指导教师:_____胡章平__________ 2013年 06 月 25 日

实验序号 1 实验名称实验一线性表基本操作实验地点S-C1303 实验日期2013年04月22日 实验内容1.编程实现在顺序存储的有序表中插入一个元素(数据类型为整型)。 2.编程实现把顺序表中从i个元素开始的k个元素删除(数据类型为整型)。 3.编程序实现将单链表的数据逆置,即将原表的数据(a1,a2….an)变成 (an,…..a2,a1)。(单链表的数据域数据类型为一结构体,包括学生的部分信息:学号,姓名,年龄) 实验过程及步骤1. #include #include #include #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 #define ElemType int #define MAXSIZE 100 /*此处的宏定义常量表示线性表可能达到的最大长度*/ typedef struct

{ ElemType elem[MAXSIZE]; /*线性表占用的数组空间*/ int last; /*记录线性表中最后一个元素在数组elem[ ]中的位置(下标值),空表置为-1*/ }SeqList; #include "common.h" #include "seqlist.h" void px(SeqList *A,int j); void main() { SeqList *l; int p,q,r; int i; l=(SeqList*)malloc(sizeof(SeqList)); printf("请输入线性表的长度:"); scanf("%d",&r); l->last = r-1; printf("请输入线性表的各元素值:\n"); for(i=0; i<=l->last; i++) { scanf("%d",&l->elem[i]); } px(l,i); printf("请输入要插入的值:\n");

最小生成树问题课程设计报告

数据结构课程设计 目录 一. 设计目的.................................................................................................. 错误!未定义书签。 二. 设计内容 (1) 三.概要设计 (1) 1、功能模块图 (1) 2、各个模块详细的功能描述 (2) 四.详细设计 (3) 1.主函数和其他函数的伪码算法 (3) 2、主要函数的程序流程图 (7) 3、函数之间的调用关系图 (15) 五.测试数据及运行结果 (15) 1.正常测试数据及运行结果 (16) 2、非正常测试数据及运行结果 (17) 六.调试情况,设计技巧及体会 (18) 七.参考文献 (19) 八.附录:源代码 (19)

一. 设计目的 课程设计是软件设计的综合训练,包括问题分析、总体结构设计、用户界面设计、程序设计基本技能和技巧。能够在设计中逐步提高程序设计能力,培养科学的软件工作方法。而且通过数据结构课程设计能够在下述各方面得到锻炼: 1、能根据实际问题的具体情况,结合数据结构课程中的基本理论和基本算法,正确分析出数据的逻辑结构,合理地选择相应的存储结构,并能设计出解决问题的有效算法。 2、提高程序设计和调试能力。通过上机实习,验证自己设计的算法的正确性。学会有效利用基本调试方法,迅速找出程序代码中的错误并且修改。 3、培养算法分析能力。分析所设计算法的时间复杂度和空间复杂度,进一步提高程序设计水平。 二. 设计内容 最小生成树问题: 设计要求:在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 三.概要设计 1、功能模块图

最小生成树实验报告

数据结构课程设计报告题目:最小生成树问题 院(系):计算机工程学院 学生姓名: 班级:学号: 起迄日期: 指导教师: 2011—2012年度第 2 学期 一、需求分析

1.问题描述: 在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 2.基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 3.输入输出 以文本形式输出最小生成树,同时输出它们的权值。通过人机对话方式即用户通过自行选择命令来输入数据和生成相应的数据结果。 二、概要设计 1.设计思路: 因为是最小生成树问题,所以采用了课本上介绍过的克鲁斯卡尔算法和 prim算法两种方法来生成最小生成树。根据要求,需采用多种存储结构,所以我选择采用了邻接表和邻接矩阵两种存储结构。 2.数据结构设计: 图状结构: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R:R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作: CreateGraph( &G, V, VR ) 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGraph( &G ) 初始条件:图G存在。 操作结果:销毁图G。 LocateVex( G, u ) 初始条件:图G存在,u和G中顶点有相同特征。 操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返 回其它信息。 GetVex( G, v ) 初始条件:图G存在,v是G中某个顶点。

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

《数据结构》实验报告

苏州科技学院 数据结构(C语言版) 实验报告 专业班级测绘1011 学号10201151 姓名XX 实习地点C1 机房 指导教师史守正

目录 封面 (1) 目录 (2) 实验一线性表 (3) 一、程序设计的基本思想,原理和算法描述 (3) 二、源程序及注释(打包上传) (3) 三、运行输出结果 (4) 四、调试和运行程序过程中产生的问题及采取的措施 (6) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6) 实验二栈和队列 (7) 一、程序设计的基本思想,原理和算法描述 (8) 二、源程序及注释(打包上传) (8) 三、运行输出结果 (8) 四、调试和运行程序过程中产生的问题及采取的措施 (10) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10) 实验三树和二叉树 (11) 一、程序设计的基本思想,原理和算法描述 (11) 二、源程序及注释(打包上传) (12) 三、运行输出结果 (12) 四、调试和运行程序过程中产生的问题及采取的措施 (12) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12) 实验四图 (13) 一、程序设计的基本思想,原理和算法描述 (13) 二、源程序及注释(打包上传) (14) 三、运行输出结果 (14) 四、调试和运行程序过程中产生的问题及采取的措施 (15) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16) 实验五查找 (17) 一、程序设计的基本思想,原理和算法描述 (17)

二、源程序及注释(打包上传) (18) 三、运行输出结果 (18) 四、调试和运行程序过程中产生的问题及采取的措施 (19) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19) 实验六排序 (20) 一、程序设计的基本思想,原理和算法描述 (20) 二、源程序及注释(打包上传) (21) 三、运行输出结果 (21) 四、调试和运行程序过程中产生的问题及采取的措施 (24) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24) 实验一线性表 一、程序设计的基本思想,原理和算法描述: 程序的主要分为自定义函数、主函数。自定义函数有 InitList_Sq、Out_List、ListInsert_Sq、ListDelete_Sq、LocateElem_Sq 、compare。主函数在运行中调用上述的自定义函数,每个自定义函数实现程序的每部分的小功能。 1.程序设计基本思想 用c语言编译程序,利用顺序存储方式实现下列功能:根据键盘输入数据建立一个线性表,并输出该线性表;然后根据屏幕菜单的选择,可以进行数据的插入、删除、查找,并在插入或删除数据后,再输出线性表;最后在屏幕菜单中选择结束按钮,即可结束程序的运行。 2.原理 线性表通过顺序表现,链式表示,一元多项式表示,其中链式表示又分为静态链表,双向链表,循环链表等,在不同的情况下各不相同,他可以是一个数字,也可以是一个符号,通过符号或数字来实现程序的运行。 3.算法描述

数据结构课程设计最小生成树问题

数据结构与算法 课程设计报告 课程设计题目:最小生成树问题 专业班级:信息与计算科学1001班 姓名:谢炜学号:100701114 设计室号:理学院机房 设计时间: 2011-12-26 批阅时间: 指导教师:杜洪波成绩: 一、摘要: 随着社会经济的发展,人们的生活已经越来越离不开网络,网络成为人们社 会生活的重要组成部分。我们希望拥有一个宽松的上网环境,以便更好的进行信 息的交流,在此我们有必要提升我们的网络传播速度。从某种程度上来说网络传

播速度代表着一个国家网络化程度的高低。 为了解决网络传输速度的问题我们希望在各个城市之间多架设一些通信网络线路,以缓解网络不够流畅不够便捷的问题。而在城市之间架设网络线路受到资金因素等的限制,我们希望找到一条捷径这样我们即达到了连接了各个城市网络的目的又节省了建设成本。 通过以上的分析我们得出解决此问题的关键在于找到一个短的路径完成网络的假设。在此我们想将各个城市抽象成为一个个节点,连接各个城市之间的网络作为连接各个节点的边。于是我们就将城市的空间分布抽象成为一个网络图,再将各条边的距离抽象成为各节点之间的权值。在原来的基础上建立一个带有权值的网络图。于是原有的问题就转化为找图的最小生成树问题。 我们利用普利姆算法和卡鲁斯卡尔算法找到我们所需要的最小的生成树。 二、问题分析 在n个城市间建立通信网络,需架设n-1条路线。求解如何以最低的经济代价建设此通信网,这是一个最小生成树问题。我们可以利用普利姆算法或者克鲁斯卡尔算法求出网的最小生成树,输入各城市的数目以及各个城市之间的距离。将城市之间的距离当做网中各点之间的权值。 三、实现本程序需要解决的问题 (1)如何选择存储结构去建立一个带权的网络; (2)如何在所选存储结构下输出这个带权网络; (3)如何实现普利姆算法的功能; (4)如何从每个顶点开始找到所有的最小生成树的顶点; (5)如何输出最小生成树的边及其权值 此问题的关键就是利用普利姆算法,找到一个最小上的生成树,在一个就是输出我们所需要的信息,在此我们将各个城市看做是网中的各个顶点城市之间的距离看做是个顶点之间的权值。现在我们问题做如下的分析: 这个问题主要在于普利姆算法的实现。我们将各个城市的空间分布抽象成一个带有权值的网络,这个权值就是任意两个城市之间,各个城市就看做是网络的各个顶点。 我们建立的输入的数据格式为:首先提示输入带权的顶点数目,我定义为整形的数据型,然后输入每条边的信息,即边的两个顶点之间的权值,以十进制整数类型数据,这样我们就建立了一个带权的网络。 问题的输出我是将我们所得到的最小生成树的路线输出出来。 题目的要求就是我们在n个城市之间架设网络得到的最为经济的架设方法,我们进行以上的工作就是在找我们所需要的最小生成树,已解决我们的问题。 四、算法思想 普利姆算法求最小生成树的主要思想 假设N=(V,{E})是连通网,TE是N上最小生成树中边的集合。算法从U={u0}( u0∈V),TE={}开始,重复执行下述操作:在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止。此时TE中必有n-1条边,则T=(V,{E})为N的最小生成树。

最小生成树的Prim算法提高型实验报告

黄冈师范学院 提高型实验报告 实验课题最小生成树的Prim算法 (实验类型:□综合性■设计性□应用性) 实验课程算法程序设计 实验时间 2010年12月24日 学生姓名周媛鑫 专业班级计科 0801 学号 200826140110

一.实验目的和要求 (1)根据算法设计需要, 掌握连通网的灵活表示方法; (2)掌握最小生成树的Prim算法; (3)熟练掌握贪心算法的设计方法; 二.实验条件 (1)硬件环境:实验室电脑一台 (2)软件环境:winTC 三.实验原理分析 (1)最小生成树的定义: 假设一个单位要在n个办公地点之间建立通信网,则连通n个地点只需要n-1条线路。可以用连通的无向网来表示n个地点以及它们之间可能设置的通信线路,其中网的顶点表示城市,边表示两地间的线路,赋于边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以表示一个通信网。其中一棵使总的耗费最少,即边的权值之和最小的生成树,称为最小生成树。 (2)构造最小生成树可以用多种算法。其中多数算法利用了最小生成树的下面一种简称为MST的性质:假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集。若(u,v)是一条具有最小权值(代价)的边,其中u∈U,v∈V-U,则必存在一棵包含边 (u.v)的最小生成树。 (3)普里姆(Prim)算法即是利用MST性质构造最小生成树的算法。算法思想如下: 假设N=(V,{E})和是连通网,TE是N上最小生成树中边的集合。算法从U={u0}( u0∈V),TE={}开始,重复执行下述操作:在所有u∈U,v∈V-U的边(u, v) ∈E 中找一条代价最小的边(u0, v0)并入集合TE,同时v0并入U,直到U=V为止。此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树。 四.实验步骤 (1)数据结构的设计: 采用邻接矩阵的存储结构来存储无向带权图更利于实现及操作: 邻接矩阵的抽象数据结构定义: #define INFINITY INT_MAX //最大值 #define MAX_ERTEX_NUM 20 //最大顶点数 typedef enum {DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向网,无向图} typedef struct Arc Cell{ VRType adj ; // VRType 是顶点关系的类型。对无权图用1和0表示相邻否;InfoType * info; //该弧相关信息的指针 }ArcCell ,AdjMatrix [ MAX_VERTEX_NUM][MAX_VERTEX_NUM]; Typedef struct { VertexType vexs [ MAX_VERTEX_NUM] ; //顶点向量

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

数据结构实验报告(2015级)及答案

数据结构实验报告(2015级)及答案

《数据结构》实验报告 专业__信息管理学院______ 年级__2015级___________ 学号___ _______ 学生姓名___ _ _______ 指导老师____________ 华中师范大学信息管理系编

I 实验要求 1.每次实验中有若干习题,每个学生至少应该完成其中的两道习题。 2.上机之前应作好充分的准备工作,预先编好程序,经过人工检查无误后,才能上机,以提高上机效率。 3.独立上机输入和调试自己所编的程序,切忌抄袭、拷贝他人程序。 4.上机结束后,应整理出实验报告。书写实验报告时,重点放在调试过程和小节部分,总结出本次实验中的得与失,以达到巩固课堂学习、提高动手能力的目的。 II 实验内容 实验一线性表 【实验目的】 1.熟悉VC环境,学习如何使用C语言实现线性表的两种存储结构。 2.通过编程、上机调试,进一步理解线性表的基本概念,熟练运用C语言实现线性表基本操作。 3.熟练掌握线性表的综合应用问题。 【实验内容】 1.一个线性表有n个元素(n

的顺序不变。设计程序实现。要求:采用顺序存储表示实现;采用链式存储表示方法实现;比较两种方法的优劣。 2. 从单链表中删除指定的元素x,若x在单链表中不存在,给出提示信息。 要求: ①指定的值x由键盘输入; ②程序能处理空链表的情况。 3.设有头结点的单链表,编程对表中的任意值只保留一个结点,删除其余值相同的结点。 要求: ①该算法用函数(非主函数)实现; ②在主函数中调用创建链表的函数创建一个单链表, 并调用该函数,验证算法的正确性。 LinkedList Exchange(LinkedList HEAD,p)∥HEAD是单链表头结点的指针,p是链表中的一个结点。本算法将p所指结点与其后 继结点交换。 {q=head->next;∥q是工作指针,指向链表中当前待处理结点。 pre=head;∥pre是前驱结点指针,指向q的前驱。 while(q!=null && q!=p){pre=q;q=q->next;} ∥

数据结构课程设计报告java最小生成树

上海电力学院 数据结构(JAVA)课程设计 题目:____最小生成树_______ 学生姓名:_****___________ 学号:_____*******_______ 院系:计算机科学与技术学院 专业年级: ______*****___级 20**年 *月**日

目录 1.设计题目 (1) 2.需求分析 (1) 1)运行环境 (1) 2)输入的形式和输入值的范围 (1) 3)输出的形式描述 (1) 4)功能描述 (1) 5)测试数据 (1) 3.概要设计 (1) 1)抽象数据类型定义描述 (1) .2)功能模块设计 (1) 3)模块层次调用关系图 (2) 4.详细设计。实现概要设计中定义的所有的类的定义及类中成员函数,并对主要的模块写出伪码算法。 (2) 5.调试分析。包括调试过程中遇到的问题及解决的方法、算法的时间空间复杂性分析、经验体会。 (6) 6.用户使用说明。详细列出每一步的操作说明。 (7) 7. 测试结果 (7) 8.附录:程序设计源代码 (9)

一、设计题目 1).问题描述 若要在 n 个城市之间建设通信网络,只需要架设n-1 条线路即可。如何以最低的经济代价建设这个通信网,是一个网的最小生成树问题。 2). 基本要求 以邻接多重表存储无向带权图,利用克鲁斯卡尔算法或普瑞姆算法求网的最小生成树。 二、需求分析 1)运行环境 软件在JDK运行,硬件支持windows系统 2)输入的形式和输入值的范围 自动生成顶点数据在10~20之间;各个顶点之间权值在25~50之间;通过程序改动亦可生成已知顶点权值之间的最小生成树,需将随机生成代码改为edge edge[]={new edge(0,1,16),new(0,2,18)......}; 将已知顶点、权值通过其函数输入再生成其所对应最小生成树。 3)输出的形式描述 输出随机生成顶点个数以及各个顶点之间权值;然后输出本次生成顶点之间构成的最小生成树。

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

数据结构实验报告-答案

数据结构(C语言版) 实验报告

专业班级学号姓名 实验1 实验题目:单链表的插入和删除 实验目的: 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤: 1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测 试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序: (1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码: #include"" #include"" #include"" #include"" typedef struct node . . 示意图:

head head head 心得体会: 本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。另外实验指导书上给出的代码是有一些问题的,这使我们认识到实验过程中不能想当然的直接编译执行,应当在阅读并完全理解代码的基础上再执行,这才是实验的意义所在。

实验2 实验题目:二叉树操作设计和实现 实验目的: 掌握二叉树的定义、性质及存储方式,各种遍历算法。 实验要求: 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历 的操作,求所有叶子及结点总数的操作。 实验主要步骤: 1、分析、理解程序。 2、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针), 如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求 所有叶子及结点总数。 实验代码 #include"" #include"" #include"" #define Max 20 ertex=a; irstedge=NULL; irstedge; G->adjlist[i].firstedge=s; irstedge; R[i] 留在原位

最小生成树数据结构课程设计报告

河北科技大学 课程设计报告 学生姓名:白云学号:Z110702301 专业班级:计算机113班 课程名称:数据结构课程设计 学年学期: 2 01 3—2 014学年第2学期指导教师:郑广 2014年6月

课程设计成绩评定表

目录 一、需求分析说明 (1) 1.1最小生成树总体功能要求 (1) 1.2基本功能 (1) 1.3 模块分析 (1) 二、概要设计说明 (1) 2.1设计思路 (1) 2.2模块调用图 (2) 2.3数据结构设计 (2) 2.3.1.抽象数据类型 (2) 2.3.2方法描述 (2) 三、详细设计说明 (3) 3.1主函数模块 (3) 3.2邻接表输出子模块 (3) 3.3邻接矩阵输出子模块 (3) 3.4创建邻接矩阵子模块 (3) 3.5创建邻接表子模块 (3) 3.6 Prim子模块 (3) 3.7 Kruscal子模块 (4) 四、调试分析 (4) 4.1实际完成情况说明 (4) 4.2 出现的问题及解决方案 (4) 4.3程序中可以改进的地方 (4) 六、课程设计总结 (7) 七、测试数据 (7) 八、参考书目 (7)

一、需求分析说明 1.1最小生成树总体功能要求 在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 1.2基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 1.3 模块分析 主模块:用于生成界面和调用各个子模块。 Kruscal模块:以kruscal算法实现最小生成树。 Prim模块:以prim算法实现最小生成树。 邻接表模块:用邻接表方式存储图。 邻接表输出模块:输出邻接表。 邻接矩阵模块:用邻接矩阵方式存储图。 邻接矩阵模块:输出邻接矩阵。 二、概要设计说明 2.1设计思路 问题的解决分别采用普利姆算法以及克鲁斯卡尔算法。 1) 普利姆算法就是先选择根,把它放入一个集合U中,剩余的顶点放在集合V中。然后选择该顶点与V中顶点之间权值最小的一条边,以此类推,如果达到最后一个则返回上一个顶点。 2) 克鲁斯卡尔算法就是写出所有的顶点,选择权最小的边,然后写出第二小的,以此类推,最终要有一个判断是否生成环,不生成则得到克鲁斯卡尔的最小生成树。

实验报告

算法与数据结构 实验报告 系(院):计算机科学学院 专业班级:软工11102 姓名:潘香杰 学号: 201104449 班级序号: 18 指导教师:詹泽梅老师 实验时间:2013.6.17 - 2013.6.29 实验地点:4号楼5楼机房

目录 1、课程设计目的...................................... 2、设计任务.......................................... 3、设计方案.......................................... 4、实现过程.......................................... 5、测试.............................................. 6、使用说明.......................................... 7、难点与收获........................................ 8、实现代码.......................................... 9、可改进的地方.....................................

算法与数据结构课程设计是在学完数据结构课程之后的实践教学环节。本实践教学是培养学生数据抽象能力,进行复杂程序设计的训练过程。要求学生能对所涉及问题选择合适的数据结构、存储结构及算法,并编写出结构清楚且正确易读的程序,提高程序设计基本技能和技巧。 一.设计目的 1.提高数据抽象能力。根据实际问题,能利用数据结构理论课中所学到的知识选择合适的逻辑结构以及存储结构,并设计出有效解决问题的算法。 2.提高程序设计和调试能力。学生通过上机实习,验证自己设计的算法的正确性。学会有效利用基本调试方法,迅速找出程序代码中的错误并且修改。 3.初步了解开发过程中问题分析、整体设计、程序编码、测试等基本方法和技能。二.设计任务 设计一个基于DOS菜单的应用程序。要利用多级菜单实现各种功能。内容如下: ①创建无向图的邻接表 ②无向图的深度优先遍历 ③无向创建无向图的邻接矩阵 ④无向图的基本操作及应用 ⑤图的广度优先遍历 1.有向图的基本操作及应用 ①创建有向图的邻接矩阵 ②创建有向图的邻接表 ③拓扑排序 2.无向网的基本操作及应用 ①创建无向网的邻接矩阵 ②创建无向网的邻接表 ③求最小生成树 3.有向网的基本操作及应用 ①创建有向网的邻接矩阵 ②创建有向网的邻接表 ③关键路径 ④单源最短路径 三.设计方案 第一步:根据设计任务,设计DOS菜单,菜单运行成果如图所示:

数据结构实验报告-答案.doc

数据结构实验报告-答案 数据结构(C语言版)实验报告专业班级学号姓名实验1实验题目:单链表的插入和删除实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤:1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序:(1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码:#include“stdio.h“#include“string.h“#include“stdlib.h“#include“ctype. h“typedefstructnode//定义结点{chardata[10];//结点的数据域为字符串structnode*next;//结点的指针域}ListNode;typedefListNode*LinkList;//自定义LinkList单链表类型LinkListCreatListR1();//函数,用尾插入法建立带头结点的单链表LinkListCreatList(void);//函数,用头插入法建立带头结点的单链表ListNode*LocateNode();//函数,按值查找结点voidDeleteList();//函数,删除指定值的结点voidprintlist();//函数,打印链表中的所有值voidDeleteAll();//函数,删除所有结点,释放内存

最小生成树-实验报告

实验五最小生成树 一、需求分析 1、本程序の目の是要建设一个最经济の网,,输出相应の最小生成树。在这里都用整型数来代替。 2、测试数据 见下程序。 二、概要设计 主程序: int main() { 初始化; while (条件) { 接受命令; 处理命令; } return 0; } 三、详细设计 #include//头文件 using namespace std; #define MAX_VERTEX_NUM 20//最大结点数 #define MAX 200 typedef struct Close//结构体

{ char adjvex; int lowcost; }Close,close[MAX_VERTEX_NUM]; typedef struct ArcNode { int adjvex; ArcNode *nextarc; int info; }ArcNode; typedef struct VNode { char data; ArcNode *firstarc; }VNode,AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList verties; int vexnum,arcnum; }ALGraph; ALGraph G;//对象G int LocateVek(ALGraph ,char );//返回结点位置 int minimum(close);//返回最小数 void MinSpanTree_PRIM(ALGraph,char);//最小生成树 void Create(ALGraph &);//创建邻接表 int main() { char a;int i=1; Create(G); /*for(int i=1;i<=G.vexnum;i++) { for(s=G.verties[i].firstarc;s!=NULL;s=s->nextarc) cout<adjvex].data<<"===="<info<>a; MinSpanTree_PRIM(G,a); cout<<"如果结束输入'0',否则输入'1':"; cin>>i; } return 0; }

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

相关主题
文本预览
相关文档 最新文档