当前位置:文档之家› RP Fiber Power 双包层光纤的泵浦吸收

RP Fiber Power 双包层光纤的泵浦吸收

RP Fiber Power 双包层光纤的泵浦吸收
RP Fiber Power 双包层光纤的泵浦吸收

RP Fiber Power 双包层光纤的泵浦吸收文件:Pump absorption in double-clad fiber .fpw

研究了双包层光纤内泵浦光的吸收效应。采用圆包层纤芯掺杂的简单结构,也可选择D形包层结构,横截面存在小部分断层。圆包层结构简单,但缺陷在于许多模式的泵浦吸收效率较弱。

图1为yz平面的场振幅。对于简单圆包层结构,纤芯区域内光束分布存在明显的孔洞。

图2为吸收后的强度分布。

双包层光纤设计

双包层光纤是由掺杂纤芯、内包层、外包层、保护层4部分组成, 纤芯作为激光的波导,掺杂了镱离子,由于内包层包绕在纤芯的外围,耦合入内包层的多模泵浦光在内包层反射时,进入纤芯区域,就被镱离子所吸收,产生粒子数反转,当增益足够强时,就将多模泵浦光高效地转换为单模激光。双包层掺杂光纤与普通的单模光纤相比, 除了纤芯和内包层之间满足单模光纤条件外, 还有一层低折射率的外包层 ,使两个包层之间形成一个多模光波导层, 外包层的折射率小于内包层的折射率,内包层的折射率小于纤芯的折射率,其横向尺寸和数值孔径均远大于纤芯,这样就可以比较容易地将高功率的多模半导体激光泵浦入光纤,并被限制在内包层中传输,不扩散,有利于保持高功率密度光泵。 针对石英玻璃掺杂稀土离子浓度低的缺点,选择对稀土离子具有较高溶解度的磷酸盐玻璃作为增益介质,大大提高了Yb2O3掺杂浓度。并通过熔融过程中通入纯氧和CCl4解决除水问题,提高Yb3+荧光寿命。 内包层采用与纤芯同基质的磷酸盐玻璃,确定纤芯数值孔径,通过调节组分严格控制内包层玻璃的折射率。玻璃折射率与玻璃分子体积和玻璃内阳离子的极化率有关,极化率越大,折射率越大;分子体积越小,折射率越大。阳离子极化率决定于离子半径及其外电子层结构,原子价相同的阳离子其半径越大,极化率越高,且氧离子与周围阳离子之间的键力越大,则氧离子的外电子被束缚得越牢固,其极化率也越小。故当阳离子半径增加时不仅其本身极化率上升而且提高了氧离子极化率。通过改变配方组分可以直接对磷酸盐玻璃的折射率产生影响。 外包层选用自制的磷酸盐玻璃,通过掺入氟化物降低外包层玻璃的折射率, 并掺入B 2O 3 稳定玻璃的网络结构,提高玻璃的热力学性能,以满足光纤拉制要求。 在此基础上采用管棒法拉制双包层磷酸盐光纤。

多模包层泵浦大功率光纤放大器的工作原理及应用

多模包层泵浦大功率光纤放大器的工作原理及应用 摘要本文要讨论是多模包层泵浦大功率光纤放大器。简单介绍其的基本组成及工作原理。通过与普通光纤放大器的比较来讨论其应用上的优点和发展前景。关键词多模包层泵浦,双包层光纤,高功率 1引言 多模包层泵浦大功率光纤放大器是一种由多模包层泵浦技术这一最近发展起来的新兴技术产物。采用Yb3+和Er3+离子共掺杂双包层光纤,是一系列新技术、新工艺和新材料相结合的产物,是实现光纤放大器超大功率输出的技术核心。 2 多模包层泵浦光纤放大器的结构 多模包层泵浦光纤放大器的光路结构如图1所示: 3 多模包层泵浦光纤放大器的工作原理 多模包层泵浦,是将多模泵浦激光耦合到双包层光纤的内包层中,当多模泵浦光在内包层中传播时会反复穿过光纤纤芯(如图2所示),泵浦光在穿过掺有稀土元素的光纤纤芯时被吸收从而实现泵浦。 与单模纤芯泵浦不同,用于光纤放大器的双包层光纤,泵浦光主要在内包层中传播,因此,同样的纤芯参数,包层泵浦的泵浦吸收截面要小得多,所以,提高泵浦吸收效率是制造双包层光纤需要重点考虑的因素。合理的内包层结构形状能够显著提高泵浦吸收效率,目前,已经设计并制作出了多种内包层形状的双包层光纤,这些专门设计的内包层结构和形状,使泵浦光在单位长度

内有效穿过光纤纤芯的几率大大增加。图3是设计制作的部分双包层光纤内包层形状示意图。 另外,对于1550nm波段光纤放大器,采用铒、镱共掺的双掺杂技术,利用镱元素的高吸收和铒镱之间能量的高效传递,能够获得铒元素的高效泵浦。图4为铒镱共掺有源光纤的泵浦吸收和能量传递简单能级示意图。 铒、镱共掺由于存在能量传递的互逆性,因此,需要尽可能快的消耗铒离子的受激状态。减小纤芯直径,有效提高光密度,是通常的做法,这样做对低功率光纤放大器影响不大,但是,对于大功率和超大功率光纤放大器,会由于过高的光功率密度导致非线性效应,这是有害的。 对于光纤放大器的应用,双包层光纤主要用于大功率和超大功率情况,双包层光纤小芯径纤芯设计已经成为一种制约因素。采用高浓度铒单掺杂可能是解决小芯径问题的一种途径。我们知道,阻碍铒元素掺杂浓度进一步提高的主要原因,是铒元素在掺杂过程中,不可能达到理想的均匀分布,这样会造成铒掺杂的局部浓度过高,从而导致局部铒元素间距过小,相邻铒元素之间出现非辐射交叉弛豫过程,这种局部的过高浓度,还会导致玻璃基质中产生结晶现象。所以,人们正在发展新的技术,使铒元素的掺杂非常均匀,在不引起明显的非辐射交叉弛豫过程的情况下,大幅度提高铒元素的掺杂浓度,使采用相对较大

常用光纤的种类及规格

常用光纤的种类及规格.txt点的是烟抽的却是寂寞……不是你不笑,一笑粉就掉!人又不聪明,还学别人秃顶。绑不住我的心就不要说我花心!再牛b的肖邦,也弹不出老子的悲伤!活着的时候开心点,因为我们要死很久。请你以后不要在我面前说英文了,OK?光纤的种类很多,分类方法也是各种各样的。 从材料角度分 按照制造光纤所用的材料分类,有石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤等。 塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。目前通信中普遍使用的是石英系光纤。 按传输模式分 按光在光纤中的传输模式可分为:单模光纤和多模光纤。 多模光纤电缆容许不同光束于一条电缆上传输,由于多模光缆的芯径较大,故可使用较为廉宜的偶合器及接线器,多模光缆的光纤直径为50至100米。 基本上有两种多模光缆,一种是梯度型(graded)另一种是引导型(stepped),对于梯度型(graded)光缆来说,芯的折光系数(refraction index)于芯的外围最小而逐渐向中心点不断增加,从而减少讯号的振模色散,而对引导型(Stepped Inder)光缆来说,折光系数基本上是平均不变,而只有在色层(cladding)表面上才会突然降低引导型(stepped)光缆一般较梯度型(graded)光缆的频宽为低。在网络应用上,最受欢迎的多模光缆为62.5/125米,62.5/125米意指光缆芯径为62.5米而色层(cladding)直径为125米,其他较为普通的为50/125及100/140。 相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及100mbps的以太网中,多模光纤最长可支持2000米的传输距离,而于1GpS千兆网中,多模光纤最高可支持550米的传输距离。 业界一般认为当传输距离超过295尺,电磁干扰非常严重,或频宽需要超过350MHz,那便应考虑采用多模光纤代替双绞线作为传输载体。 多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。 多模光纤 多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。 单模光纤 单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这

高功率掺镱双包层光纤激光器

第36卷 第9期 激光与红外 V o.l 36,N o .9 2006年9月 LA SER & I NFRAR ED Septe m ber ,2006 文章编号:1001-5078(2006)09-0833-04 高功率掺镱双包层光纤激光器 赵玉辉1,2 ,郑 义1 ,詹 仪1 ,杨洪杰 1 (1.郑州大学河南省激光与光电信息技术重点实验室,河南郑州450052;2.山东理工大学,山东淄博255049) 摘 要:简要地概述高功率双包层掺镱光纤激光器的基本原理和关键技术,介绍其在工业、通 信、医疗等领域的应用,并对国内外的近期进展作了综述。关键词:双包层光纤激光器;包层泵浦;高功率中图分类号:TN248.1 文献标识码:A H i gh -power Yb -doped Double -clad F i ber Laser ZHAO Yu -hu i 1,2 ,Z H E NG Y i 1 ,Z HAN Y i 1 ,YANG H ong -jie 1 (1.H enan K ey L aboratory of Laser and O ptoe l ectronics Infor m a tion T echnology of Zhengzhou U n i v ers it y ,Zheng z hou 450052,Ch i na ;2.Shandong U n i versity o f T echno l ogy ,Z i bo 255049,Ch i na)Ab stract :T he pr i nciples and key techni que o f h i gh -pow er Y b -doped double -c lad fi ber l ase r are briefl y descr i bed .Its applica ti ons i n i ndustry ,comm un i cation ,m ed i ca l treat m ent are i ntroduced .T he latest progresses and deve lop m ent trends in the a rea are prospected .K ey w ords :doub l e -c lad fi ber laser ;c laddi ng -pu m p ;h i gh po w er 1 引 言 光纤激光器由于其诸多优点而倍受青睐。自20世纪80年代中期开发出掺稀土离子单模光纤制造技术以来,光纤激光器成为激光技术领域研究的热点。但是,由于泵浦光较难有效耦合到纤芯中,因此,光纤激光通常被认为是一种低功率光源。近年来,国际上发展了一种以双包层光纤为基础的包层泵浦技术,提高了光纤激光器的输出功率,改变了光纤激光器仅仅是小功率光子器件的历史。目前,掺镱双包层光纤激光器的输出功率与单模光纤激光器相比提高了几个数量级,而且具有光束质量好、结构紧凑小巧、全固化、低阈值、高效率等优点,因此,在工业加工、光通信、医学、印刷、激光测距等领域具有 广泛的应用前景[1-2] 。本文简要介绍了高功率掺镱光纤激光器的机理、关键技术与应用、以及近几年的研究进展和发展方向。 2 掺镱双包层光纤激光器的基本原理和特点 图1为一个纵向泵浦的光纤激光器的基本结构图。一段掺镱离子的双包层光纤放置于两反射率经过选择的腔镜间,泵浦光从光纤激光器的左边腔镜耦合进光纤。光纤激光器是一个波导型的谐振装置,光波的传输介质是光纤,这种结构实际上是 Fabr y -Po r o t 谐振腔结构。在光纤激光器中,非常细 的掺镱光纤纤芯就充当了光纤激光器的增益介质,由于外加泵浦光的作用,在光纤内便很容易形成高功率密度,从而引起激光工作物质的粒子数反转,从纤芯输出激光。 图1 双包层光纤激光器原理示意图F i g .1 sche m atic d iagra m of pri n ci p l e confi gu ration f or doub le -cl ad fi b er l aser 由于双包层掺镱光纤激光器是波导式结构,因 而具有可容强泵浦和高增益的特点,而且光纤本身具有良好的柔绕性、小尺寸和可掺杂等特点,从而使其具有很多优异的性能和特点。主要表现在: a)输出激光的光束质量好,激光器可以实现光 束质量达到近衍射极限(M 2 U 1)的单模高功率激光输出; b)掺镱双包层光纤激光器具有量子效率高、增 基金项目:河南省创新人才培训对象基金资助项目;河南省杰出青年基金资助项目(No .121001200)。 作者简介:赵玉辉(1973-),男,硕士生,主要从事光纤激光器技术的研究。E-m ai:l z haoyhs @163.co m 收稿日期:2006-03-09;修订日期:2006-04-11

光纤结构和基本原理

光纤基本结构及原理 2011-08-16 12:04 2.6.1 光纤通信的概念与基本原理 多种多样的通信业务迫切需要建立高速率的信息传输网。在传输网,特别是骨干网中,高速数字通信的速率已迈向每秒G(109)比特级,正在向T(1012)比特级迈进。要实现这样高速的数字通信,依靠无线媒质或是以传统电缆为代表的有线媒质均是不可想象的。这一难题直到光纤作为一种传输媒质被人们发现之后才得以破解。光纤的潜在容量可达数百T,要比传统电缆的容量至少高出5个数量级。 纵观通信发展史,不难发现,人们一直在不断开拓电磁波的各个频段,把如何利用电磁波作为通信技术的重要研究方向。在大学物理课程中我们已经学到,光可以看作是可见光波段的电磁波。因此,开发光波作为通信的载体与介质是很自然的。在光通信的发展历史中,两大主要的技术难点是光源和传输介质。在上世纪60年代,美国开发了第一台激光器,相对于其他普通光源,激光器具有亮度高、谱线窄、方向性好的特点,可以产生理想的光载波。另一方面,激光如果在大气中传播,会受到变幻无常的气候条件的影响。因此人们设想利用可以导光的玻璃纤维——光纤进行长距离的光波传输。1970年,美国康宁公司首次研制成功损耗为20dB/1km的石英玻璃光纤,达到了实用水平。目前实用的光纤直径很小,既柔软又具有相当的强度,是一种理想的传输媒质。目前,在朗迅(Lucent)、北电(Nortel)、阿尔卡特(Alcatel )、西门子(Siemens)等公司的实验室中,光纤传输技术已经达到数千公里无中继的先进水平。 光纤通信的定义:光纤通信是以光波为载频,光导纤维为传输媒介的一种通信方式。光纤通信一般在发送方对信息的数字编码进行强度调制,在接收端以直接检波的方式来完成光/电变换。 2.6.2 光纤的工作窗口 1.工作窗口的定义 光波可以看作是电磁波,不同的光波就会有不同的波长与频率。我们知道,透明的彩色玻璃之所以有颜色,是因为它只允许一种颜色的光波通过,而其他颜色的光波通过较少。石英光纤也具有类似的选择特性,对特定波长的光波的传输损耗要明显小于其它波长的光波,这些特定的波长就是光纤的工作窗口。工作窗口是随着原材料工艺的不断发展和对光纤传输特性研究的不断深入而一个接一个被打开的。

相关主题
文本预览
相关文档 最新文档