当前位置:文档之家› 双包层光纤光栅的研制

双包层光纤光栅的研制

双包层光纤光栅的研制
双包层光纤光栅的研制

双包层光纤设计

双包层光纤是由掺杂纤芯、内包层、外包层、保护层4部分组成, 纤芯作为激光的波导,掺杂了镱离子,由于内包层包绕在纤芯的外围,耦合入内包层的多模泵浦光在内包层反射时,进入纤芯区域,就被镱离子所吸收,产生粒子数反转,当增益足够强时,就将多模泵浦光高效地转换为单模激光。双包层掺杂光纤与普通的单模光纤相比, 除了纤芯和内包层之间满足单模光纤条件外, 还有一层低折射率的外包层 ,使两个包层之间形成一个多模光波导层, 外包层的折射率小于内包层的折射率,内包层的折射率小于纤芯的折射率,其横向尺寸和数值孔径均远大于纤芯,这样就可以比较容易地将高功率的多模半导体激光泵浦入光纤,并被限制在内包层中传输,不扩散,有利于保持高功率密度光泵。 针对石英玻璃掺杂稀土离子浓度低的缺点,选择对稀土离子具有较高溶解度的磷酸盐玻璃作为增益介质,大大提高了Yb2O3掺杂浓度。并通过熔融过程中通入纯氧和CCl4解决除水问题,提高Yb3+荧光寿命。 内包层采用与纤芯同基质的磷酸盐玻璃,确定纤芯数值孔径,通过调节组分严格控制内包层玻璃的折射率。玻璃折射率与玻璃分子体积和玻璃内阳离子的极化率有关,极化率越大,折射率越大;分子体积越小,折射率越大。阳离子极化率决定于离子半径及其外电子层结构,原子价相同的阳离子其半径越大,极化率越高,且氧离子与周围阳离子之间的键力越大,则氧离子的外电子被束缚得越牢固,其极化率也越小。故当阳离子半径增加时不仅其本身极化率上升而且提高了氧离子极化率。通过改变配方组分可以直接对磷酸盐玻璃的折射率产生影响。 外包层选用自制的磷酸盐玻璃,通过掺入氟化物降低外包层玻璃的折射率, 并掺入B 2O 3 稳定玻璃的网络结构,提高玻璃的热力学性能,以满足光纤拉制要求。 在此基础上采用管棒法拉制双包层磷酸盐光纤。

光纤光栅技术论文

光纤光栅及其技术在电力行业上的应用 摘要:分析光纤光栅解调的基本原理和常用解调方法的工作机理、性能和特点,从光纤传感 技术的优势出发,介绍了光纤光栅传感智能结构的优点,对波长解调方法如匹配解调法、可 调谐激光器法、干涉法、滤波法等做了详细的讨论,阐述了相应的系统设计方案,并对各 种方法的优、缺点进行了分析和讨论。提出光纤光栅传感器在实际应用中所面临的主要技术 难题,分析现有的解决方案,讨论光纤光栅传感器在进一步实用化中需要解决的难题及其未 来的发展趋势。 关键词:光纤光栅,传感解调,干涉,XPM

目录 第一章光纤光栅基本原理 1.1 前言 (1) 1.2 光纤光栅定义及分类 (1) 1.2.1光纤光栅的分类 (2) 1.3光纤光栅制作方法 (6) 1.3.1光敏光纤的制备 (6) 1.3.2成栅的紫外光源 (7) 1.3.3成栅方法 (7) 第二章光纤光栅技术应用 (10) 2.1 光纤光栅传感器的工作原理 (10) 2.1.1啁啾光纤光栅传感器的工作原理 (11) 2.1.2长周期光纤光栅(LPG)传感器的工作原理 (11) 2.2.4在电力工业中的应用 (12) 2.3 光纤光栅在光通信领域的应用 (12) 2.3.1.光纤光栅滤波器中的应用 (12) 2.3.2光纤光栅在光纤通信系统中的应用 (14) 第三章光纤光栅的应用前景 (20) 3.1 光栅技术及拉曼光纤放大器发展应用 (20) 3.2 波分复用/解复用器 (20) 3.3 光纤滤波器 (21) 第四章光纤光栅结论 (21) 致谢 (22) 参考文献 (23)

第一章光纤光栅基本原理 1.1 前言 1978年,加拿大通信研究中心的K.O.Hill及其合作者首次从光纤中观察到了光子诱导光栅。Hill的早期光纤是用488nm 可见光波长的氩离子激光器,通过增加或延长注入光纤芯中的光辐照时间而在纤芯中形成了光栅。后来梅尔茨等人利用高强度紫外光源所形成的干涉条纹对光纤进行侧面横向曝光在该光纤芯中产生折射率调制或相位光栅。1989年,第一支布拉格诺波长位于通信波段的光纤光栅研制成功。1993年hill等人提出了位相掩模技术,它主要是利用紫外光透过相位掩模板后的士1级衍射光形成的干涉光对光纤曝光,使纤芯折射率产生周期性变化写入光栅,此技术使光纤光栅的制作更加简单、灵活,便于批量生产。1993年Alkins等人采用了低温高压氢扩散工艺提高光纤的光敏特性。这一技术使大批量、高质量光纤光栅的制作成为现实。这种光纤增敏工艺打破了光纤光栅制作对光纤中锗含量的依赖,使得可选择的光纤种类扩展到了普通光纤,它还大大提高了光致折变量(由10-5最大提高到了10-2),这样可以在普通光纤上制作出高质量的光纤光栅。 1.2 光纤光栅定义及分类 光纤光栅是利用光纤材料的光敏性,在纤芯内形成空间相位光栅,其作用的实质是在纤芯内形成(利用空间相位光栅的布拉格散射的波长特性)一个窄带的(投射或反射)滤光器或反射镜。光纤光栅是利用光纤中的光敏性制成的。所谓光纤中的光敏性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生

光纤光栅

光纤光栅制作方法 XXX (XX大学XX学院,武汉湖北430000) 摘要:光纤光栅是一种新型的光无源器件,在光纤通信、光纤传感及光纤光学等光纤技术领域中有着广泛的应用前景,近年来成为了一个全球性的研究热点,获得了较大的发展与进步,因此了解光纤光栅制作知识和寻求光纤光栅的最佳制作方法具有重要的意义。 关键词:光无源器件;制作方法;意义;通信 中图分类号:TU375.1 文献标识码:A 文章编号: Fiber Optic Fiber Fabrication Method XXXXXXX (College of mechanical and electric engineering, XXX University, Wuhan 430000, China) Abstract: Fiber Bragg grating is a new kind of optical passive components, such as optical fiber communication, optical fiber sensing and optical fiber optical fiber technology has a broad application prospect in the field of, in recent years has become a global research hot spot, obtained greater development and progress, so fiber grating production knowledge and seeking the best method of making fiber grating of has the vital significance Key words:Optical passive components. Production method; Meaning; communication 1 全光通信的研究还处于起步阶段,许多技术难点需要克服。虽然光纤光栅不能解决全光通信中所有的技术难点,但是对光纤光栅技术和器件的研究可以解决全光通信系统中许多关键技术。因此对光纤光栅的研究可以促进全光通信网的早日实现。 作为一名光电信息工程的学生,我认为在光纤光栅这个器件上还有更多的东西值得挖掘,光纤光栅主要分为:均匀光纤光栅,均匀长周期光纤光栅,切趾光纤光栅,相移光纤光栅,取样光纤光栅。 光纤光栅是将来很长一段时间内光纤通信系统中最具实用价值的无源光器件之一,利用它可组成多种新型光电子器件,由于这些器件的优良性能使人们更加充分地利用光纤通信系统的带宽资源。但是我国在这个方面的水平与国际先进水平还有一段距离,不过只有后辈努力才能使中国在这个方向上赶上国际先进水平。更好的造福人类。 收稿日期:2015-06-xx 作者简介:XXX(19XX-), 男, 学士 XXXX000@https://www.doczj.com/doc/573970553.html,;1光纤光栅制作前期处理办法 光纤光栅是利用光纤的光敏性制作,所谓光敏性是指光纤受激后产生永久性的折射率变化的特性。光栅的制作即是利用紫外光照射光敏光纤,在纤芯形成一种周期性的折射率改变,普通商用光纤光敏特性很差,饱和折射率变化一般不超过3哈10-5,因此如果不对光纤作前期的增敏处理,很难制作出高质量的光纤光栅,目前常用下面几种方案增加光纤的光敏性。 1.1高锗掺杂 提高光纤中锗的含量可以使光纤中的锗相关缺陷浓度更高从而有效地提高光纤的光敏特性,在含锗11mo%l的光纤上可获得高达1.8哈10-3的折射率变化量[3]。但高锗含量光纤不仅需要特殊制备,而且数值孔径较大,与常规光纤熔接时会因模场匹配不好而造成额外损耗。 1.2掺硼 光纤中掺硼也可以有效提高锗硅光纤的光敏特性。Dong[4]在实验中发现掺硼后的相同锗含量光纤折变幅度比不掺杂硼时增加了4倍。同时,掺硼可以减小光纤数值孔径,允许增大锗含量。

多模包层泵浦大功率光纤放大器的工作原理及应用

多模包层泵浦大功率光纤放大器的工作原理及应用 摘要本文要讨论是多模包层泵浦大功率光纤放大器。简单介绍其的基本组成及工作原理。通过与普通光纤放大器的比较来讨论其应用上的优点和发展前景。关键词多模包层泵浦,双包层光纤,高功率 1引言 多模包层泵浦大功率光纤放大器是一种由多模包层泵浦技术这一最近发展起来的新兴技术产物。采用Yb3+和Er3+离子共掺杂双包层光纤,是一系列新技术、新工艺和新材料相结合的产物,是实现光纤放大器超大功率输出的技术核心。 2 多模包层泵浦光纤放大器的结构 多模包层泵浦光纤放大器的光路结构如图1所示: 3 多模包层泵浦光纤放大器的工作原理 多模包层泵浦,是将多模泵浦激光耦合到双包层光纤的内包层中,当多模泵浦光在内包层中传播时会反复穿过光纤纤芯(如图2所示),泵浦光在穿过掺有稀土元素的光纤纤芯时被吸收从而实现泵浦。 与单模纤芯泵浦不同,用于光纤放大器的双包层光纤,泵浦光主要在内包层中传播,因此,同样的纤芯参数,包层泵浦的泵浦吸收截面要小得多,所以,提高泵浦吸收效率是制造双包层光纤需要重点考虑的因素。合理的内包层结构形状能够显著提高泵浦吸收效率,目前,已经设计并制作出了多种内包层形状的双包层光纤,这些专门设计的内包层结构和形状,使泵浦光在单位长度

内有效穿过光纤纤芯的几率大大增加。图3是设计制作的部分双包层光纤内包层形状示意图。 另外,对于1550nm波段光纤放大器,采用铒、镱共掺的双掺杂技术,利用镱元素的高吸收和铒镱之间能量的高效传递,能够获得铒元素的高效泵浦。图4为铒镱共掺有源光纤的泵浦吸收和能量传递简单能级示意图。 铒、镱共掺由于存在能量传递的互逆性,因此,需要尽可能快的消耗铒离子的受激状态。减小纤芯直径,有效提高光密度,是通常的做法,这样做对低功率光纤放大器影响不大,但是,对于大功率和超大功率光纤放大器,会由于过高的光功率密度导致非线性效应,这是有害的。 对于光纤放大器的应用,双包层光纤主要用于大功率和超大功率情况,双包层光纤小芯径纤芯设计已经成为一种制约因素。采用高浓度铒单掺杂可能是解决小芯径问题的一种途径。我们知道,阻碍铒元素掺杂浓度进一步提高的主要原因,是铒元素在掺杂过程中,不可能达到理想的均匀分布,这样会造成铒掺杂的局部浓度过高,从而导致局部铒元素间距过小,相邻铒元素之间出现非辐射交叉弛豫过程,这种局部的过高浓度,还会导致玻璃基质中产生结晶现象。所以,人们正在发展新的技术,使铒元素的掺杂非常均匀,在不引起明显的非辐射交叉弛豫过程的情况下,大幅度提高铒元素的掺杂浓度,使采用相对较大

常用光纤的种类及规格

常用光纤的种类及规格.txt点的是烟抽的却是寂寞……不是你不笑,一笑粉就掉!人又不聪明,还学别人秃顶。绑不住我的心就不要说我花心!再牛b的肖邦,也弹不出老子的悲伤!活着的时候开心点,因为我们要死很久。请你以后不要在我面前说英文了,OK?光纤的种类很多,分类方法也是各种各样的。 从材料角度分 按照制造光纤所用的材料分类,有石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤等。 塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。目前通信中普遍使用的是石英系光纤。 按传输模式分 按光在光纤中的传输模式可分为:单模光纤和多模光纤。 多模光纤电缆容许不同光束于一条电缆上传输,由于多模光缆的芯径较大,故可使用较为廉宜的偶合器及接线器,多模光缆的光纤直径为50至100米。 基本上有两种多模光缆,一种是梯度型(graded)另一种是引导型(stepped),对于梯度型(graded)光缆来说,芯的折光系数(refraction index)于芯的外围最小而逐渐向中心点不断增加,从而减少讯号的振模色散,而对引导型(Stepped Inder)光缆来说,折光系数基本上是平均不变,而只有在色层(cladding)表面上才会突然降低引导型(stepped)光缆一般较梯度型(graded)光缆的频宽为低。在网络应用上,最受欢迎的多模光缆为62.5/125米,62.5/125米意指光缆芯径为62.5米而色层(cladding)直径为125米,其他较为普通的为50/125及100/140。 相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及100mbps的以太网中,多模光纤最长可支持2000米的传输距离,而于1GpS千兆网中,多模光纤最高可支持550米的传输距离。 业界一般认为当传输距离超过295尺,电磁干扰非常严重,或频宽需要超过350MHz,那便应考虑采用多模光纤代替双绞线作为传输载体。 多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。 多模光纤 多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。 单模光纤 单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这

光纤光栅研究

布拉格光栅的研究 1 概述 光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用[1]。 在光纤通信领域,利用光纤光栅可以制成光纤激光器、光纤色散补偿器、光插、分复用器、光纤放大器的增益均衡器等[2],这些器件都是光纤通信系统中不可缺少的重要器件,可见光纤光栅对光纤通信的重要性,因此光纤光栅也被认为是掺铒光纤放大器之后出现的又一关键器件。 在光纤传感领域,光纤光栅也起到了及其重要的作用。光纤光栅的传感机制包括温度引起的形变和热光效应、应变引起的形变和弹光效应、磁场引起的法拉第效应及折射率引起的有效折射率变化等。当光纤光栅所处的温度、应力、磁场、溶液浓度等外界环境的发生变化时,光栅周期或者光纤的有效折射率等参数也随之改变,通过测量由此带来的光纤光栅的共振波长变化或者共振波长处的透射功率变化可以获取所需的传感信息[3],由此可见,光纤光栅是波长型检测器件,所以其不光具有普通光纤的优良特性,而且测量信号不易受光强波动及系统损耗的影响,抗干扰能力更强,还可利用波分复用技术,实现对信号的分布式测量。 由于光纤光栅的应用范围较为广泛,故本文只针对光纤光栅传感的应变检测机制进行一定的研究。光纤光栅可分为布拉格光栅和长周期光栅,在应变检测中,一般采用的布拉格光栅,下文中出现的光纤光栅指的是布拉格光栅。本文主要的工作主要是分析光纤光栅应变检测的原理,对光纤光栅应变检测进行一定的综述,以及对应变检测中很重要的增敏技术进行研究,并总结。 2 应变检测原理 根据光纤光栅的耦合模理论,光纤光栅的中心波长λB 与有效折射率n eff 和光 栅周期Λ满足如下的关系[4] Λ=eff B n 2λ (2-1) 光纤光栅的反射波长取决于光栅周期Λ和有效折射率n eff ,当光栅外部产生应变变化时,会导致光栅周期Λ和有效折射率n eff 的变化,从而引起反射光波长的偏移,通过对波长偏移量的检测可以获得应力的变化情况。由于课上已经讲过,故不多做赘述,只是简要的回顾一下。接下来主要讨论应变对光纤光栅作用的模

高功率掺镱双包层光纤激光器

第36卷 第9期 激光与红外 V o.l 36,N o .9 2006年9月 LA SER & I NFRAR ED Septe m ber ,2006 文章编号:1001-5078(2006)09-0833-04 高功率掺镱双包层光纤激光器 赵玉辉1,2 ,郑 义1 ,詹 仪1 ,杨洪杰 1 (1.郑州大学河南省激光与光电信息技术重点实验室,河南郑州450052;2.山东理工大学,山东淄博255049) 摘 要:简要地概述高功率双包层掺镱光纤激光器的基本原理和关键技术,介绍其在工业、通 信、医疗等领域的应用,并对国内外的近期进展作了综述。关键词:双包层光纤激光器;包层泵浦;高功率中图分类号:TN248.1 文献标识码:A H i gh -power Yb -doped Double -clad F i ber Laser ZHAO Yu -hu i 1,2 ,Z H E NG Y i 1 ,Z HAN Y i 1 ,YANG H ong -jie 1 (1.H enan K ey L aboratory of Laser and O ptoe l ectronics Infor m a tion T echnology of Zhengzhou U n i v ers it y ,Zheng z hou 450052,Ch i na ;2.Shandong U n i versity o f T echno l ogy ,Z i bo 255049,Ch i na)Ab stract :T he pr i nciples and key techni que o f h i gh -pow er Y b -doped double -c lad fi ber l ase r are briefl y descr i bed .Its applica ti ons i n i ndustry ,comm un i cation ,m ed i ca l treat m ent are i ntroduced .T he latest progresses and deve lop m ent trends in the a rea are prospected .K ey w ords :doub l e -c lad fi ber laser ;c laddi ng -pu m p ;h i gh po w er 1 引 言 光纤激光器由于其诸多优点而倍受青睐。自20世纪80年代中期开发出掺稀土离子单模光纤制造技术以来,光纤激光器成为激光技术领域研究的热点。但是,由于泵浦光较难有效耦合到纤芯中,因此,光纤激光通常被认为是一种低功率光源。近年来,国际上发展了一种以双包层光纤为基础的包层泵浦技术,提高了光纤激光器的输出功率,改变了光纤激光器仅仅是小功率光子器件的历史。目前,掺镱双包层光纤激光器的输出功率与单模光纤激光器相比提高了几个数量级,而且具有光束质量好、结构紧凑小巧、全固化、低阈值、高效率等优点,因此,在工业加工、光通信、医学、印刷、激光测距等领域具有 广泛的应用前景[1-2] 。本文简要介绍了高功率掺镱光纤激光器的机理、关键技术与应用、以及近几年的研究进展和发展方向。 2 掺镱双包层光纤激光器的基本原理和特点 图1为一个纵向泵浦的光纤激光器的基本结构图。一段掺镱离子的双包层光纤放置于两反射率经过选择的腔镜间,泵浦光从光纤激光器的左边腔镜耦合进光纤。光纤激光器是一个波导型的谐振装置,光波的传输介质是光纤,这种结构实际上是 Fabr y -Po r o t 谐振腔结构。在光纤激光器中,非常细 的掺镱光纤纤芯就充当了光纤激光器的增益介质,由于外加泵浦光的作用,在光纤内便很容易形成高功率密度,从而引起激光工作物质的粒子数反转,从纤芯输出激光。 图1 双包层光纤激光器原理示意图F i g .1 sche m atic d iagra m of pri n ci p l e confi gu ration f or doub le -cl ad fi b er l aser 由于双包层掺镱光纤激光器是波导式结构,因 而具有可容强泵浦和高增益的特点,而且光纤本身具有良好的柔绕性、小尺寸和可掺杂等特点,从而使其具有很多优异的性能和特点。主要表现在: a)输出激光的光束质量好,激光器可以实现光 束质量达到近衍射极限(M 2 U 1)的单模高功率激光输出; b)掺镱双包层光纤激光器具有量子效率高、增 基金项目:河南省创新人才培训对象基金资助项目;河南省杰出青年基金资助项目(No .121001200)。 作者简介:赵玉辉(1973-),男,硕士生,主要从事光纤激光器技术的研究。E-m ai:l z haoyhs @163.co m 收稿日期:2006-03-09;修订日期:2006-04-11

光纤结构和基本原理

光纤基本结构及原理 2011-08-16 12:04 2.6.1 光纤通信的概念与基本原理 多种多样的通信业务迫切需要建立高速率的信息传输网。在传输网,特别是骨干网中,高速数字通信的速率已迈向每秒G(109)比特级,正在向T(1012)比特级迈进。要实现这样高速的数字通信,依靠无线媒质或是以传统电缆为代表的有线媒质均是不可想象的。这一难题直到光纤作为一种传输媒质被人们发现之后才得以破解。光纤的潜在容量可达数百T,要比传统电缆的容量至少高出5个数量级。 纵观通信发展史,不难发现,人们一直在不断开拓电磁波的各个频段,把如何利用电磁波作为通信技术的重要研究方向。在大学物理课程中我们已经学到,光可以看作是可见光波段的电磁波。因此,开发光波作为通信的载体与介质是很自然的。在光通信的发展历史中,两大主要的技术难点是光源和传输介质。在上世纪60年代,美国开发了第一台激光器,相对于其他普通光源,激光器具有亮度高、谱线窄、方向性好的特点,可以产生理想的光载波。另一方面,激光如果在大气中传播,会受到变幻无常的气候条件的影响。因此人们设想利用可以导光的玻璃纤维——光纤进行长距离的光波传输。1970年,美国康宁公司首次研制成功损耗为20dB/1km的石英玻璃光纤,达到了实用水平。目前实用的光纤直径很小,既柔软又具有相当的强度,是一种理想的传输媒质。目前,在朗迅(Lucent)、北电(Nortel)、阿尔卡特(Alcatel )、西门子(Siemens)等公司的实验室中,光纤传输技术已经达到数千公里无中继的先进水平。 光纤通信的定义:光纤通信是以光波为载频,光导纤维为传输媒介的一种通信方式。光纤通信一般在发送方对信息的数字编码进行强度调制,在接收端以直接检波的方式来完成光/电变换。 2.6.2 光纤的工作窗口 1.工作窗口的定义 光波可以看作是电磁波,不同的光波就会有不同的波长与频率。我们知道,透明的彩色玻璃之所以有颜色,是因为它只允许一种颜色的光波通过,而其他颜色的光波通过较少。石英光纤也具有类似的选择特性,对特定波长的光波的传输损耗要明显小于其它波长的光波,这些特定的波长就是光纤的工作窗口。工作窗口是随着原材料工艺的不断发展和对光纤传输特性研究的不断深入而一个接一个被打开的。

光纤光栅制作方法

光纤光栅制作方法<2> 3)chirp光纤光栅的制作a)两次曝光法这种方法可采用较简单的制作均匀光纤光栅的曝光光路。第一次曝光在光纤上并不形成光栅,而是仅形成一个渐变的折射率梯度,第二次曝光过程则是在第一次曝光区域上继续写入周期均匀的光栅,两次效应迭加便构成了一个chirp光栅。这种方法的优点是利用了制作均匀光栅的曝光光路,使得制作方法大大简化。b)光纤弯曲法这是在均匀光栅中引人光纤的机械变形,形成chirp光栅的一种方法,由于光纤的弯曲角度渐变,造成光栅的周期渐变。这种方法引入的chirp量不能过大,否则栅齿倾斜,会引起导模耦合成包层模而造成附加损耗。c)锥形光纤法这是利用锥形光纤形成chirp光栅的一种方法。可以在锥形光纤两端施加应力发生形变,然后写人均匀周期的光栅,应力释放后,由于锥体各部分的伸长形变不同,造成光栅周期的轴向发生均匀变化,形成chirp光栅。也可以先在锥形光纤上写人均匀光栅,然后再施加应力,可以得到相同的效果。d)应力梯度法与锥形光纤法原理相同,只是光纤中应力大小是通过将光纤粘在底座上的胶含量来调节。它的优点是可以分别调节中心波长和光栅的带宽,这对于制作高性能的色散补偿器具有重要的意义。e)复合chirp光栅法将一列不同周期的均匀光栅顺序写在光纤上,它最大限度地应用了制作均匀光纤光栅的工艺简单性,具有很大的灵活性。f)chirp光栅的全总干涉法制作这种制作chirp光栅的基本原理是通过在双光束全息光路系统中加入往面镜,使两束光的干涉角度沿着光纤轴向发生连续变化,从而造成光纤的纤芯折射率发生周期性渐变,形成chirp光纤光栅。4)新的光纤光栅制作方法a)直接写入法直接写入法是指在制作光纤光栅时,无须剥去光纤的涂覆层而直接在纤芯上写人光纤光栅的方法。此法关键是采用对紫外光透明的材料作为光纤的涂覆层。目前报道的光纤涂覆层有采用丙烯酸酯或general electric rtv615硅胶,通过加大紫外光强度、减小涂覆层厚度以及对光纤氢载等方法可以有效提高光纤光栅的写入时间。这种方法解决了以往传统方法中必须采用课光纤的弊端,减少了对光纤光栅制作完后要立即进行涂覆的工艺复杂性,具有很好的应用前景。b)在线成栅法这是最新出现的一种成栅方法。南安普敦大学的ldong等人采用脉冲单点激射的方法,首次实现了光纤拉制过程中写人光纤光栅的实验。它是在光纤拉制过程中在探光纤上直接写入光栅。通过对干涉系统中两束干涉光夹角的调节,可在线自动写入反射波长不同的一系列光纤光栅。使用这种方法,制造工艺简单,能连续大批量地制造光纤光栅,提高了光栅性能的稳定性,它的技术关键是要对所使用的准分子激光光束截面进行改进才能满足实用化的要求。c)光纤刻槽拉伸法用精密切割机对光纤进行周期性机械刻槽,用氢气火焰对v型槽区域的光泽进行拉伸退火,熔融玻璃表面应力的影响,以及v型槽一边的光纤的纤芯不平衡等因素,纤芯产生周期性的畸变,导致纤芯折射率的周期性变化。利用此方法已经成功研制成的长周期光纤光栅,具有很好的宽阻带特性(30nm),可应用于宽阻带滤波器的波分复用系统。这种方法的缺点是机械加工的精度要求较高,目前很少被采用。d)微透镜阵列法这种写入长周期光纤光栅方法的关键技术是采用一种微透镜阵列,将一平行的宽柬难分子激光聚焦成平行等间距的光条纹,投影到单模光纤上,其中相邻微透镜之间无间隙,其中心间距决定了写人光栅的空间周期。这种方法写入一个长周期光纤光栅仅需10s,大大提高了写入效率。通过控制写入时间和写入光栅的总长度,可以用同一块微透镜模板写入不同波长、不同透射率的长周期光栅。这种方法的缺点是做透镜模板制作非常困难,使它的应用受到了限制。e)用聚焦二氧化碳激光器写入lpg 采用10.6μm自由空间二氧化碳激光器对光纤直接曝光,通过计算机控制平移台,实现光纤的准直和固定及曝光间距的控制,可以写入不同周期的长周期光栅。这种方法无须采用紫外光,对光纤可以不用载氢处理,这种方法具有很好的应用前景。f)移动平台法利用一个周期不变的相位掩膜,可以写入调瞅、波长任意的光纤bragg光栅,通过改变光束的聚焦,可以写入阶跃chirp光栅。实验结构的主体包括两个移动平台,相位掩膜与光纤固定在一起,可以移动。改变两个透镜之间的距离就可以改变写入光纤的布拉格波长,控制每个基本光栅的曝光时间可控制切趾光栅剖面,这对于抑制反射谱中旁瓣的影响具有重要的意义。g)用聚焦离子束写入光纤光栅利用聚焦离子束(focused ion beam:fib)可以写入任意的光纤光栅结构,fib既可以采用研磨方式,也可以采用沉积方式。光栅研磨出的槽离纤芯只有几μm,研磨15~20个槽即可获得高的反射率,槽数越多反射越大。研磨方法简单但实现不易,常用的方法是用氟化氢腐蚀掉部分包层后开始研磨,但光纤研磨下来的物质充电沉积在研磨区,将会降低研磨效率,并且由于材料的再沉积,糟的深宽比将被限制在一个较小的值。研磨时间取决于研磨材料和束电流。这种方法的关键是要解决工艺难度,才有可能获得广泛的应用。3结束语对光纤通信而

光纤光栅传感技术发展综述

Optoelectronics 光电子, 2018, 8(3), 98-105 Published Online September 2018 in Hans. https://www.doczj.com/doc/573970553.html,/journal/oe https://https://www.doczj.com/doc/573970553.html,/10.12677/oe.2018.83014 Development in Fiber Bragg Grating Sensing Technology Shanchao Jiang School of Electrical Engineering, Yancheng Institute of Technology, Yancheng Jiangsu Received: Aug. 21st, 2018; accepted: Sep. 6th, 2018; published: Sep. 13th, 2018 Abstract In order to promote the development of fiber Bragg grating (FBG) sensing technology, this paper introduces the development of fiber Bragg grating in its spectrum analysis, sensor parameters (such as strain, displacement, pressure, flow rate, anchor bolt, inclination, etc.) detection, multip-lexing technology and other aspects in detail. This provides basic support for further diversifica-tion and practicability of FBG sensing technology. Keywords FBG, Spectrum Analysis, Detection Sensor, Multiplexing Technology 光纤光栅传感技术发展综述 蒋善超 盐城工学院电气工程学院,江苏盐城 收稿日期:2018年8月21日;录用日期:2018年9月6日;发布日期:2018年9月13日 摘要 为促进光纤光栅传感技术的发展,本文较为详细的介绍了光纤光栅在其光谱分析、传感器参数(如应变、位移、压力、流速、锚索锚杆、倾斜等)检测、复用技术等方面的发展现状,为推动光纤光栅传感技术进一步的多样化、实用化提供基础支持。 关键词 光纤光栅,光谱分析,检测元件,复用技术

光纤布拉格光栅写制技术研究

光纤布拉格光栅写制技术研究 摘要:光纤光栅广泛应用于光纤传感和光纤通信领域,不同的应用场合对光纤光栅的特征参量提出了不同的要求。本文通过调节光纤光栅相位掩模法制作参数,测定不同参数对光纤光栅光谱特性的影响规律并分析其原因,进而通过写制参数控制光纤光栅的光谱形状,对制作确定光谱参数的光纤光栅具有指导意义。 关键词:光纤光学;光纤光栅;制作技术 中图分类号:TN929 文献标识码:A 文章编号:1007-9416(2018)04-0092-03 1 引言 相位掩模法[1]是制作光纤布拉格光栅最常用的方法,在商业化的大批量生产中,一般通过制作大量光纤光栅,从中选取符合设计要求的使用。对于大规模光纤光栅传感阵列[2-4],需要在单根光纤上制作多个具有确定性能的光纤光栅,这需要精确控制制作参数以保证写制光纤光栅的性能符合设计要求。光纤光栅新型器件[5-12]的制作需要将光纤光栅写在不同的波导结构上,同样需要对光栅写制参数的精确控制,因此,研究光纤光栅写制参数对其性能的影响规律具有重要的实用价值。 本文通过分析影响光纤光栅光谱特性的主要参数,搭建

光栅写制实验测试平台,通过调节准分子激光器的重复频率、脉冲能量、曝光时间及改变待刻栅光纤两端的预应力,测试写制参数对光纤光栅光谱特性的影响规律,为写制确定光谱特性的光纤光栅以及光纤光栅写制过程中的调整提供 指导。 2 写制参数控制实验 实验采用248nm准分子激光器曝光相位掩模板写入法,图1就是相位掩模法制作光纤光栅的示意图。 通过相位掩模法制作光纤光栅的工艺过程分析,有一些工艺制作因素对实际制作的光纤光栅性能影响颇为明显,我们选取准分子激光器的脉冲能量、重复频率和曝光时间、施加在光纤两端的预应力等写制参数作为研究对象,搭建光纤光栅制作系统,测试上述参数对光纤光栅光谱特性的影响规律,实验测试及分析过程如下: 2.1 曝光能量 ?x用载氢三周的普通抗弯光纤作为研究对象,写入光栅长度6mm,设定准分子激光器脉冲重复频率10Hz,光纤两端施加恒定0.5N的预拉力,用同一块相位掩模板,依次调节激光器输出能量为19kv、22kv、26kv、30kv,测试不同脉冲能量下写入光栅的特性差异。 从写制过程可看出,随着脉冲能量增大,刻写相同反射率光纤光栅所需的曝光时间减少,所能达到的最大反射率增

光纤光栅案例资料全

光纤光栅电力设备安全状态监控系统 北京明堂华宇光电科技有限公司

产品介绍 一、应用背景 随着我国经济的发展,电力系统正在朝着超高压、大电网、大容量、自动化的方向发展,电力系统的安全运行对整个国民经济的发展来说是极为重要的,一旦发生事故则损失巨大。现代电力系统中的电气设备大多采用封闭式结构,散热效果差、热积累大,并长期处于高电压、大电流和满负荷运行,结果造成热量集结加剧,温升直接威胁电气设备的电气绝缘,初始表现为温度升高,进而引发短路,导致大面积电缆烧损,造成被迫停机,短时间内无法恢复生产,甚至引起火灾,造成重大损失。电力系统中的发电机绕组、变压器绕组、高压开关柜内触头和电力电缆接头等热点的温升会使电力设备寿命缩短,甚至造成相关设备被烧坏的严重事故。因此,对电力设备进行精确的、实时的温度监测与报警对于提前发现安全隐患和及时的采取应对措施具有重大意义。 电力工业中的设备大多处在强电磁场中,一般电器类传感器无法使用。高压开关的在线监测,高压变压器绕组、发电机定子等地方的温度和位移等参数的实时检测都要求绝缘性能好,体积小。光纤光栅传感器具有本质安全、抗电磁干扰、体积小巧、易于安装等独特的优点,非常适于电力系统中高电压、大电流环境下的各种热点温度的监测。采用新型的光纤光栅温度传感系统能够实现对电力系统中发热节点的实时远程监控,解决日益增多的无人值守配电室中运行设备温度参数无法测量的问题。通过实时监测电力热点的温度变化,在温度超限或温升速度达到超限时能及时报警,并对发热点快速定位,通知运行人员及时处理,对确保电力系统运行安全、避免经济损失有着非常重要的意义。 二、主要应用 2.1监测电缆接头温度 现在全国发生的电力电缆故障中80%以上是由于电力电缆附件故障引起的,其中电缆接头引起的事故占一半以上。通过对电力事故分析,引起电缆沟内火灾发生的直接原因是电缆中间头制作质量不良、压接头不紧、接触电阻过大,长期运行所造成的电缆头过热烧穿绝缘,最后导致电缆沟内火灾的发生。电缆故障引起的火灾导致大面积电缆烧损,造成被迫停机,短时间内无法恢复生产,对社会造成重大经济损失。 例一:辽宁发电厂发生过电缆头过热引起火灾,当消防人员扑灭火灾后刚要离开现场时电缆头绝缘击穿,大火复燃,当场烧伤数人,造成群伤事故。 例二:富拉尔基电厂,试验人员查找电缆故障时,上午采用了电容击穿法进行查找,中午休息后,电缆沟内发生了火灾,造成重大事故,火灾发生的时间较长,

光纤光栅的制作与应用

目录 摘要 (1) 引言 (2) 1.光纤光栅制作方法 (2) 1.1光纤光栅的特点 (2) 1.2光纤光栅的分类 (4) 1.2.1按其空间周期和折射率系数分布特性 (4) 1.2.2根据光纤光栅的成栅机理 (5) 1.3光栅光纤的制备 (6) 1.4成栅的紫外光源 (7) 1.5成栅方法 (8) 1.5.1短周期光纤光栅的制作 (8) 1.5.2长周期光纤光栅的制作 (10) 2光纤光栅的应用 (11) 2.1光纤光栅在光纤通信系统中的应用 (13) 2.1.1有源器件 (13) 2.1.2无源器件 (13) 2.2可见光纤光栅的应用 (13) 2.2.1光源 (14)

2.2.2光纤放大器 (15) 2.2.3色散补偿器 (15) 2.2.4光分插复用器(OADM) (16) 2.2.5光终端复接器(OTM) (17) 2.2.6波长交换 (18) 3发展前景展望 (19) 参考文献 (21)

摘要:近年来,各种新的光纤光栅写入方法成出不穷,各种新型光纤光栅及其应用领域不断涌现,而且光纤光栅的制作技术与其应用领域有着密切的联系。本文主要综述了光纤光栅的制作技术及其一些特种光栅制作方法的最新进展。 为了介绍各种光光纤光栅制作方法的应用领域,本文首先介绍了光纤光栅的光学特性,光敏光纤的制备方法和所需光源等知识。对于光纤的制作技术,分别说明了短周期光纤光栅(FBG),长周期光纤光栅(LFPG)的各种写入方法,啁啾光纤光栅和切趾光纤光栅以其独到的优势而备受关注,因此,本文也对他们的特殊写入方法进行了阐述。并比较了各自的优缺点。 目前,光纤光栅具有附加损耗小、体积小、能与光纤很好地耦合、可与其他光纤器件融成一体等特性,是全光网中的关键技术器件。光纤光栅技术可以为全光通信系统中光源、光放大、色散补偿、光终端复接器(OTM)、光交叉连接(OXC)等关键部件提供解决方案。本文介绍了光纤光栅在全光网络中所发挥的作用,阐述了光纤光栅的特点,对光纤光栅进行了分类,着重分析了光纤光栅在光通信系统中的典型应用,并对其发展前景作出了展望。 关键词:光纤光栅成栅机理光纤无源器件全光通信

光纤光栅原理及应用

光纤光栅原理及应用?作者:饶云江王义平朱涛 ?丛书名:当代杰出青年科学文库 ?出版社:科学出版社 ?ISBN:7030167546 ?上架时间:2007-2-10 ?出版日期:2006 年8月 前言. 第1章概论 1.1 光纤光栅发展概况 1.2 光纤光栅分类 1.3 光纤光栅应用概况 1.4 本书提纲 参考文献 第2章光纤光敏性 2.1 光敏性介绍 2.2 硅基光纤的光敏性 2.3 光致折变的各向异性 2.4 点缺陷 2.5 硅光纤光敏性的增强 2.6 光敏性机理 2.7 其他种类光纤的光敏性 2.8 光致折变的清除与保持 参考文献 第3章光纤光栅写入方法 3.1 内部法写人光纤布拉格光栅 3.2 干涉法制作光纤布拉格光栅 .3.3 相位模板法制作光纤布拉格光栅 3.4 逐点法写入布拉格光栅 3.5 模板成像投影法 3.6 光纤光栅写入中的激光光源 3.7 特殊光栅的制作过程 3.8 氢载对制作光纤光栅的影响 3.9 透过聚合物敷层制作光纤布拉格光栅 3.10 长周期光纤光栅写入法 参考文献 第4章光纤布拉格光栅理论 4.1 光纤布拉格光栅的耦合模理论 4.2 非均匀光栅中的双模耦合 4.3 倾斜光栅 4.4 包层模耦合

4.5 辐射模耦合 4.6 光纤布拉格光栅的数值算法 4.7 布洛赫波 4.8 非线性光栅效应 4.9 讨论 参考文献 第5章光纤布拉格光栅的特性 5.1 均匀光纤布拉格光栅 5.2 光纤布拉格光栅的种类 5.3 光纤布拉格光栅的脉冲响应 5.4 光纤布拉格光栅的寿命和可靠性 参考文献 第6章光纤布拉格光栅在传感中的应用6.1 概述 6.2 传感原理 6.3 fbg传感系统中的探测解调技术.. 6.4 fbg复用技术 6.5 fbg传感器的应用 6.6 其他应用 参考文献 第7章光纤布拉格光栅在通信中的应用7.1 光纤激光器 7.2 光纤放大器 7.3 光纤布拉格光栅二极管激光器 7.4 光纤布拉格光栅滤波器 7.5 波分复用懈复用器 7.6 密集波分复用器 7.7 色散补偿器 7.8 光纤布拉格光栅的其他应用 7.9 小结 参考文献 第8章长周期光纤光栅理论 8.1 长周期光纤光栅理论模型的发展8.2 耦合模理论 8.3 长周期光纤光栅的模式耦合i 8.4 长周期光纤光栅的模式耦合ⅱ 8.5 级联长周期光纤光栅 8.6 小结 参考文献 第9章长周期光纤光栅的特性 9.1 长周期光纤光栅的温度特性 9.2 长周期光纤光栅的轴向应变特性9.3 长周期光纤光栅的弯曲特性 9.4 长周期光纤光栅的扭曲特性

光纤光栅制作与发展

光纤光栅的制作与发展 1.1 光纤材料的光敏性 光纤光栅的光敏性是指物质的物理或者化学性质在外部光的作用下发生暂时或永久性改变的材料属性。对光纤材料的光敏性而言,则是指折射率、吸收谱、内部应力、密度和非线性极化率等多方面的特性发生永久性改变。 石英材料的分子结构通常为四面体结构,每个硅原子通过形成共价键与四个氧原子相连。虽然Ge原子与Si原子同为四价元素,可以代替Si原子在石英玻璃四面体结构中的位置,但是Ge的掺入仍将对石英玻璃的分子结构产生干扰并不可避免的形成缺陷中心。由于纯石英玻璃的吸收带位于160nm处,对波长在190nm以上一直到红外区的光具有大于90%的透过率。这些波长的光不会对石英材料的性质产生任何形式的影响,因此,光纤的光敏性与掺杂有关。 一般认为掺锗石英光纤材料的光敏现象源于缺陷中心。起初,曾认为光敏性仅能从掺锗光纤中出现,光栅不能从纯硅纤芯生长,OH基对光纤的光敏性不是必要的。但是后来实验表明,光敏性存在于众多种类的光纤。比如,基于硅基光纤的掺铕光纤,掺铈光纤,掺饵锗光纤,以及掺氟浩盐光纤的掺锶饵光纤等。 然而从实用的观点来看,最引人注意的光敏光纤就是广泛应用于通信产业和光传感领域的纤芯掺锗光纤。在光纤材料中掺锗以后将产生位于180nm,195nm,213nm,240nm,281nm,325nm,517nm等多个附加的吸收带,其中240nm和195nm为强吸收带。240nm吸收带的宽度约为30nm,325nm吸收带的强度仅为240nm吸收带的1/1000。通常,对光纤材料光敏性研究主要集中在240nm和193nm的紫外光波段上。 1.2光纤材料的增敏技术 自光敏性的发现和第一次证实锗硅光纤中的光栅以来,增加光纤中的光敏性就成为了一个重要的考虑因素。标准单模通讯光纤中掺有3%的锗,典型的光致折射率变化为~3×10-5。由于光纤材料的光敏性与光纤的掺杂浓度基本上成正比关系,因此提高光纤材料感光性最直接的方法就是提高光纤芯区的锗掺杂浓度。一般地,增加掺锗浓度可导致~5×10-4的光致折射率变化。但是用这种方法提高光纤材料的光敏性有一个很大的不利因素,即增加光纤芯区含锗量将增大光纤芯区和包层折射率之差。为保证光纤只能进行单模传输,必须减少光纤的芯径。当芯区的锗含量很高时,光纤的芯径将要非常小,这将影响光敏光纤与普通单模光纤的匹配性能。 因此,寻求更为有效的光纤材料增敏方法具有非常重要的意义。提高光纤材料紫外感光特性的方法可以从以下几个方面考虑: (1)增加光纤材料中的缺陷浓度。 (2)在光纤材料中掺入具有较大紫外吸收系数的杂质。 (3)在光纤的芯区或包层中掺入适当杂质,尽可能增大二者之间的热特性失配度。 目前,已经有多种有效的光纤材料增敏方案在实验室应用。这些方案主要分为三种,即载氢技术、光纤还原法和多种掺杂。 1.2.1 载氢增敏技术 1993年,AT&TBell实验室的P.J.Lemaire等人首次引入了掺锗石英光纤材料的载氢增敏技术。掺锗3mol%的光纤被放入气压为2.0~76MPa(典型值为15MPa),温度为20~75oC的氢气中,这种方法将氢气以分子形态扩散入光纤的芯区。载氢光纤在收到紫外光照射的时候或者加热时将引起氢气的与掺锗石英玻璃之间的化学反应,即H2分子在Si-O-Ge 区发生变化,形成与折射率有关的Ge-OH,Si-OH,Ge-H,Si-H等化学键和缺氧锗缺陷

相关主题
文本预览
相关文档 最新文档