当前位置:文档之家› 第二章函数与导数第13课时函数模型及其应用教学案(含模拟试题改编)

第二章函数与导数第13课时函数模型及其应用教学案(含模拟试题改编)

第二章函数与导数第13课时函数模型及其应用教学案(含模拟试题改编)
第二章函数与导数第13课时函数模型及其应用教学案(含模拟试题改编)

第二章函数与导数第13课时函数模型及其应用第三章(对应学生用书(文)、(理)33~36页)

,

1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m.

答案:1 900

解析:(26-14.6)÷0.6×100=1 900.

2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件. 答案:1 331

解析:1 000×(1+10%)3=1 331.

3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________.

答案:(5,10)

4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2 000ln ????1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s.

答案:e 6-1

解析:由2 000ln ????1+M m =12 000,得1+M m =e 6,所以M

m

=e 6-1. 5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函数

关系为P =?

????t +20,0

-t +100,25≤t ≤30,t ∈N ,且该商品的日销售量Q 与时间t(天)的函数关系为

Q =-t +40(0

答案:25

W

W

P·Q

?

??

??(t +20)(-t +40),0

(-t +100)(-t +40),25≤t ≤30,t ∈N , 当0

1. 常用的函数模型有一次函数、二次函数、指数函数、对数函数、幂函数.

2. 指数函数、对数函数、幂函数的增长速度的比较:一般地,在区间(0,+∞)上,尽管函数y =a x (a>1),y =log a x(a>1)和y =x n (n>0)都是增函数,但是它们的增长速度不同,而且不在同一个“档次上”.随着x 的增大,y =a x (a>1)的增长速度越快,会越过并远远大于y =x n (n>0)的增长速度;而y =log a x(a>1)的增长速度会越慢.因此,总会存在一个x 0,当x>x 0

时,有ax 0>x n 0>log a x 0(比较ax 0,x n 0,log a x 0的大小).

3. 函数模型的应用实例的基本题型 (1) 给定函数模型解决实际问题.

(2) 建立合适的函数模型解决问题. (3) 建立拟合函数模型解决实际问题. 4. 函数建模的基本程序

题型1一次、二次函数模型

例1市场营销人员对过去几年某商品的价格及销售数量的关系作数据分析发现有如

下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k 为正常数).目前该商品定价为每个a 元,统计其销售数量为b 个.

(1) 当k =1

2时,该商品的价格上涨多少,才能使销售的总金额达到最大?

(2) 在适当的涨价过程中,求使销售总金额不断增加时k 的取值范围.

解:由题意,价格上涨x%以后,销售总金额为y =a(1+x%)·b(1-kx%)=ab

10 000[-kx 2

+100(1-k)x +10 000].

(1) 当k =12时,y =ab 10 000(-12x 2+50x +10 000)=ab

20 000[22 500-(x -50)2],

因此当x =50,即价格上涨50%时,y 取最大值9

8ab.

(2) y =

ab

10 000

[-kx 2+100(1-k)x +10 000],此二次函数的图象开口向下,对称轴为x =50(1-k )k

.

在适当涨价的过程中,销售总金额不断增加,即要求此函数当自变量x 在{x|x>0}的一个子集内增大时,y 也增大,因此50(1-k )

k

>0,解得0

备选变式(教师专享) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km ,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -1

20(1+k 2)x 2(k>0)表示的曲线上,

其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1) 求炮的最大射程;

(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.

解:(1) 令y =0,得kx -1

20(1+k 2)x 2=0,由实际意义和题设条件知x>0,k>0,故x =

20k 1+k 2=20k +1k

≤20

2

=10.当且仅当k =1时取等号.所以炮的最大射程为10 km. (2) 因为a>0,所以炮弹可击中目标存在k>0,使3.2=ka -1

20(1+k 2)a 2成立关于k

的方程a 2k 2-20ak +a 2+64=0有正根判别式Δ=(-20a)2-4a 2(a 2+64)≥0a ≤6.所以当

a 不超过6(km)时,可击中目标.

题型2 指数、对数函数模型

例2 设在海拔xm 处的大气压强是yPa ,y 与x 之间的函数关系为y =ce kx ,其中c 、k 为常量.已知某天的海平面的大气压为1.01×105 Pa ,1000m 高空的大气压为0.90×105Pa ,求600m 高空的大气压强.(保留3位有效数字)

解:将x =0时,y =1.01×105Pa 和x =1000时,y =0.90×105 Pa 分别代入函数式y =

ce kx ,得?

???

?1.01×105=ce 0,0.90×105=ce 1 000k

∴ c =1.01×105, ∴ e 1 000k =

0.90×1051.01×105=0.901.01

∴ k =11000×ln 0.90

1.01

,用计算器算得k ≈-1.154×10-4,

∴ y =1.01×105×e -1.154×10-4x ,将x =600代入上述函数式,得y ≈9.42×104Pa ,即在600m 高空的大气压强约为9.42×104 Pa.

备选变式(教师专享)

我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C ,动植物死亡后,停止了新陈代谢,14C 不再产生,且原有的14C 会自动衰变,经过5570年(叫做14C 的半衰期),它的残余量只有原始量的一半,经过科学家测定知

道,若14C 的原始含量为a ,则经过t 年后的残余量a′(与a 之间满足a′=a·e -

kt ).现测得出土的古莲子中14C 残余量占原量的87.9%,试推算古莲子的生活年代.

解:因a′=a·e -kt ,即a′

a =e -kt .

两边取对数,得lg a′

a

=-ktlge.①

又知14C 的半衰期是5570年,即t =5570时,a′a =1

2

.

故lg 12=-5570klge ,即klge =lg25570.

代入①式,并整理,得t =-5570lg

a′

a

lg2

.

这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的a′

a 是0.879,代入公式,

得t =-5570lg0.879

lg2

≈1 036.即古莲子约是1 036年前的遗物.

题型3 分段函数模型

例3 已知美国苹果公司生产某款iPhone 手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设苹果公司一年内共生产该款iPhone 手机x 万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=????

?400-6x ,0

-40 000x 2,x>40.

(1) 写出年利润W(万美元)关于年产量x(万只)的函数解析式;

(2) 当年产量为多少万只时,苹果公司在该款iPhone 手机的生产中所获得的利润最大?并求出最大利润.

解:(1) 当040,W =xR(x)-(16x +40)=-40 000

x

-16x +7 360.

所以,W =?????-6x 2

+384x -40,0

-40 000x -16x +7 360,x>40.

(2) ① 当0

② 当x>40时,W =-40 000

x -16x +7 360,

由于40 000x

+16x ≥2

40 000

x

×16x =1 600, 当且仅当40 000

x =16x ,即x =50∈(40,+∞)时,W 取最大值为5 760.

综合①②知,当x =32时,W 取最大值为6 104.

备选变式(教师专享)

经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t +200(1≤t ≤50,t ∈N ),前30天价格为g(t)=1

2t +30(1≤t ≤30,t ∈N ),

后20天价格为g(t)=45(31≤t ≤50,t ∈N ).

(1) 写出该种商品的日销售额S 与时间t 的函数关系式;

(2) 求日销售额S 的最大值. 解:(1)根据题意得

S =?????(-2t +200)????12t +30,1≤t ≤30,t ∈N ,45(-2t +200),31≤t ≤50,t ∈N ,

即S =?????-t 2+40t +6000,1≤t ≤30,t ∈N ,-90t +9000,31≤t ≤50,t ∈N .

(2)①当1≤t ≤30,t ∈N 时,S =-(t -20)2+6400, 当t =20时,S 的最大值为6400;

②当31≤t ≤50,t ∈N 时,S =-90t +9000为减函数, 当t =31时,S 的最大值是6210,

∵ 6210<6400,∴ 当t =20时,日销售额S 有最大值6400. 题型4 分式函数模型

例4 如图,ABCD 是正方形空地,边长为30m ,电源在点P 处,点P 到边AD 、AB

距离分别为9m 、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF ,MN ∶NE =16∶9.线段MN 必须过点P ,端点M 、N 分别在边AD 、AB 上,设AN =x(m),液晶广告屏幕MNEF 的面积为S(m 2).

(1) 用x 的代数式表示AM ;

(2) 求S 关于x 的函数关系式及该函数的定义域;

(3) 当x 取何值时,液晶广告屏幕MNEF 的面积S 最小?

解:(1) AM =

3x

x -9

(10≤x ≤30).

(2) MN 2

=AN 2

+AM 2

=x 2

+9x 2

(x -9)2

.

∵ MN ∶NE =16∶9,∴ NE =9

16

MN.

∴ S =MN·NE =916MN 2=916??????x 2

+9x 2(x -9)2,

定义域为[10,30].

(3) S′=916???

?

??2x +18x (x -9)2-9x 2(2x -18)(x -9)4

=98×x[(x -9)3

-81](x -9)3

, 令S′=0,得x =0(舍)或9+333.当10≤x<9+33

3时,S ′<0,S 关于x 为减函数;当9+3330,S 关于x 为增函数.∴ 当x =9+33

3时,S 取得最小值.

故当AN 长为9+33

3 m 时,液晶广告屏幕MNEF 的面积S 最小. 备选变式(教师专享)

如图,两个工厂A 、B 相距2km ,点O 为AB 的中点,要在以O 为圆心,2km 为半径的圆弧MN 上的某一点P 处建一幢办公楼,其中MA ⊥AB ,NB ⊥AB.据测算此办公楼受工厂A 的“噪音影响度”与距离AP 的平方成反比,比例系数为1;办公楼受工厂B 的“噪音影响度”与距离BP 的平方也成反比,比例系数为4,办公楼与A 、B 两厂的“总噪音影响度”y 是A 、B 两厂“噪音影响度”的和,设AP 为xkm.

(1) 求“总噪音影响度”y 关于x 的函数关系式,并求出该函数的定义域; (2) 当AP 为多少时,“总噪音影响度”最小?

解:(1) (解法1)如图,连结OP , 设∠AOP =α,则π3≤α≤2π

3.

在△AOP 中,由余弦定理得

x 2=12+22-2×1×2cos α=5-4cos α, 在△BOP 中,由余弦定理得

BP 2=12+22-2×1×2cos(π-α)=5+4cos α, ∴ BP 2=10-x 2,

∴ y =1AP 2+4BP 2=1x 2+4

10-x 2 .

∵ π3≤α≤2π

3

,∴ 3≤x ≤ 7, ∴ y =1x 2+410-x 2

(3≤x ≤7).

(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m ,n),则PA 2=(m +1)2+n 2,PB 2=(m -1)2+n 2.

∵ m 2+n 2=4,PA =x ,

∴ PB 2=10-x 2(后面解法过程同解法1).

(2) (解法1)y =1x 2+410-x 2=110(1x 2+4

10-x 2)[x 2+(10-x 2)] =110(5+10-x 2x 2+4x 210-x 2)≥110(5+210-x 2x 2·4x 210-x 2)=910,当且仅当10-x 2x 2=4x 2

10-x 2

,即x =

30

3

∈[3,7]时取等号. 故当AP =

30

3

km 时,“总噪音影响度”最小. (解法2)由y =1x 2+410-x 2,得y′=-2x 3+8x

(10-x 2)2=6x 4+40x 2-200x 3(10-x 2)2

2(x 2+10)(3x 2-10)x 3(10-x 2)2

.

∵ 3≤x ≤7 ,∴ 令y′=0,得x =303,且当x ∈?

???3,303时,y ′<0;当x ∈(303,7]时,y ′>0.∴ x =

303时,y =1x 2+410-x 2取极小值,也即最小值.故当AP =30

3

km 时,“总噪音影响度”最小.

【示例】 (本题模拟高考评分标准,满分14分)

某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:① 报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;② 报销的医疗费用不得低于医疗总费用的50%;③ 报销的医疗费用不得超过8万元.

(1) 请你分析该单位能否采用函数模型y =0.05(x 2+4x +8)作为报销方案;

(2) 若该单位决定采用函数模型y =x -2lnx +a(a 为常数)作为报销方案,请你确定整数a 的值.(参考数据:ln2≈0.69,ln10≈2.3)

审题引导: 正确理解三个条件:① 要求模型函数在[2,10]上是增函数;② 要满足y ≥x 2

恒成立;③ 要满足y 的最大值小于8.

规范解答: 解:(1) 函数y =0.05(x 2+4x +8)在[2,10]上是增函数,满足条件①,(2分) 当x =10时,y 有最大值7.4万元,小于8万元,满足条件③.(4分)

但当x =3时,y =2920<32,即y ≥x

2不恒成立,不满足条件②,故该函数模型不符合该单

位报销方案.(6分)

(2) 对于函数模型y =x -2lnx +a ,设f(x)=x -2lnx +a ,则f′(x)=1-2x =x -2

x ≥0.∴ f(x)

在[2,10]上是增函数,满足条件①.由条件②,得x -2lnx +a ≥x 2,即a ≥2lnx -x

2在x ∈[2,

10]上恒成立,令g(x)=2lnx -x 2,则g′(x)=2x -12=4-x

2x ,由g′(x)>0得0<x<4,∴ g(x)在(0,

4)上是增函数,在(4,10)上是减函数.

∴ a ≥g(4)=2ln4-2=4ln2-2.(10分)

由条件③,得f(10)=10-2ln10+a ≤8,解得a ≤2ln10-2.

另一方面,由x -2lnx +a ≤x ,得a ≤2lnx 在x ∈[2,10]上恒成立,∴ a ≤2ln2.(12分) 综上所述,a 的取值范围为[4ln2-2,2ln2], ∴ 满足条件的整数a 的值为1.(14分)

1. (2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).

答案:20

解析:设矩形花园的宽为y m ,则

x 40=40-y 40

,所以y =40-x ,所以矩形花园的面积S =x(40-x)=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.

2. (2013·通州模拟)将一个边长分别为a 、b(0

a

的取值范围是________. 答案:???

?1,54 解析:设减去的正方形边长为x ,其外接球直径的平方R 2=(a -2x)2+(b -2x)2+x 2,由

R′=0,∴ x =2

9

(a +b).

∵ a

4

.

3. (2013·无锡期末)要制作一个如图的框架(单位:m),要求所围成的总面积为19.5(m 2),其中ABCD 是一个矩形,EFCD 是一个等腰梯形,梯形高h =12AB ,tan ∠FED =3

4,设AB

=x m ,BC =y m.

(1) 求y 关于x 的表达式;

(2) 如何设计x 、y 的长度,才能使所用材料最少?

解:(1) 如图,在等腰梯形CDEF 中,DH 是高.

依题意:DH =12AB =12x ,EH =DH tan ∠FED =43×12x =2

3x ,

392=xy +12????x +x +43x 12x =xy +5

6

x 2, ∴ y =392x -5

6x.

∵ x >0,y >0, ∴

392x -56x >0,解之得0<x <3655

. ∴ 所求表达式为y =392x -56x ???

?0<x <3655.

(2) 在Rt △DEH 中,∵ tan ∠FED =34,∴ sin ∠FED =3

5

∴ DE =DH sin ∠FED =12x ×53=5

6

x ,

∴ l =(2x +2y)+2×56x +????2×23x +x =2y +6x =39x -53x +6x =39x +13

3x ≥239x ×133

x =26,

当且仅当39x =13

3x ,即x =3时取等号,

此时y =392x -5

6

x =4,

∴ AB =3 m ,BC =4 m 时,能使整个框架所用材料最少.

4. (2013·南通一模)某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4 m .这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB >AD)为长方形薄板,沿AC 折叠后AB′交DC 于点P.当△ADP 的面积最大时最节能,凹多边形ACB′PD 的面积最大

时制冷效果最好.

(1) 设AB =x m ,用x 表示图中DP 的长度,并写出x 的取值范围; (2) 若要求最节能,应怎样设计薄板的长和宽?

(3) 若要求制冷效果最好,应怎样设计薄板的长和宽?

解:(1) 由题意,AB =x ,BC =2-x.

因x >2-x ,故1<x <2.设DP =y ,则PC =x -y. 因△ADP ≌△CB′P ,故PA =PC =x -y. 由PA 2=AD 2+DP 2,得 (x -y)2=(2-x)2+y 2

y =2???

?1-1

x ,1<x <2. (2) 记△ADP 的面积为S 1,则

S 1=????1-1x (2-x)=3-????x +2

x ≤3-22, 当且仅当x =2∈(1,2)时,S 1取得最大值.

故当薄板长为2m ,宽为(2-2)m 时,节能效果最好. (3) 记多边形ACB′PD 的面积为S 2,则 S 2=1

2x(2-x)+????1-1x (2-x) =3-12????

x 2+4x ,1<x <2. 于是S 2′=-12??

??2x -4x 2=-x 3+2x 2

=0

x =3

2.

关于x 的函数S 2在(1,32)上递增,在(32,2)上递减.所以当x =3

2时,S 2取得最大值.

故当薄板长为32 m ,宽为(2-3

2)m 时,制冷效果最好.

1. 某驾驶员喝了mL 酒后,血液中的酒精含量f(x)(mg/mL)随时间x(h)变化的规律近似满足表达式f(x)=????

?5x -

2,0≤x ≤1,35·????13x ,x >1.《酒后驾车与醉酒驾车的标准及相应的处罚》规定为驾

驶员血液中酒精含量不得超过0.02mg/mL ,据此可知,此驾驶员至少要过________h 后才能

开车.(精确到1h)

答案:4

解析:当0≤x ≤1时,125≤5x -2≤15,此时不宜开车;由35

·????13x ≤0.02,得x ≥4. 2. 一辆列车沿直线轨道前进,从刹车开始到停车这段时间内,测得刹车后t s 内列车前进的距离为S =27t -0.45t 2 m ,则列车刹车后________s 车停下来,期间列车前进了________m.

答案:30 405

解析:S′(t)=27-0.9t ,由瞬时速度v(t)=S′(t)=0得t =30(s),期间列车前进了S(30)=27×30-0.45×302=405(m).

3. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(km/h)是车流密度x(辆/千米)的函数.当桥上的车流密度达到200辆/km 时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km 时,车流速度为60km/h ,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.

(1) 当0≤x ≤200时,求函数v(x)的表达式;

(2) 当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出其最大值.(精确到1辆/小时)

解:(1) 由题意,当0≤x ≤20时,v(x)=60;当20≤x ≤200时,设v(x)=ax +b.

再由已知,得?????200a +b =0,

20a +b =60,解得?

??a =-13,b =2003

.

故函数v(x)的表达式为v(x)=?????60,0≤x ≤20,

13(200-x ),20

(2) 依题意并由(1)可得f(x)=?????60x ,0≤x ≤20,

13x (200-x ),20

当0≤x ≤20时,f(x)为增函数,故当x =20时,其最大值为60×20=1200; 当20≤x ≤200时,f(x)=13x(200-x)≤13??????x +(200-x )22=10000

3, 当且仅当x =200-x ,即x =100时,等号成立.

所以,当x =100时,f(x)在区间[20,200]上取得最大值100003.

综上,当x =100时,f(x)在区间[0,200]上取得最大值

10000

3

≈3333, 即当车流密度为100辆/km 时,车流量可以达到最大,最大值约为3333辆/h.

4. 某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax 2(a >0)的一部分,栏栅与矩形区域的边界交于点M 、N ,交曲线于点P ,设P(t ,f(t)).

(1) 将△OMN(O 为坐标原点)的面积S 表示成t 的函数S(t);

(2) 若在t =1

2

处,S(t)取得最小值,求此时a 的值及S(t)的最小值.

解:(1) y′=-2ax ,∴ 切线斜率是-2at , ∴ 切线方程为y -(1-at 2)=-2at(x -t). 令y =0,得x =1+at 22at ,∴ M ? ????

1+at 22at ,0, 令x =0,得y =1+at 2,∴ N(0,1+at 2), ∴ △OMN 的面积S(t)=(1+at 2)24at

.

(2) S′(t)=3a 2t 4+2at 2-14at 2=(at 2+1)(3at 2-1)

4at 2

由a >0,t >0,S ′(t)=0,得3at 2-1=0,即t =1

3a .

当3at 2-1>0,即t >1

3a

时,S ′(t)>0; 当3at 2-1<0,即0

3a

时,S ′(t)<0. ∴ 当t =

1

3a

时,S(t)有最小值. 已知在t =12处,S(t)取得最小值,故有13a =1

2,

∴ a =4

3

.

故当a =43,t =1

2时,S(t)min =S ????12=????1+43·

142

4·43·

12

=23

.

1. 与函数有关的应用型问题,函数模型可以是已知条件中给出其表达式,也可以是由

已知条件建立函数模型,显然后者难度较大,在解题过程中不要忘记考虑函数的定义域.

2. 解应用问题,首先,应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解.要能顺利解答一个应用问题重点要过三关:(1) 事理关:通过阅读,知道讲的是什么,培养学生独立获取知识的能力;(2) 文理关:需要把实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系;(3) 数理关:在构建数学模型的过程中,要求学生有对数学知识的检索能力,认定或构建相应的数学模型,完成由实际问题向数学问题的转化,构建了数学模型后,要正确解出数学问题的答案,需要扎实的基础知识和较强的数理能力.

请使用课时训练(B)第13课时(见活页).[备课札记]

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时函数模型及其应用

第二章 函数与导数第13课时 函数模型及其应用 第三章 (对应学生用书(文)、(理)33~36页 ) , 1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m. 答案:1 900 解析:(26-14.6)÷0.6×100=1 900. 2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件. 答案:1 331 解析:1 000×(1+10%)3 =1 331. 3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________. 答案:(5,10) 4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2 000ln ? ?? ??1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s. 答案:e 6 -1 解析:由2 000ln ? ?? ??1+M m =12 000,得1+M m =e 6,所以M m =e 6 -1. 5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函 数关系为P =? ????t +20,0

同济第六版《高等数学》教案WORD版-第02章-导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s ??=??, 这个比值可认为是动点在时间间隔t ?t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t ?t 0→0, 取

比值 0) ()(t t t f t f ??的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t ??=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000) ()(tan x x x f x f x x y y ??=??=?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x ??=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 令, x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x ??→ . , 当自变量x 在x 0处取得增量?x (点x 0+?x ?y =f (x 0+?x )?f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ???+=??='→?→?)()(lim lim )(00000,

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

第二章 函数与导数第2课时 函数的定义域和值域 第三章 (对应学生用书(文)、(理)9~10页 ) 1. (必修1P 27练习6改编)函数f(x)=x +1+12-x 的定义域为________. 答案:{x|x≥-1且x≠2} 2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是 ________. 答案:{-1,0,3} 解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}. 3. (必修1P 31习题3改编)函数f(x)=2x 5x +1 的值域为____________. 答案:? ?????y|y≠25 解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25 ,∴ 值域为? ?????y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ; ② f(x)=x x ,g(x)=x ; ③ f(x)=x 2,g(x)=(x)4; ④ f(x)=|x|,g(x)=? ????x ,x ≥0,-x ,x<0.

答案:④ 解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合. 5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则 b -a 的取值范围是________. 答案:[2,4] 解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1 时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4]. 1. 函数的定义域 (1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤 ① 写出使函数式有意义的不等式(组). ② 解不等式组. ③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零. ② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R . ④ y =a x ,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }. ⑥ 函数f(x)=x a 的定义域为{x|x≠0}. 2. 函数的值域 (1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域. (2) 基本初等函数的值域 ① y =kx +b(k≠0)的值域是R . ② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a ,+∞);当a<0时,值域为? ???-∞,4ac -b 24a . ③ y =k x (k≠0)的值域为{y|y≠0}. ④ y =a x (a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值 一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M); (2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

2014年全国高考数学分类详解 第二章 函数与导数

第二章 函数与导数 一、函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上 的解析式为f (x )=? ????x (1-x ),0≤x ≤1,sin πx ,1

03第三章-导数与微分

第三章 导数与微分 一、本章学习要求与内容提要 (一)学习要求 1. 理解导数和微分的概念及其几何意义,会用导数(变化率)描述一些简单的实际问题. 2.熟练掌握导数和微分的四则运算法则和基本初等函数的求导公式. 3.熟练掌握复合函数、隐函数以及由参数方程所确定的函数的一阶导数的求法. 4.了解高阶导数的概念,熟练掌握初等函数的二阶导数的求法. 5.了解可导、可微、连续之间的关系. 重点 导数的概念及其几何意义,计算导数的方法,初等函数的二阶导数的求法. 难点 求复合函数和隐函数的导数的方法. (二) 内容提要 1.导数的概念 ⑴导数 设函数)(x f y =在点0 x 的某一邻域内有定义,当自变量x 在点0 x 处有增量)0(≠??x x ,x x ?+0 仍在该邻域内时,相应地,函数有增量)()(0 x f x x f y -?+=?,若极限 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 存在,则称)(x f 在点0 x 处可导,并称此极限值为)(x f 在点0 x 处的导数,记为)(0 x f ',也可记为0 00 0d d d d , ,)(x x x f x x x y x x y x y ===' '或,即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000. 若极限不存在,则称)(x f y =在点0 x 处不可导. 若固定0 x ,令x x x =?+0 ,则当0→?x 时,有0x x →,所以函数)(x f 在 点0 x 处的导数)(0 x f '也可表示为 00 ) ()(lim )(x x x f x f x f x --='→.

高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

第二章 函数与导数第12课时 导数在研究函数中的应用 第三章 (对应学生用书(文)、(理)30~32页 ) , 1. (选修22P 28例1改编)函数f(x)=x 3 -15x 2 -33x +6的单调减区间为______________. 答案:(-1,11) 解析:f′(x)=3x 2 -30x -33=3(x -11)(x +1),由(x -11)(x +1)<0,得单调减区间为(-1,11).亦可填写闭区间或半开半闭区间. 2. (选修22P 34习题3改编)若函数f(x)=e x -ax 在x =1处取到极值,则a =________. 答案:e 解析:由题意,f ′(1)=0,因为f′(x)=e x -a ,所以a =e. 3. (选修22P 34习题8)函数y =x +sinx ,x ∈[0,2π]的值域为________. 答案:[0,2π] 解析:由y′=1+cosx ≥0,所以函数y =x +sinx 在[0,2π]上是单调增函数,所以值域为[0,2π]. 4. (原创)已知函数f(x)=-12x 2 +blnx 在区间[2,+∞)上是减函数,则b 的取值范 围是________. 答案:(-∞,4] 解析:f′(x)=-x +b x ≤0在[2,+∞)上恒成立,即b≤x 2 在[2,+∞)上恒成立. 5. (选修22P 35例1改编)用长为90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm 时,容器的容积最大. 答案:10 解析:设容器的高为xcm ,即小正方形的边长为xcm ,该容器的容积为V ,则V =(90- 2x)(48-2x)x =4(x 3-69x 2+1080x),00;当10

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

第三章导数与微分习题解答

P61 习题3-1 1、根据定义求导数: (1)cos y x = 00000cos()cos lim 2sin sin 22lim sin()sin 22lim 2 sin 2lim sin()lim 22 sin x x x x x x x x y x x x x x x x x x x x x x x x x ?→?→?→?→?→+?-'=?+?++?--=???+=-???=-+?=- 12 (2)y x = 112 2 012()lim lim lim 12x x x x x x y x x ?→?→?→-+?-'=?==== (3)y = 033 223 2 2 2(lim lim lim lim x x x x x x y x ?→?→?→?→+?'=?==== =(4)x y a = 001lim lim x x x x x x x a a a y a x x +???→?→--'==?? 设t x =?,则 01 lim t x t a y a t →-'= 再设t s a =,则log a t s =,于是 11 1 1 110 1 1lim log 1lim log 1 lim log [1(1)] 1log ln x s a x s s a x s s a x a x s y a s a s a s a e a a →→--→--'===+-== 2、

0000000()()(1)lim [(()]() lim () x x f x x f x x f x x f x x f x ?→-?→-?-?+-?-=--?'=- 00000000000000000000000()()(2)lim ()()()()lim ()()()()lim lim ()()()()lim lim ()[()]2() x x x x x x f x x f x x x f x x f x f x f x x x f x x f x f x f x x x x f x x f x f x x f x x x f x f x f x ?→?→?→?→?→?→+?--??+?-+--?=?+?---?=+??+?--?-=-??''=--'= 000()(3)lim ()lim (0)(0)lim (0) x x x f x x f x x f x f x f →?→?→?=?+?-=?'= 00001001 (4)lim [()()]1 ()() lim 1() n n n f x f x n f x f x n n f x →∞→+-+-='= 3、证: ()f x 为偶函数且(0)0f =,则 00000(0)(0)(0)lim ()(0) lim ()(0) lim ()(0) lim ()(0) lim (0)x x x x x f x f f x f x f x f x f x f x f x f x f x f - - - - + -?→?→?→?→-?→++?-'=??-=?-?-=?-?-=--?-?-=--?'=- 又()f x 在0x =处可导,则 (0)(0)f f -+''= 即(0)(0)f f ++''=- 所以(0)0f +'= 故(0)0f '=。 4、证: (1)设()f x 为可导的奇函数,则: 0000()()()lim ()()lim ()() lim [()]() lim ()x x x x f x x f x f x x f x x f x x f x x f x x f x x f x x f x ?→?→?→-?→-+?--'-=?--?+=?-?-=-?+-?-=-?'= 所以()f x '为偶函数。 (2)设()f x 为可导的偶函数,则:

高考数学第二章函数与导数第3课时函数的单调性

第二章函数与导数第3课时函数的单调性第三章(对应学生用书(文)、(理)11~12页) 1. (必修1P54测试4)已知函数y=f(x)的图象如图所示,那么该函数的单调减区间是

________. 答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ① y =1-3x ;② y=-1x ;③ y=x 2 +1;④ y=|x +1|. 答案:②③④ 3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)2a , 解得-1≤a<1. 4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________. 答案:???? ??0,32 解析:y =(x -3)|x|=?????-x (x -3),x<0,x (x -3),x ≥0, 画图可知单调递减区间是??????0,32. 5. (必修1P 54测试6改编)已知函数f(x)=mx 2 +x +m +2在(-∞,2)上是增函数,则 实数m 的取值范围是________. 答案:???? ??-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须?????m<0,-12m ≥2,解得-1 4≤m<0.综 上,实数m 的取值范围是-1 4 ≤m ≤0.

1. 增函数和减函数 一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是单调减函数.(如图(2)所示) 2. 单调性与单调区间 如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间). 3. 判断函数单调性的方法 (1) 定义法:利用定义严格判断. (2) 利用函数的运算性质. 如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1 f(x) 为减函数(f(x)>0); ③ f(x)为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

第三章 导数与微分 习题及答案

第三章 导数与微分 同步练习 一、填空 1、若[]1cos 1)0()(lim =--→x f x f x x ,则)0(f '= 。 2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。 3、若)(x e f y -=,且x x x f ln )(=',则 1 =x dx dy = 。 4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。 5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。 6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。 7、已知x x y ln =,则)10(y = 。 8、已知2arcsin )(),232 3( x x f x x f y ='+-=,则:0 =x dx dy = 。 9、设1 111ln 2 2++-+=x x y ,则y '= 。 10、设方程y y x =确定y 是x 的函数,则dy = 。 11、已知()x ke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dy x d 。 二、选择 1、设f 可微,则=---→1 ) 1()2(lim 1 x f x f x ( ) A 、)1(-'-x f B 、)1(-'f C 、)1(f '- D 、)2(f ' 2、若2)(0-='x f ,则=--→) ()2(lim 000 x f x x f x x ( ) A 、 41 B 、4 1 - C 、1 D 、-1 3、设?? ???=≠=0001arctan )(x x x x x f ,则)(x f 在0=x 处( ) A 、不连续 B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 3 2+= B、x x y sin =

2015届高考数学总复习第二章 函数与导数第1课时 函数及其表示课时训练

第二章 函数与导数第1课时 函数及其表示 1. 下列对应f 是从集合A 到集合B 的函数有________个. ① A =N ,B =N *,f :x →y =|x -2|; ② A ={1,2,3},B =R ,f(1)=f(2)=3,f(3)=4; ③ A =[-1,1],B ={0},f :x →y =0. 答案:2 2. 已知函数y =f(x),集合A ={(x ,y)|y =f(x)},B ={(x ,y)|x =a ,y ∈R },其中a 为常数,则集合A ∩B 的元素有________个. 答案:0或1 解析:设函数y =f(x)的定义域为D ,则当a ∈D 时,A ∩B 中恰有1个元素;当a ?D 时,A ∩B 中没有元素. 3. 若f(x +1)=x +1,则f(x)=___________. 答案:x 2-2x +2(x ≥1) 解析:令t =x +1,则x =(t -1)2,所以f(t)=(t -1)2+1. 4. 已知函数φ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且φ????13=16,φ(1)=8,则φ(x)=________. 答案:3x +5 x (x ≠0) 解析:由题可设φ(x)=ax +b x ,代入φ????13=16,φ(1)=8,得a =3,b =5. 5. 已知函数f(x)=3x -1,g(x)=? ????x 2-1,x ≥0,2-x ,x<0.若x ≥1 3,则g(f(x))=________. 答案:9x 2-6x 解析:当x ≥1 3 时,f ()x ≥0,所以g(f(x))=(3x -1)2-1=9x 2-6x. 6. 工厂生产某种产品,次品率p 与日产量x(万件)间的关系为p =? ?? 1 6-x ,0c (c 为常数,且0c 解析:当x>c 时,p =23,所以y =????1-23·x ·3-23·x ·32=0;当0

(完整版)第二章导数与微分(答案)

x 第二章导数与微分 (一) f X 0 X f X 0 I x 0 X 3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A ) 5. 若函数f x 在点a 连续,则f x 在点a ( D ) C . a 6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C . -1 D .不存在 7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A ) A . 8 B . 12 C . -6 D . 6 8.设y e f x 且fx 二阶可导,则y ( D ) A . e f x B f X r e f f X £ £ f X 丄 2 x C . e f x f x D . e f x 9.若 f x ax e , x 0 在x 0处可导,则a , b 的值应为 b sin2x, (A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到 X o x 时,相应函数的改变量 f x 0 x B . f x 0 x C . f x 0 X f X 0 f X 。 x 2 .设f x 在x o 处可,则lim f X 0 B . X o C . f X 0 D . 2 f X 0 A .必要不充分条件 B . 充分不必要条件 C .充分必要条件 既不充分也不必要条件 4.设函数y f u 是可导的,且u x 2 ,则 d y ( C ) x 2 B . xf x 2 C . 2 2 2xf x D . x f x D .有定义

10?若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A ) A ?一定都没有导数 B ?—定都有导数 C .恰有一个有导数 D ?至少一个有导数 11.函数fx 与g x 在x 0处都没有导数,则Fx g x 在 x o 处(D ) 13 . y arctg 1 ,贝U y x A .一定都没有导数 B . 一定都有导数 C .至少一个有导数 D .至多一个有导数 12.已知F x f g x ,在 X X 。处可导,则(A ) g x 都必须可导 B . f x 必须可导 C . g x 必须可导 D . x 都不一定可导

相关主题
文本预览
相关文档 最新文档