当前位置:文档之家› 高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

高考数学第二章 函数与导数第12课时 导数在研究函数中的应用
高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

第二章 函数与导数第12课时 导数在研究函数中的应用

第三章 (对应学生用书(文)、(理)30~32页

)

,

1. (选修22P 28例1改编)函数f(x)=x 3

-15x 2

-33x +6的单调减区间为______________. 答案:(-1,11)

解析:f′(x)=3x 2

-30x -33=3(x -11)(x +1),由(x -11)(x +1)<0,得单调减区间为(-1,11).亦可填写闭区间或半开半闭区间.

2. (选修22P 34习题3改编)若函数f(x)=e x

-ax 在x =1处取到极值,则a =________. 答案:e

解析:由题意,f ′(1)=0,因为f′(x)=e x

-a ,所以a =e.

3. (选修22P 34习题8)函数y =x +sinx ,x ∈[0,2π]的值域为________. 答案:[0,2π]

解析:由y′=1+cosx ≥0,所以函数y =x +sinx 在[0,2π]上是单调增函数,所以值域为[0,2π].

4. (原创)已知函数f(x)=-12x 2

+blnx 在区间[2,+∞)上是减函数,则b 的取值范

围是________.

答案:(-∞,4]

解析:f′(x)=-x +b x ≤0在[2,+∞)上恒成立,即b≤x 2

在[2,+∞)上恒成立.

5. (选修22P 35例1改编)用长为90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm 时,容器的容积最大.

答案:10

解析:设容器的高为xcm ,即小正方形的边长为xcm ,该容器的容积为V ,则V =(90-

2x)(48-2x)x =4(x 3-69x 2+1080x),0

-46x +360)=12(x -10)(x -36),当00;当10

1. 函数的单调性与导数

在区间(a,b)内,函数的单调性与其导数的正负有如下关系:

如果f′(x)>0,那么函数y=f(x)为该区间上的增函数;

如果f′(x)<0,那么函数y=f(x)为该区间上的减函数.

2. 函数的极值与导数

(1) 函数极值的定义

若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都要小,f(a)叫函数的极小值.

若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都要大,f(b)叫函数的极大值,极小值和极大值统称为极值.

(2) 求函数极值的方法

解方程f′(x)=0,当f′(x0)=0时,

①如果在x0附近左侧单调递增,右侧单调递减,那么f(x0)是极大值.

②如果在x0附近左侧单调递减,右侧单调递增,那么f(x0)是极小值.

3. 函数的最值

(1) 最大值与最小值的概念

如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数f(x)在定义域上的最大值.如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数f(x)在定义域上的最小值.

(2) 求函数y=f(x)在[a,b]上的最大值与最小值的步骤

①求函数y=f(x)在(a,b)内的极值.

②将函数y=f(x)的各极值与f(a)、f(b)比较,其中值最大的一个是最大值,值最小的一个是最小值.

4. 生活中的优化问题

解决优化问题的基本思路是:

优化问题??用导数解决数学问题

?优化问题答案

题型1 导数与函数的单调性

例1已知函数f(x)=x3-ax-1.

(1) 若a=3时,求f(x)的单调区间;

(2) 若f(x)在实数集R上单调递增,求实数a的取值范围;

(3) 是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.

解:(1) 当a=3时,f(x)=x3-3x-1,∴ f′(x)=3x2-3,

令f′(x)>0即3x2-3>0,解得x>1或x<-1,

∴ f(x)的单调增区间为(-∞,-1)∪(1,+∞), 同理可求f(x)的单调减区间为(-1,1).

(2) f′(x)=3x 2

-a.

∵ f(x)在实数集R 上单调递增,

∴ f ′(x)≥0恒成立,即3x 2-a≥0恒成立,∴ a ≤(3x 2

)min .

∵ 3x 2

的最小值为0,∴ a ≤0.

(3) 假设存在实数a 使f(x)在(-1,1)上单调递减,

∴ f ′(x)≤0在(-1,1)上恒成立,即a≥3x 2

.

又3x 2

∈[0,3),∴ a ≥3.

∴ 存在实数a 使f(x)在(-1,1)上单调递减,且a≥3. 备选变式(教师专享)

(1) 已知函数 f(x)=12x 2

-mlnx +(m -1)x ,当 m≤0 时,试讨论函数 f(x) 的单调性;

(2) 若函数f(x)=-1

2()x -22+blnx 在(1,+∞)上是减函数,求实数b 的取值范围.

解:(1)函数的定义域为()0,+∞,f ′(x)=x -m x +(m -1)=x 2

+(m -1)x -m

x =

(x -1)(x +m )

x

.

①当-10,得01, 令f′(x)<0,得-m

∴ 函数 f(x)的单调递增区间是()0,-m 和()1,+∞,单调递减区间是()-m ,1; ②当m≤-1时,同理可得,函数 f(x)的单调递增区间是()0,1和()-m ,+∞,单调递减区间是()1,-m .

(2)由f(x)=-12()x -22+blnx ,得f′(x)=-(x -2)+b

x

由题意,知f′(x)≤0即-()x -2+b

x ≤0在()1,+∞上恒成立,∴ b≤[]x ()x -2min

, 当x∈()1,+∞时,[]x ()x -2∈()1,+∞,∴ b ≤1.

题型2 导数与函数的极值、最值

例2 设函数f(x)=(x 2+ax +b)e x

(x∈R ). (1) 若a =2,b =-2,求函数f(x)的极大值; (2) 若x =1是函数f(x)的一个极值点. ① 试用a 表示b ;

② 设a >0,函数g(x)=(a 2+14)e x +4

.若 ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a 的取值范围.

解:(1) ∵ f′(x)=(2x +a)e x +(x 2+ax +b)e x =[x 2+(2+a)x +(a +b)]e x

当a =2,b =-2时,f(x)=(x 2+2x -2)e x

则f′(x)=(x 2+4x)e x

令f′(x)=0得(x 2+4x)e x

=0,

∵ e x ≠0, ∴ x 2

+4x =0,解得x =-4或x =0,

∴ 当x =-4时,函数f(x)取极大值,f(x)极大值=6

e

4.

(2) ① 由(1)知f′(x)=[x 2

+(2+a)x +(a +b)]e x

. ∵ x =1是函数f(x)的一个极值点,∴ f ′(1)=0, 即e[1+(2+a)+(a +b)]=0,解得b =-3-2a.

② 由①知f′(x)=e x [x 2

+(2+a)x +(-3-a)] =e x

(x -1)[x +(3+a)],

当a >0时,f(x)在区间(0,1)上的单调递减,在区间(1,4)上单调递增, ∴ 函数f(x)在区间[0,4]上的最小值为f(1)=-(a +2)e.

∵ f(0)=b =-3-2a <0,f(4)=(2a +13)e 4

>0, ∴ 函数f(x)在区间[0,4]上的值域是[f(1),f(4)],

即[-(a +2)e ,(2a +13)e 4

].

又g(x)=(a 2+14)e x +4在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[(a 2

+14)e 4,(a 2+14)e 8

],

∴ (a 2+14)e 4-(2a +13)e 4=(a 2-2a +1)e 4=(a -1)2e 4

≥0,

∴ 存在ξ1、ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立只须(a 2+14)e 4-(2a +13)e 4

<1T (a -1)2e 4<1T (a -1)2

<1e 4 T1-1e 2<a <1+1e

2.

备选变式(教师专享)

已知函数f(x)=ax 3+bx 2

-3x(a 、b∈R )在点x =-1处取得极大值为2. (1) 求函数f(x)的解析式;

(2) 若对于区间[-2,2]上任意两个自变量的值x 1、x 2,都有|f(x 1)-f(x 2)|≤c,求实数c 的最小值.

解:(1) f′(x)=3ax 2

+2bx -3.

由题意,得?????f (-1)=2,f ′(-1)=0,即?????-a +b +3=2,3a -2b -3=0,解得?

????a =1,

b =0,

所以f(x)=x 3

-3x.

(2) 令f′(x)=0,即3x 2

-3=0,得x =±1.

因为f(-1)=2,f(1)=-2,所以当x∈[-2,2]时,f(x)max =2,f(x)min =-2. 则对于区间[-2,2]上任意两个自变量的值x 1、x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |=4,所以c≥4.

所以c 的最小值为4.

题型3 导数在实际问题中的应用

例3 请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A 、B 、C 、D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x cm.

(1) 某广告商要求包装盒侧面积S(cm 2

)最大,试问x 应取何值?

(2) 某厂商要求包装盒容积V(cm 3

)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.

解:(1) S =602

-4x 2

-(60-2x)2

=240x -8x 2

(0

(2) V =(2x)

2

22

(60-2x)=22x 2

(30-x)(0

此时,包装盒的高与底面边长的比值为2

2(60-2x )2x

=1

2.

变式训练

某地方政府在某地建一座桥,两端的桥墩相距m 米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩).经预测,一个桥墩的费用为256万元,相邻两个桥墩之间的距离均为x ,且相邻两个桥墩之间的桥面工程费用为(1+x)x 万元,假设所有桥墩都视为点且不考虑其他因素,记工程总费用为y 万元.

(1) 试写出y 关于x 的函数关系式;

(2) 当m =1 280米时,需要新建多少个桥墩才能使y 最小?

解:根据题意,需要建? ??

??m x +1个桥墩和m x 段桥面工程. (1) y =256? ????m x +1+m

x

(1+x)x

=m ? ????x +256x +m +256? ??

??x>0,m x ∈N . (2) 当m =1 280时,y =1 280?

????x +256x +1 536,

y ′=1 280?

??

??12x -256x 2,令y′=0,得x =64, 当064时,y ′>0.

所以当x =64时,

y 有最小值16 896,此时要建21个桥墩. 答:需要建21个桥墩才能使y 最小.

【示例】 (本题模拟高考评分标准,满分14分)

已知函数f(x)=lnx -ax(a∈R ). (1) 求函数f(x)的单调区间;

(2) 当a>0时,求函数f(x)在[1,2]上的最小值.

审题引导: ① 知函数解析式求单调区间,实质是求f′(x)>0,f ′(x)<0的解区间,并注意定义域;

② 先研究f(x)在[1,2]上的单调性,再确定最值是端点值还是极值; ③ 由于解析式中含有参数a ,要对参数a 进行分类讨论.

规范解答: 解:(1) f′(x)=1

x

-a(x>0).(1分)

① 当a≤0时,f ′(x)=1

x -a≥0,即函数f(x)的单调增区间是(0,+∞).(3分)

② 当a>0时,令f′(x)=1x -a =0,得x =1a ,当00,当x>1

a 时,

f ′(x)=1-ax x <0,所以函数f(x)的单调增区间是? ????0,1a ,单调减区间是????

??1a ,+∞.(6分)

(2) ① 当1

a ≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,

所以f(x)的最小值是f(2)=ln2-2a.(8分)

② 当1a ≥2,即0

2时,函数f(x)在区间[1,2]上是增函数,

所以f(x)的最小值是f(1)=-a.(10分)

③ 当1<1a <2,即12

又f(2)-f(1)=ln2-a ,

所以当1

2

当ln2≤a<1时,最小值是f(2)=ln2-2a.(12分) 综上可知,当0

1. (20132新课标Ⅱ)若存在正数x 使2x

(x -a)<1成立,则a 的取值范围是________. 答案:(-1,+∞)

解析:因为2x (x -a)<1,所以a>x -12x ,令f(x)=x -12x ,所以f′(x)=1+2-x

ln2>0,

所以f(x)在(0,+∞)上单调递增,所以f(x)>f(0)=0-1=-1,所以a 的取值范围是(-1,

+∞).

2. (20132大纲)若函数f(x)=x 2

+ax +1x 在? ????12,+∞上是增函数,则a 的取值范围是

________.

答案:a≥3

解析:f′(x)=2x +a -1x 2≥0在? ????12,+∞上恒成立,即a≥1x 2-2x 在? ????12,+∞上恒成立.令g(x)=1x 2-2x ,求导可得g(x)在? ??

??12,+∞上的最大值为3,所以a≥3.

3. (20132扬州期末)已知函数f(x)=lnx -m

x (m∈R )在区间[1,e]上取得最小值4,则

m =________.

答案:-3e

解析:f′(x)=1x +m x 2=x +m

x 2,令f′(x)=0,则x =-m ,且当x<-m 时,f ′(x)<0,

f(x)单调递减,当x>-m 时,f ′(x)>0,f(x)单调递增.若-m≤1,即m≥-1时,f(x)min

=f(1)=-m ≤1,不可能等于4;若1<-m≤e ,即-e ≤m<-1时,f(x)min =f(-m)=ln(-

m)+1,令ln(-m)+1=4,得m =-e 3

(-e ,-1);若-m>e ,即m<-e 时,f(x)min =f(e)=1-m e ,令1-m

e

=4,得m =-3e ,符合题意.综上所述,m =-3e.

4. (20132南京二模)设函数f(x)=x 2

-(a -2)x -alnx. (1) 求函数f(x)的单调区间;

(2) 若函数f(x)有两个零点,求满足条件的最小正整数a 的值; (3) 若方程f(x)=c 有两个不相等的实数根x 1、x 2,求证:f′?

??

??x 1+x 22>0.

(1) 解:f′(x)=2x -(a -2)-a x =2x 2-(a -2)x -a x =(2x -a )(x +1)

x (x>0).

当a≤0时,f ′(x)>0,函数f(x)在(0,+∞)上单调递增,

所以函数f(x)的单调增区间为(0,+∞).

当a>0时,由f′(x)>0,得x>a 2;由f′(x)<0,得0

2

.

所以函数f(x)的单调增区间为? ????a 2,+∞,单调减区间为? ??

??0,a 2. (2) 解:由(1)得,若函数f(x)有两个零点,则a>0,且f(x)的最小值f ? ??

??a 2<0,即-a

2

+4a -4aln a

2

<0.

因为a>0,所以a +4ln a

2

-4>0.

令h(a)=a +4ln a 2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln

3

2-1=ln 81

16

-1>0,

所以存在a 0∈(2,3),h(a 0)=0.

当a>a 0时,h(a)>0;当0

又当a =3时,f(3)=3(2-ln3)>0,f(1)=0,所以a =3时,f(x)有两个零点. 综上所述,满足条件的最小正整数a 的值为3.

(3) 证明:因为x 1、x 2是方程f(x)=c 的两个不等实根,由(1)知a>0.

不妨设0

2-(a -2)x 2-alnx 2=c.

两式相减得x 21-(a -2)x 1-alnx 1-x 2

2+(a -2)2x 2+alnx 2=0,

即x 21+2x 1-x 2

2-2x 2=ax 1+alnx 1-ax 2-alnx 2=a(x 1+lnx 1-x 2-lnx 2). 所以a =x 2

1+2x 1-x 2

2-2x 2

x 1+lnx 1-x 2-lnx 2

.

因为f′? ????a 2=0,当x∈? ????0,a 2时,f ′(x)<0,当x∈? ??

??a 2,+∞时,f ′(x)>0, 故只要证x 1+x 22>a

2

即可,

即证明x 1+x 2>x 2

1+2x 1-x 2

2-2x 2

x 1+lnx 1-x 2-lnx 2

即证明x 2

1-x 2

2+(x 1+x 2)(lnx 1-lnx 2)

1+2x 1-x 2

2-2x 2, 即证明ln x 1x 2<2x 1-2x 2

x 1+x 2.

设t =x 1

x 2

(0

令g(t)=lnt -2t -2t +1,则g ′(t)=1t -4(t +1)2=(t -1)

2

t (t +1)2.

因为t>0,所以g′(t)≥0,当且仅当t =1时,g ′(t)=0,

所以g(t)在(0,+∞)上是增函数.

又g(1)=0,所以当t∈(0,1),g(t)<0总成立.所以原题得证.

1. 如果关于x 的方程ax +1

x 2=3在区间(0,+∞)上有且仅有一个解,那么实数a 的取

值范围为________.

答案:a≤0或a =2

解析:由ax +1x =3,得a =3x -1

x

.

令t =1x

,则f(t)=3t -t 3

,t ∈(0,+∞).

用导数研究f(t)的图象,得f max (t)=2,当x∈(0,1)时,f(t)递增,当x∈(1,+∞)时,f(t)递减,所以a≤0或a =2.

2. 已知函数f(x)=lnx -a (x -1)

x +1,若函数f(x)在(0,+∞)上为增函数,则a 的取

值范围是________.

答案:a≤2

解析:f′(x)=x 2

+(2-2a )x +1

x (x +1)

2

≥0在(0,+∞)上恒成立,易得a≤2. 3. 设直线y =a 分别与曲线y 2

=x 和y =e x

交于点M 、N ,则当线段MN 取得最小值时a 的值为________.

答案:

22

解析:由题意,M(a 2,a),N(lna ,a),故MN 的长l =|a 2-lna|=a 2

-lna(a>0), 由l′=2a -1a =2a 2

-1a =2?

????a +22? ????a -22a

令l′>0,得l =a 2

-lna 在?

??

??

22,+∞上单调递增; 令l′<0,得l =a 2

-lna 在?

????0,22上单调递减,所以当a =22时,线段MN 的长取得

极小值,也是最小值.

4. 已知函数f(x)=(ax 2+x)e x

,其中e 是自然数的底数,a ∈R . (1) 当a<0时,解不等式f(x)>0;

(2) 若f(x)在[-1,1]上是单调函数,求a 的取值范围;

(3) 当a =0时,求整数k 的所有值,使方程f(x)=x +2在[k ,k +1]上有解.

解:(1) 因为e x >0,所以不等式f(x)>0即为ax 2

+x>0.

又a<0,所以不等式可化为x ? ????x +1a <0,所以不等式f(x)>0的解集为? ????0,-1a . (2) f′(x)=(2ax +1)e x

+(ax 2

+x)e x

=[ax 2+(2a +1)x +1]e x

① 当a =0时,f ′(x)=(x +1)e x

,f ′(x)≥0在[-1,1]上恒成立,当且仅当x =-1时取等号,故a =0符合要求;

② 当a≠0时,令g(x)=ax 2+(2a +1)x +1,因为Δ=(2a +1)2-4a =4a 2

+1>0,所以g(x)=0有两个不相等的实数根x 1、x 2,不妨设x 1>x 2,因此f(x)有极大值又有极小值.若a>0,因为g(-1)2g(0)=-a<0,所以f(x)在(-1,1)内有极值点,故f(x)在[-1,1]上不单调.若a<0,可知x 1>0>x 2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,

因为g(0)=1>0,必须满足?????g (1)≥0,g (-1)≥0.即?????3a +2≥0,-a≥0.

所以-2

3≤a ≤0.综上可知,a 的取

值范围是????

??-23,0.

(3) 当a =0时, 方程即为xe x

=x +2,由于e x

>0,所以x =0不是方程的解,所以原方程等价于e x

-2x

-1=0.

令h(x)=e x -2x -1,因为h′(x)=e x

+2x 2>0对于x∈(-∞,0)∪(0,+∞)恒成立,所

以h(x)在(-∞,0)和(0,+∞)内是单调增函数,又h(1)=e -3<0,h(2)=e 2

-2>0,h(-3)=e -3-13<0,h(-2)=e -2

>0,所以方程f(x)=x +2有且只有两个实数根,且分别在区间

[1,2]和[-3,-2]上,所以整数k 的所有值为{-3,1}.

1. 在已知函数f(x)是增函数(或减函数),求参数的取值范围时,应令f′(x)≥0(或f′(x)≤0)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),然后检验参数的取值能否使f′(x)恒等于0,若能恒等于0,则参数的这个值应舍去;若f′(x)不恒为0,则参数范围确定.

2. 理解可导函数极值与最值的区别,极值表示函数在一点附近的情况,是在局部对函

数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较,故函数的最值可能是极值,也可能是区间端点的函数值.

3. 用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.

请使用课时训练(A)第12课时(见活页).

[备课札记]

第13讲 函数与导数之导数及其应用(学生版)

第13讲 函数与导数之导数及其应用 一. 基础知识回顾 1.函数的平均变化率:一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商 =Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数:(1)定义:函数y =f (x)在点x 0处的瞬时变化率 通 常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0)) 的 .导函数y =f ′(x )的值域即为 . 3.函数f (x )的导函数:如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开 区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作 . 4.基本初等函数的导数公式表(右表) 5.导数运算法则 (1)[f (x )±g (x )]′= ; (2)[f (x )g (x )]′= ; (3)????f (x )g (x )′= [g (x )≠0]. 5.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是 函数,f ′(x )>0的解集与定义域的交集的对应区间为 区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a , b )上是 函数,f ′(x )<0的解集与定义域的交集的对应区间为 区间(3)若在(a ,b )上, f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函数,若在 (a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函 数. 6.函数的极值:(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果 在x 0附近的左侧 ,右侧 ,那么f (x 0)是极大值;②如果在x 0附近的左侧 , 右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求方程 的根;③检查f ′(x )在方程 的根左右值的符号.如果左正右负,那么f (x )在这个根处 取得 ;如果左负右正,那么f (x )在这个根处取得 . 7.函数的最值:(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ] 上 ,那么它必有最大值和最小值.(2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步 骤:①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大 的一个是最大值,最小的一个是最小值. 二.典例精析 探究点一:导数的运算 例1:求下列函数的导数: (1)y =(1-x )? ???1+1x ; (2)y =ln x x ;(3)y =x e x ; (4)y =tan x .

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时函数模型及其应用

第二章 函数与导数第13课时 函数模型及其应用 第三章 (对应学生用书(文)、(理)33~36页 ) , 1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m. 答案:1 900 解析:(26-14.6)÷0.6×100=1 900. 2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件. 答案:1 331 解析:1 000×(1+10%)3 =1 331. 3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________. 答案:(5,10) 4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2 000ln ? ?? ??1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s. 答案:e 6 -1 解析:由2 000ln ? ?? ??1+M m =12 000,得1+M m =e 6,所以M m =e 6 -1. 5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函 数关系为P =? ????t +20,0

导数在研究函数中的应用(含标准答案)

导数在研究函数中的应用 【自主归纳,自我查验】 一、自主归纳 1.利用导函数判断函数单调性问题 函数f(x)在某个区间(a,b)内的单调性与其导数的正负有如下关系 (1)若____ ___,则f(x)在这个区间上是增加的. (2)若____ ___,则f(x)在这个区间上是减少的. (3)若_____ __,则f(x)在这个区间内是常数.2.利用导数判断函数单调性的一般步骤 (1)求f′(x). (2)在定义域内解不等式f′(x)>0或f′(x)<0. (3)根据结果确定f(x)的单调区间. 3.函数的极大值 在包含 x的一个区间(a,b)内,函数y=f(x)在任何一点的函数值 都_____ x点的函数值,称点0x为函数y=f(x)的极大值点,其函数 值f( x)为函数的极大值. 4.函数的极小值 在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都_____ x点的函数值,称点0x x0为函数y=f(x)的极小值点,其函数 值f( x)为函数的极小值.极大值与极小值统称为_______,极大值 点与极小值点统称为极值点. 5.函数的最值与导数 1.函数y=f(x)在[a,b]上的最大值点 x指的是:函数在这个区间上

所有点的函数值都_________f( x). 2.函数y=f(x)在[a,b]上的最小值点 x指的是:函数在这个区间上 所有点的函数值都_________f( x). 二、自我查验 1.函数f(x)=x+eln x的单调递增区间为() A.(0,+∞) B.(-∞,0) C.(-∞,0)和(0,+∞) D.R 2.若函数f(x)=x3+x2+mx+1是R上的单调增函数,则m的取值范围是________. 3.函数f(x)的定义域为开区间(a,b),导函数f′(x) 在(a,b)内的图象如图所示,则函数f(x)在开区间(a, b)内有极小值点() A.1个B.2个 C.3个D.4个 4.若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a等于() A.2 B.3 C.4 D.5 5.函数ln x =的最大值为() y x A.1e-B.e C.2e D.10 3 【典型例题】 考点一利用导数研究函数的单调性 【例1】(2015·高考全国卷Ⅱ)已知函数f(x)=ln x+a(1-x). (1)讨论f(x)的单调性; (2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

第二章 函数与导数第2课时 函数的定义域和值域 第三章 (对应学生用书(文)、(理)9~10页 ) 1. (必修1P 27练习6改编)函数f(x)=x +1+12-x 的定义域为________. 答案:{x|x≥-1且x≠2} 2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是 ________. 答案:{-1,0,3} 解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}. 3. (必修1P 31习题3改编)函数f(x)=2x 5x +1 的值域为____________. 答案:? ?????y|y≠25 解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25 ,∴ 值域为? ?????y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ; ② f(x)=x x ,g(x)=x ; ③ f(x)=x 2,g(x)=(x)4; ④ f(x)=|x|,g(x)=? ????x ,x ≥0,-x ,x<0.

答案:④ 解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合. 5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则 b -a 的取值范围是________. 答案:[2,4] 解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1 时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4]. 1. 函数的定义域 (1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤 ① 写出使函数式有意义的不等式(组). ② 解不等式组. ③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零. ② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R . ④ y =a x ,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }. ⑥ 函数f(x)=x a 的定义域为{x|x≠0}. 2. 函数的值域 (1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域. (2) 基本初等函数的值域 ① y =kx +b(k≠0)的值域是R . ② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a ,+∞);当a<0时,值域为? ???-∞,4ac -b 24a . ③ y =k x (k≠0)的值域为{y|y≠0}. ④ y =a x (a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值 一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M); (2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]

导数在研究函数中的应用练习题

导数在研究函数中的应用 1.函数的单调性 在某个区间(a,b)内,如果f′(x)______0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)______0,那么函数y=f(x)在这个区间内单调递减. 2.函数的极值 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续时, ①如果在x0附近的左侧________,右侧________,那么f(x0)是极大值; ②如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程________的根; ③检查f′(x)在方程________的根左右值的符号.如果左正右负,那么f(x)在这个根处取得__________;如果左负右正,那么f(x)在这个根处取得__________. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则________为函数的最小值,________为函数的最大值;若函 数f(x)在[a,b]上单调递减,则________为函数的最大值,________为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的________; ②将f(x)的各极值与____________比较,其中最大的一个是最大值,最小的一个是最小值. 要点梳理 1.>< 2.(1)①f′(x)>0f′(x)<0②f′(x)<0f′(x)>0(2)②f′(x)=0③f′(x)=0极大值极小值 3.(2)f(a)f(b)f(a)f(b) (3)①极值②f(a),f(b) 1. f(x)=3x-x3的单调减区间为_____________________________________________. 2.函数f(x)=e x-x在区间(-∞,0)内是单调__________(填“增函数”或“减函数”). 3.函数f(x)=x3+ax-2在(1,+∞)上是增函数,则实数a的取值范围是________. 4.如图是y=f(x)导数的图象,对于下列四个判断: ①f(x)在[-2,-1]上是增函数; ②x=-1是f(x)的极小值点; ③f(x)在[-1,2]上是增函数,在[2,4]上是减函数; ④x=3是f(x)的极小值点. 其中正确的判断是________.(填序号)

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

2014年全国高考数学分类详解 第二章 函数与导数

第二章 函数与导数 一、函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上 的解析式为f (x )=? ????x (1-x ),0≤x ≤1,sin πx ,1

人教版数学高二选修2-2作业1.3导数在研究函数中的应用课时作业4

课时作业 函数的最大(小)值与导数 A 组 基础巩固 1.函数y =f (x )=ln x x 的最大值为( ) A .e -1 B .e C .e 2 D .10 解析:令y ′=ln x ′x -ln x x 2=1-ln x x 2=0?x =e. 当x >e 时,y ′<0;当0<x <e 时,y ′>0, 所以y 极大值=f (e)=e -1 , 在定义域内只有一个极值,所以y max =e -1. 答案:A 2.函数f (x )=1x +1+x (x ∈[1,3])的值域为( ) A .(-∞,1)∪(1,+∞) B.???? ??32,+∞ C.? ????32,134 D.???? ??32,134 解析:f ′(x )=-1x +12+1=x 2+2x x +12 , 所以在[1,3]上f ′(x )>0恒成立,即f (x )在[1,3]上单调递增. 所以f (x )的最大值是f (3)= 134,最小值是f (1)=32 .故选D. 答案:D 3.若函数f (x )=-x 3+3x 2+9x +a 在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为 ( ) A .-5 B .7 C .10 D .-19 解析:f ′(x )=-3x 2+6x +9=-3(x -3)·(x +1). 令f ′(x )=0,得x =3或-1. ∵x ∈[-2,-1]时,f ′(x )<0, ∴f (x )在[-2,-1]上递减. ∴f (-2)=2,即a +2=2,a =0,它的最小值为f (-1)=-5. 答案:A 4.f (x )=2x -cos x 在(-∞,+∞)上( ) A .是增函数 B .是减函数 C .有最大值 D .有最小值

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

第二章 函数与导数第12课时 导数在研究函数中的应用 第三章 (对应学生用书(文)、(理)30~32页 ) , 1. (选修22P 28例1改编)函数f(x)=x 3 -15x 2 -33x +6的单调减区间为______________. 答案:(-1,11) 解析:f′(x)=3x 2 -30x -33=3(x -11)(x +1),由(x -11)(x +1)<0,得单调减区间为(-1,11).亦可填写闭区间或半开半闭区间. 2. (选修22P 34习题3改编)若函数f(x)=e x -ax 在x =1处取到极值,则a =________. 答案:e 解析:由题意,f ′(1)=0,因为f′(x)=e x -a ,所以a =e. 3. (选修22P 34习题8)函数y =x +sinx ,x ∈[0,2π]的值域为________. 答案:[0,2π] 解析:由y′=1+cosx ≥0,所以函数y =x +sinx 在[0,2π]上是单调增函数,所以值域为[0,2π]. 4. (原创)已知函数f(x)=-12x 2 +blnx 在区间[2,+∞)上是减函数,则b 的取值范 围是________. 答案:(-∞,4] 解析:f′(x)=-x +b x ≤0在[2,+∞)上恒成立,即b≤x 2 在[2,+∞)上恒成立. 5. (选修22P 35例1改编)用长为90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm 时,容器的容积最大. 答案:10 解析:设容器的高为xcm ,即小正方形的边长为xcm ,该容器的容积为V ,则V =(90- 2x)(48-2x)x =4(x 3-69x 2+1080x),00;当10

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,培养学生的探究精神,提高语言表达和概括能力,

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

相关主题
文本预览
相关文档 最新文档