当前位置:文档之家› 2015届高考数学总复习第二章 函数与导数第14课时 函数的综合应用课时训练

2015届高考数学总复习第二章 函数与导数第14课时 函数的综合应用课时训练

2015届高考数学总复习第二章 函数与导数第14课时 函数的综合应用课时训练
2015届高考数学总复习第二章 函数与导数第14课时 函数的综合应用课时训练

第二章 函数与导数第14课时 函数的综合应用

1. 设函数f(x)是定义在R 上以3为周期的奇函数,若f(1)>1,f(2)=2a -3a +1

,则a 的取值范围是________.

答案:-1

解析:由题意,f(2)=f(-1)<-1,则2a -3a +1

<-1,解得-1

答案:≤

解析:由2x +5y ≤2-y +5-x ,知2x -5-x ≤2-y -5y ,设f(x)=2x -5-x ,不等式即为f(x)≤f(-

y),易知f(x)在R 上为增函数,所以x ≤-y ,即x +y ≤0.

3. 已知函数f(x)=e |x|,m>1,对任意的x ∈[1,m],都有f(x -2)≤ex ,则最大的正整数m 为________.

答案:4

解析:作出函数y 1=e |x -2|

和y 2=ex 的图象,如图可知x =1时y 1=y 2,又x =4时y 1=

e 2<y 2=4e ,x =5时y 1=e 3>y 2=5e ,故m <5,即m 的最大整数值为4.

4. 给出下列四个结论:

① 函数y =k·3x (k>0)的图象可由函数y =3x 的图象经过平移得到;

② 不等式???

?ax -1x >a 的解集为M ,且2M ,则a 的取值范围是????14,+∞; ③ 定义域为R 的函数f(x)满足f(x +1)·f(x)=-1,则f(x)是周期函数;

④ 已知f(x)满足对x ∈R 都有f ????12+x +f ????12-x =2成立,则f ????18+f ????28+…+f ???

?78=7. 其中正确的是________.(填序号)

答案:①③④

解析:由k·3x =3x +log 3k (k>0)知①正确;由2M 得???

?2a -12≤a ,即a ≥14,故②不正确;由f(x +1)=-1f (x )

得f(x +2)=f(x),故③正确;由f ????12+x +f ????12-x =2得f(x)+f(1-x)=2且f ????12=1,故f ????18+f ????28+…+f ???

?78=7正确. 5. 函数f(x)的定义域为D ,若满足① f(x)在D 内是单调函数,② 存在[a ,b]D ,使f(x)在[a ,b]上的值域为[-b ,-a],那么y =f(x)叫做对称函数,现有f(x)=2-x -k 是对称函数,则k 的取值范围是_________.

答案:???

?2,94 解析:由于f(x)=2-x -k 在(-∞,2]上是减函数,所以???2-a -k =-a ,2-b -k =-b

关于x 的方程2-x -k =-x 在(-∞,2]上有两个不同实根,且k -x ≥0在(-∞,2]上恒成立,

通过换元结合图象可得k ∈???

?2,94. 6. 已知函数f(x)的定义域为R ,f(2)=3,且f(x)在R 上的导函数满足f′(x)-1<0,则不

等式f(x 2)

解析:构造函数g(x)=f(x)-x -1,则由条件知g′(x)=f ′(x)-1<0,g(2)=0,函数g(x)=f(x)-x -1在定义域R 上单调递减,不等式f(x 2)2,故不等式的解集为(-∞,-2)∪(2,+∞).

7. 已知函数f(x)=log a |x +1|(a>0且a ≠1),当x ∈(0,1)时,恒有f(x)<0成立,则函数

g(x)=log a ???

?-32x 2+ax 的单调递减区间是________. 答案:???

?0,a 3 解析:当x ∈(0,1)时,|x +1|>1,但log a |x +1|<0,故由对数函数的图象知,0

32x 2+ax>0,解得0

a ,即函数g(x)=log a ????-32x 2+ax 的定义域为????0,23a .因为二次函数t =-32

x 2+ax 的单调递增区间为????-∞,a 3,结合函数g(x)的定义域知,函数g(x)的单调递减区间为???

?0,a 3. 8. 将函数y =-x 2+2x +3-3(x ∈[0,2])的图象绕坐标原点逆时针旋转θ(θ为锐角),若所得曲线仍是一个函数的图象,则θ的最大值为________.

答案:π3

解析:由y =-x 2+2x +3-3,得y +3=-x 2+2x +3≥0,两边平方得(x -1)2+(y +3)2=4(y ≥-3),又x ∈[0,2],所以所给的函数的图象是圆的一段弧,画图易知,若圆弧与y 轴相切,能使旋转后所得曲线仍是一个函数的图象,若与y 轴相交,则不能构成函

数,故最多可以逆时针旋转π3,即θ的最大值为π3

. 9. 已知函数f(x)=-x 2+|x -a|,其中a ∈R .

(1) 讨论f(x)的奇偶性;

(2) 当a =-1时,求f(x)的值域;

(3) 当a ≤0时,求f(x)的最大值.

解:(1) 若a =0,则f(-x)=-x 2+|x|=f(x),即f(x)是偶函数;

若a ≠0,f(-1)=-1+|-1-a|,f(1)=-1+|1-a|,

因为f(-1)≠f(1),f(-1)≠-f(1),所以f(x)是非奇非偶函数.

(2) 当a =-1时,f(x)=-x 2+|x +1|=?

????-x 2-x -1,x<-1,-x 2+x +1,x ≥-1.当x<-1时,f(x)∈(-∞,-1);

当x ≥-1时,f(x)∈?

???-∞,54, 所以f(x)的值域为?

???-∞,54. (3) 若x ≥a ,则f(x)=-x 2+x -a =-????x -122+14-a ,在x =12

处f(x)取最大值f ????12=14-a.

若x ≤a ,则f(x)=-x 2-x +a =-????x +122+14

+a , ① 当a ≤-12

时,[f(x)]max =f(a)=-a 2; ② 当-12

≤a ≤0时,[f(x)]max =f ????-12=14+a ,

由于14+a ≤14-a ,-a 2≤14-a ,所以[f(x)]max =14

-a. 10. 已知f(x)为R 上的偶函数,当x ≥0时,f(x)=ln(x +2).

(1) 当x<0时,求f(x)的解析式;

(2) 当m ∈R 时,试比较f(m -1)与f(3-m)的大小;

(3) 求最小的整数m(m ≥-2),使得存在实数t ,对任意的x ∈[m ,10],都有f(x +t)≤2ln|x +3|.

解:(1) 当x<0时,f(x)=f(-x)=ln(-x +2).

(2) 当x ≥0时,f(x)=ln(x +2)单调递增,而f(x)是偶函数,所以f(x)在(-∞,0)上单调递减.

所以f(m -1)>f(3-m)|m -1|>|3-m|(m -1)2>(3-m)2m>2.

所以当m>2时,f(m -1)>f(3-m) ;当m =2时,f(m -1)=f(3-m);当m<2时,f(m -1)

(3) 当x ∈R 时,f(x)=ln(|x|+2),则由f(x +t)≤2ln|x +3|,得ln(|x +t|+2)≤ln(x +3)2, 即|x +t|+2≤(x +3)2对x ∈[m ,10]恒成立,

从而有?????t ≤x 2+5x +7,t ≥-x 2-7x -7,对x ∈[m ,10]恒成立, 因为m ≥-2,所以?

????t ≤(x 2+5x +7)min =m 2+5m +7,t ≥(-x 2-7x -7)max =-m 2-7m -7. 因为存在这样的t ,所以-m 2-7m -7≤m 2+5m +7,即m 2+6m +7≥0.又m ≥-2,所以适合题意的最小整数m =-1.

11. 已知函数f(x)=lnx -x ,h(x)=lnx x

. (1) 求h(x)的最大值;

(2) 若关于x 的不等式xf(x)≥-2x 2+ax -12对一切x ∈(0,+∞)恒成立,求实数a 的取值范围;

(3) 若关于x 的方程f(x)-x 3+2ex 2-bx =0恰有一解,其中e 是自然对数的底数,求实数b 的值.

解:(1) h(x)的最大值为h(e)=1e

. (2) 不等式xf(x)≥-2x 2+ax -12对一切x ∈(0,+∞)恒成立,即a ≤lnx +x +12x

对一切x ∈(0,+∞)恒成立,

设φ(x)=lnx +x +12x

, 因为φ′(x)=1x +1-12x 2=x 2+x -12x 2=(x +4)(x -3)x 2

, 故φ(x)在(0,3]上递减,在[3,+∞)上递增,

[φ(x)]min =φ(3)=7+ln3,所以a ≤7+ln3.

(3) 方程f(x)-x 3+2ex 2-bx =0恰有一解,等价于lnx x

=x 2-2ex +b +1恰有一解,由(1)知,h(x)的最大值为h(e)=1e

. 而函数k(x)=x 2-2ex +b +1在(0,e]上单调递减,在[e ,+∞)上单调递增,故[k(x)]min =k(e)=b +1-e 2,

故方程lnx x =x 2-2ex +b +1恰有一解当且仅当1e =b +1-e 2,所以b =e 2+1e

-1.

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时函数模型及其应用

第二章 函数与导数第13课时 函数模型及其应用 第三章 (对应学生用书(文)、(理)33~36页 ) , 1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m. 答案:1 900 解析:(26-14.6)÷0.6×100=1 900. 2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件. 答案:1 331 解析:1 000×(1+10%)3 =1 331. 3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________. 答案:(5,10) 4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2 000ln ? ?? ??1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s. 答案:e 6 -1 解析:由2 000ln ? ?? ??1+M m =12 000,得1+M m =e 6,所以M m =e 6 -1. 5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函 数关系为P =? ????t +20,0

同济第六版《高等数学》教案WORD版-第02章-导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s ??=??, 这个比值可认为是动点在时间间隔t ?t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t ?t 0→0, 取

比值 0) ()(t t t f t f ??的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t ??=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000) ()(tan x x x f x f x x y y ??=??=?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x ??=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 令, x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x ??→ . , 当自变量x 在x 0处取得增量?x (点x 0+?x ?y =f (x 0+?x )?f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ???+=??='→?→?)()(lim lim )(00000,

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

第二章 函数与导数第2课时 函数的定义域和值域 第三章 (对应学生用书(文)、(理)9~10页 ) 1. (必修1P 27练习6改编)函数f(x)=x +1+12-x 的定义域为________. 答案:{x|x≥-1且x≠2} 2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是 ________. 答案:{-1,0,3} 解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}. 3. (必修1P 31习题3改编)函数f(x)=2x 5x +1 的值域为____________. 答案:? ?????y|y≠25 解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25 ,∴ 值域为? ?????y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ; ② f(x)=x x ,g(x)=x ; ③ f(x)=x 2,g(x)=(x)4; ④ f(x)=|x|,g(x)=? ????x ,x ≥0,-x ,x<0.

答案:④ 解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合. 5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则 b -a 的取值范围是________. 答案:[2,4] 解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1 时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4]. 1. 函数的定义域 (1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤 ① 写出使函数式有意义的不等式(组). ② 解不等式组. ③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零. ② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R . ④ y =a x ,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }. ⑥ 函数f(x)=x a 的定义域为{x|x≠0}. 2. 函数的值域 (1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域. (2) 基本初等函数的值域 ① y =kx +b(k≠0)的值域是R . ② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a ,+∞);当a<0时,值域为? ???-∞,4ac -b 24a . ③ y =k x (k≠0)的值域为{y|y≠0}. ④ y =a x (a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值 一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M); (2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

3.2.1几个常用函数的导数教案

3.2.1几个常用函数的导数教案 教学目标: 1. 能够用导数的定义求几个常用函数的导数; 2. 利用公式解决简单的问题。 教学重点和难点 1.重点:推导几个常用函数的导数; 2.难点:推导几个常用函数的导数。 教学方法: 自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆。 教学过程: 一 复习 1、函数在一点处导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的步骤。 二 新课 例1.推导下列函数的导数 (1) ()f x c = 解:()()0y f x x f x c c x x x ?+?--===???, '00()lim lim 00x x y f x x ?→?→?===? 1. 求()f x x =的导数。 解: ()()1y f x x f x x x x x x x ?+?-+?-===???, '00()lim lim 11x x y f x x ?→?→?===?。 '1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则' 1y =可以解释为某物体做瞬时速度为1的匀速运动。 思考:(1).从求y x =,2y x =,3y x =,4y x =的导数如何来判断这几个函数递增的快慢? (2).函数(0)y kx k =≠增的快慢与什么有关? 可以看出,当k>0时,导数越大,递增越快;当k<0时,导数越小,递减越快. 2. 求函数2()y f x x ==的导数。

解: 22 ()()()2y f x x f x x x x x x x x x ?+?-+?-===+????, ''00 ()lim lim (2)2x x y y f x x x x x ?→?→?===+?=?。 '2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化: (1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢; (2)当x>0时,随着 x 的增加,2y x =增加得越来越快。 3. 求函数1()y f x x ==的导数。 解: 211()()()1()y f x x f x x x x x x x x x x x x x x x x x -?+?--+?+?====-???+??+??, ''220011()lim lim ()x x y y f x x x x x x ?→?→?===-=-?+?? 思考:(1)如何求该曲线在点(1,1)处的切线方程? '(1)1k f ==-,所以其切线方程为2y x =-+。 (2)改为点(3,3),结果如何? (3)把这个结论当做公式多好呀,,既方便,又减少了复杂的运算过程。 三 例题 1. 试求函数()y f x = 解: ()()y f x x f x x x ?+?-==??= ''0()lim lim x x y y f x x ?→?→?====? 2. 已知点P (-1,1),点Q (2,4)是曲线2y x =上的两点,求与直线PQ 平行的曲线 的切线方程。 解:'2y x =,设切点为00(,)M x y ,则0'02.x x y x ==

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

2014年全国高考数学分类详解 第二章 函数与导数

第二章 函数与导数 一、函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上 的解析式为f (x )=? ????x (1-x ),0≤x ≤1,sin πx ,1

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

3-2-1 几个常用函数的导数及基本初等函数的导数公式

基础巩固强化 一、选择题 1.设y =e 3,则y ′等于( ) A .3e 2 B .e 2 C .0 D .以上都不是 [答案] C [解析] ∵y =e 3是一个常数,∴y ′=0. 2.(2012~2013学年度陕西宝鸡中学高二期末测试)函数y =sin x 的导数是( ) A .y =sin x B .y =-cos x C .y =cos x D .y =-sin x [答案] C [解析] ∵(sin x )′=cos x , ∴选C. 3.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 [答案] B [解析] ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有两条. 4.若y =cos 2π 3,则y ′=( ) A .-3 2 B .-12

C .0 D.12 [答案] C [解析] 常数函数的导数为0. 5.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D.12 [答案] D [解析] ∵y ′=1x ,∴y ′|x =2=1 2,故图象在x =2处的切线斜率为12. 6.y =x α在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 [答案] B [解析] y ′=(x α)′=αx α-1, 由条件知,y ′|x =1=α=-4. 二、填空题 7.曲线y =ln x 与x 轴交点处的切线方程是__________. [答案] y =x -1 [解析] ∵曲线y =ln x 与x 轴的交点为(1,0) y ′|x =1=1,∴切线的斜率为1, ∴所求切线方程为:y =x -1. 8.质点沿直线运动的路程与时间的关系是s =5 t ,则质点在t =32时的速度等于____________.

导数的综合应用

导数的综合应用 ★★★高考在考什么 【考题回放】 1.(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1) f ' (x ) ≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2) ≤2f (1) C. f (0)+f (2) ≥2f (1) D. f (0)+f (2) >2f (1) 解:依题意,当x ≥1时,f ' (x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ' (x )≤0,f (x )在(-∞, 1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 2.(06全国II )过点(-1,0)作抛物线y=x 2+x +1的切线,则其中一条切线为 (A )2x+y +2=0 (B )3x-y +3=0 (C )x+y+1=0 (D )x-y+1=0 解:y '=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1 于是切线方程为y -(x 02+x 0+1)=(2x 0+1)(x-x 0),因为点(-1,0)在切线上,可解得 x 0=0或-4,代入可验正D 正确。选D 3.(06四川卷)曲线y =4x-x 3在点(-1,-3)处的切线方程是D (A )y=7x+4 (B )y=7x+2 (C )y=x-4 (D )y=x-2 解:曲线y =4x-x 3,导数y '=4-3x 2,在点(-1,-3)处的切线的斜率为k=1,所以切线方程是y=x-2,选D. 4.(06天津卷)函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,则函数f (x )在开区间(a,b )内有极小值点( ) A .1个 B .2个 C .3个 D . 4个 解析:函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,函数f (x )在开区间(a,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A. 5.(浙江卷)f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (A)-2 (B)0 (C)2 (D)4 解:f ' (x )=3x 2-6x =3x (x -2),令f ' (x )=0可得x =0或2(2舍去),当-1≤x <0时,f ' (x )>0,当0

高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

第二章 函数与导数第12课时 导数在研究函数中的应用 第三章 (对应学生用书(文)、(理)30~32页 ) , 1. (选修22P 28例1改编)函数f(x)=x 3 -15x 2 -33x +6的单调减区间为______________. 答案:(-1,11) 解析:f′(x)=3x 2 -30x -33=3(x -11)(x +1),由(x -11)(x +1)<0,得单调减区间为(-1,11).亦可填写闭区间或半开半闭区间. 2. (选修22P 34习题3改编)若函数f(x)=e x -ax 在x =1处取到极值,则a =________. 答案:e 解析:由题意,f ′(1)=0,因为f′(x)=e x -a ,所以a =e. 3. (选修22P 34习题8)函数y =x +sinx ,x ∈[0,2π]的值域为________. 答案:[0,2π] 解析:由y′=1+cosx ≥0,所以函数y =x +sinx 在[0,2π]上是单调增函数,所以值域为[0,2π]. 4. (原创)已知函数f(x)=-12x 2 +blnx 在区间[2,+∞)上是减函数,则b 的取值范 围是________. 答案:(-∞,4] 解析:f′(x)=-x +b x ≤0在[2,+∞)上恒成立,即b≤x 2 在[2,+∞)上恒成立. 5. (选修22P 35例1改编)用长为90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm 时,容器的容积最大. 答案:10 解析:设容器的高为xcm ,即小正方形的边长为xcm ,该容器的容积为V ,则V =(90- 2x)(48-2x)x =4(x 3-69x 2+1080x),00;当10

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

高考数学第二章函数与导数第3课时函数的单调性

第二章函数与导数第3课时函数的单调性第三章(对应学生用书(文)、(理)11~12页) 1. (必修1P54测试4)已知函数y=f(x)的图象如图所示,那么该函数的单调减区间是

________. 答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ① y =1-3x ;② y=-1x ;③ y=x 2 +1;④ y=|x +1|. 答案:②③④ 3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)2a , 解得-1≤a<1. 4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________. 答案:???? ??0,32 解析:y =(x -3)|x|=?????-x (x -3),x<0,x (x -3),x ≥0, 画图可知单调递减区间是??????0,32. 5. (必修1P 54测试6改编)已知函数f(x)=mx 2 +x +m +2在(-∞,2)上是增函数,则 实数m 的取值范围是________. 答案:???? ??-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须?????m<0,-12m ≥2,解得-1 4≤m<0.综 上,实数m 的取值范围是-1 4 ≤m ≤0.

1. 增函数和减函数 一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是单调减函数.(如图(2)所示) 2. 单调性与单调区间 如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间). 3. 判断函数单调性的方法 (1) 定义法:利用定义严格判断. (2) 利用函数的运算性质. 如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1 f(x) 为减函数(f(x)>0); ③ f(x)为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.

3.2.1几个常用函数导数(学、教案)

3. 2.1几个常用函数导数 课前预习学案 (预习教材P 88~ P 89,找出疑惑之处) 复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ?= (2)求平均变化率y x ?=? (3)取极限,得导数/y =()f x '=x y x ??→?0lim = 上课学案 学习目标1记住四个公式,会公式的证明过程; 2.学会利用公式,求一些函数的导数; 3.知道变化率的概念,解决一些物理上的简单问题. 学习重难点:会利用公式求函数导数,公式的证明过程 学习过程 合作探究 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数 新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试: 求函数()y f x x ==的导数 反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关? 典型例题 例1 求函数1()y f x x ==的导数 解析:因为11()()y f x x f x x x x x x x -?+?-+?==???

2015届高考数学总复习第二章 函数与导数第1课时 函数及其表示课时训练

第二章 函数与导数第1课时 函数及其表示 1. 下列对应f 是从集合A 到集合B 的函数有________个. ① A =N ,B =N *,f :x →y =|x -2|; ② A ={1,2,3},B =R ,f(1)=f(2)=3,f(3)=4; ③ A =[-1,1],B ={0},f :x →y =0. 答案:2 2. 已知函数y =f(x),集合A ={(x ,y)|y =f(x)},B ={(x ,y)|x =a ,y ∈R },其中a 为常数,则集合A ∩B 的元素有________个. 答案:0或1 解析:设函数y =f(x)的定义域为D ,则当a ∈D 时,A ∩B 中恰有1个元素;当a ?D 时,A ∩B 中没有元素. 3. 若f(x +1)=x +1,则f(x)=___________. 答案:x 2-2x +2(x ≥1) 解析:令t =x +1,则x =(t -1)2,所以f(t)=(t -1)2+1. 4. 已知函数φ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且φ????13=16,φ(1)=8,则φ(x)=________. 答案:3x +5 x (x ≠0) 解析:由题可设φ(x)=ax +b x ,代入φ????13=16,φ(1)=8,得a =3,b =5. 5. 已知函数f(x)=3x -1,g(x)=? ????x 2-1,x ≥0,2-x ,x<0.若x ≥1 3,则g(f(x))=________. 答案:9x 2-6x 解析:当x ≥1 3 时,f ()x ≥0,所以g(f(x))=(3x -1)2-1=9x 2-6x. 6. 工厂生产某种产品,次品率p 与日产量x(万件)间的关系为p =? ?? 1 6-x ,0c (c 为常数,且0c 解析:当x>c 时,p =23,所以y =????1-23·x ·3-23·x ·32=0;当0

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

相关主题
文本预览
相关文档 最新文档