当前位置:文档之家› 2020年信号处理知识点总结

2020年信号处理知识点总结

2020年信号处理知识点总结
2020年信号处理知识点总结

第一章信号

1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体

2.信号的特性:时间特性,频率特性

3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号

若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号

4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的

5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限

6.信号的频谱有两类:幅度谱,相位谱

7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析

第二章连续信号的频域分析

1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数

2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和

3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位

4.周期信号频谱的特点:离散性,谐波性,收敛性

5.周期信号由无穷多个余弦分量组成

周期信号幅频谱线的大小表示谐波分量的幅值

相频谱线大小表示谐波分量的相位

6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和

7.非周期信号可看成周期趋于无穷大的周期信号

8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少

9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;

非周期信号可以用其自身的积分表示

10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号

11.周期信号的傅里叶变换:周期信号:一个周期绝对可积?傅里叶级数?离散谱

非周期信号:无限区间绝对可积?傅里叶变换?连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合

脉冲函数的位置:ω=nω0 , n=0,±1,±2, …..

脉冲函数的强度:傅里叶复指数系数的2π倍

周期信号的傅立叶变换也是离散的;

谱线间隔与傅里叶级数谱线间隔相同

13.信号的持续时间与信号占有频带成反比

14.信号在时域的翻转,对应信号在频域的翻转

15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变

第三章 连续信号分析

1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;

频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频 (频nf0)分量

2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身

; f(t)与冲激偶的卷积,δ(t)称为微分器 f(t)与阶跃函数的卷积, u(t)称为积分器 3. 函数正交的充要条件是它们的内积为0

第二章 离散傅里叶变换及其快速算法

1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列

2.周期卷积特性:同周期序列的时域卷积等于频域的乘积

同周期序列的时域乘积等于频域的卷积

3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和

4.有限长序列隐含着周期性

)

()()(t f t t f '='*δ?∞-=*t

d f t u t f λ

λ)()()(

5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响

6.FFT的计算工作量:FFT算法对于N点DFT,仅需(N/2)log2N

次复数乘法运算和Nlog2N 次复数加法

第三章随机信号分析与处理

1 随机信号是随时间变化的随机变量,用概率结构来描述。对于离散型随机变量,用概率述;对于连续型随机变量,用概率密度描述。

2方差:用于表明随机信号各可能值对其平均值的偏离程度,是随机信号取值分散性的度量

3平稳随机信号的均值、方差、均方值是与时间无关的常量,相关函数及协方差仅是时移τ的函数,与随机信号的起止时刻t无关。

平稳随机信号最重要的特点是随机信性。在不同时刻具有相同的统计特征。

与平稳随机信号相反,非平稳随机信号的统计特性是随着时间的推移而变化的。

4平稳随机信号的每一个样本都同样地经历了随机信号其它样本的各种可能状态,因而从一个样本的统计特性(时间平均)就能得到全部样本的统计特性(集平均),此类信号称为各态遍历性

随机信号。

5可以用时间充分长的单个样本函数的时间平均统计参数来代替总体的平均统计值

6离散时间信号功率谱的特点:

1)功率谱是周期性的,因此可作傅立叶级数分解;2)反演变换的积分区间是-p---p

7系统的功率谱传输能力仅与系统的幅频特性有关,而与系统的相频特性无关。

互功率谱密度不仅包含有系统幅频特性函数的幅度信息,还包含有相位信息

8频谱分析不改变信噪比功率谱分析工程信号分析的关键是降低噪声,提高信噪比

傅里叶变换不会提高信噪比。相关函数可以提高信噪比,但不反映频谱相关函数的傅里叶变换功率谱,可以提高信噪比,又能反映频率结构

9能量谱从频域提取信号中的周期分量或同频分量

相关函数从时域提取信号中的周期或同频分量

10功率谱的性质

函数性质自功率谱Sxx(f)是实偶函数;

互功率谱Sxy(f)是非奇非偶复函数;

双边谱:f∈(-∞,∞);

功率谱与相关函数包含的信息完全等价。

物理性质Gxx(f)下的面积等于信号的总能量

Gxx(f)为能量有限信号的能量谱密度函数

或功率有限信号的功率谱密度函数

Gxx(f)任意频段间的面积=该频带下信号的能量

11 Rxy(τ)能从延时域上描述输出与输入的相关关系

相干函数则从频域上描述输出与输入的相关关系

12 提高频率分辨率的途径:保持N不变,设法降低fm 或增大采样间隔

13细化分析的基本思想移频低通滤波重新采样FFT 14功率谱分析(Spectrum)的局限性: 1仅适应于线性叠加信号的频谱分析2两信号频带不交叠时信号的分离3不适用于非线性信号处理

15从倒功率谱可以恢复信号的功率谱!一般在不关心相位信息时,采用实倒谱

离散信号的分析

一离散信号的时域描述和分析

1模拟信号:时间和幅值均连续的信号(一般现实信号均为模拟信号)

离散时间信号(序列):只在离散的时间点上有定义的信号,通常由模拟或连续时间信号经采样得到.

2在没有任何条件限制的情况下,从连续时间信号采样所得到的样本序列不能唯一地代表原来的连续时间信号。对同一个连续时间信号,当采样间隔不同时也会得到不同的样本序列

3时域抽样等效频域周期重复频域抽样等效时域周期重复

4抽样定理时域对f(t)抽样等效于频域对F(w)重复时域抽样间隔不大于1/2Wm

频域对F(w)抽样等效于时域对f(t)重复

频域抽样间隔不大于1/2Tm

满足抽样定理,则不会产生混叠

二离散信号频域分析

1离散傅里叶级数的性质

2时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱密度函数。

时域连续函数造成频域是非周期的谱而频域的离散对应时域是周期函数。

2 一个域的离散造成另一个域的周期延拓,因此离散傅里叶变换的时域和频域都是离散的和周期的。

3 时域的离散化造成频域的周期延拓,而时域的非周期对应于频域的连续

4四种傅里叶变换形式的归纳

时间函数频率函数

傅里叶变换连续和非周期非周期和连续

傅里叶级数连续和周期(T0) 非周期和离散(Ω0=2π/T0)

序列的傅里叶变换离散(T)和非周期周期(Ωs=2π/T)和连续离散傅里叶变换离散(T)和周期(T0) 周期(Ωs=2π/T)和离散(Ω0=2π/T0)

5 DFS:离散傅里叶级数DTFT:序列的傅里叶变换DFT:离散傅里叶变换

6 周期序列的DFS及其性质

7 x(n)的N点DFT是x(n)的z变换在单位圆上的N点等间隔抽样

x(n)的DTFT在区间[0,2π]上的N点等间隔抽样。

8有限长序列的圆周移位导致频谱线性相移,而对频谱幅度无影响。

9时域序列的调制等效于频域的圆周移位

10 圆周卷积过程:1)补零2)周期延拓3)翻褶,取主值序列4)圆周移位5)相乘相加

11 时域抽样造成频域周期延拓,频域抽样造成时域周期延拓

12 x(n)为无限长序列—混叠失真

x(n)为有限长序列,长度为M N>=M 不失真N

13 频率采样定理若序列长度为M,则只有当频域采样点数N>=M 不失真地恢复原信号

14 N一定时信号最高频率与频率分辨率相矛盾

同时提高信号最高频率和频率分辨率,需增加采样点数N。

15 频谱泄漏改善方法:1)增加x(n)长度2)缓慢截短

16栅栏效应改善方法增加频域抽样点数N(时域补零),使谱线更密

17提高频率分辨率方法:增加信号实际记录长度补零并不能提高频率分辨率

18序列的抽取与插值抽取:减小抽样频率插值:加大抽样频率

19

三FFT变换

1DFT要解决两个问题:一是离散与量化,二是快速运算。

2 DFS性质

3周期卷积特性同周期序列的时域卷积等于频域的乘积

同周期序列的时域乘积等于频域的卷积

4 周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和两个不同长度的序列可以进行线性卷积;只有同周期的两个序列才能进行周期卷积,且周期不变

5有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响。

6 循环卷积两序列长度必须相等不等补0 卷积结果长度与两信号长度相等为N

线性卷积两序列长度可不等卷积结果长度N1+N2—1

7 FFT的计算工作量FFT算法对于N点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法

8 一次复数乘法换算成实数运算量4N2次实数乘法运算,N(4N-2)次实数加法运算

9 DFT的基本思想1)利用DFT系数的对称性和周期性,合并DFT 运算中的某些项;

(2)将长序列分解为短序列,从而减少其运算量。

10设一序列x(n)的长度为L=9,应加零补长为N=24=16 应补7个零值

11循环卷积运算量大于直接卷积运算量时采用分段卷积(重叠保留法重叠相加法)

信号处理基础

1信号和系统的关系:信号是系统实施处理的对象,而系统是信号处理的工具。

2系统的性质连续时间系统:①系统的输入、输出信号,及所有状态变量都是连续时间信号;②通常用微分方程或连续时间状态方程描述。

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理试卷及答案

A 一、 选择题(每题3分,共5题) 1、)6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、对)70()(≤≤n n x 和)190()(≤≤n n y 分别作 20 点 DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 围时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

自适应信号处理论文程序原版

利用LMS 算法的自适应系统仿真 摘 要: 一待辩识的IIR 系统,用一有限长度的FIR 滤波器来近似辩识系统,介绍了基于最小均方算法(LMS 算法)的自适应均衡器的原理和结构,采用LMS 算法得到N 阶FIR 滤波器来逼近原IIR 滤波器,并且分析了步长,滤波器系数,初始权值以及自适应过程中的噪声对系统辩识性能的影响。针对用硬件实现LMS 算法的自适应均衡器存在的诸多缺点,利用MATLAB 工具对各种结构形式的自适应均衡器在不同信道模型下的收敛速度和精度进行仿真,描述了用仿真试验得出LMS 自适应均衡滤波器的收敛性和跟踪性能与滤波器长度和选代算法跳步两个重要的参数之间的定量关系,为此构建了有实用价值的系列时延扩展的传输环境和可变多径传输信道,建立了系统仿真模型,做出了仿真试验结果并分析了仿真试验结果的意义。 关 键 词 LMS 算法; FIR 滤波器; 自适应滤波;IIR; MATLAB 仿真 关 键 词: LMS 算法 自适应均衡系统 仿真 移动通信 无线数据通信 0、 引言 待辨识系统是极点-零点(IIR )系统,要用一个有限长度的FIR 滤波器来近似辨识该系统如图1所示。已知待辨识系统的传输函数为: 23.01.111)(-+-=z z z H d (IIR ),求FIR 滤波器的系数。 图1 自适应系统辨识的原理图 1、系统设计要求 1)、待辨识系统为IIR 滤波器,利用自适应滤波的方法,采用LMS 算法得到N 阶FIR 滤波器来逼近原IIR 滤波器; 2)、输入信号)(n x 为高斯白噪声;

3)、考察步长delta 、阶数N 对自适应滤波器性能的影响。 2、系统设计原理 由于LMS 算法不需要离线方式的梯度估值或重复使用数据以及它的简单易行性而被广泛采用。只要自适应系统是线性组合器,且有输入数据向量)(n x 和期待响应)(n d 在每次迭代时可利用,对许多自适应处理的应用来说,LMS 算法是最好的选择。 我们采用LMS 算法自适应调整FIR 滤波器的系数,自适应滤波器的结构是具有可调系数)1(,),1(),0(-N h h h 的直接型FIR 滤波器。 输入信号)(n x 为功率为1,长度为1000点的高斯白噪声。)(n d 为期望响应,)(n y 为自适应FIR 滤波器的输出,误差信号)()()(n y n d n e -=。 对一个FIR 滤波器,其可调系数为10),(-≤≤N k k h ,N 为滤波器的阶数。则输出 M n k n x k h n y N k ,,0), ()()(10 =∑-=-= LMS 算法是由最速下降法导出的,求出使均方误差∑==M n n e 0 2)(ε达到最小值时相应的最佳滤 波器系数组。 从任意选择的一组)(k h 初始值开始,接着在每个新的输入采样值)(n x 进入自适应滤波器后,计算相应的输出)(n y ,再形成误差信号)()()(n y n d n e -=,并根据如下方程不断修正滤波器系数: ,1,0,10),()()()(1=-≤≤-???+=-n N k k n x n e k h k h n n 其中?为步长参数,)(k n x -为n 时刻输入信号在滤波器的第k 个抽头处的采样值,)()(k n x n e -?是滤波器第k 个系数的负梯度的近似值。这就是自适应地调整滤波器系数以便使平方误差ε最小化的LMS 算法。 3、系统仿真和结果分析 1)、仿真环境和各参量设置 在MATLAB7 上用软件仿真,仿真条件: (1) 高斯白噪声的产生 利用MATLAB 的库函数randn 产生均值为零,方差为1的高斯白噪声。为了观察不同的步长和阶数对系统性能的影响,必要时可以设定“种子值”产生相同的输入序列。 (2) 待辨识系统对输入的期待响应 由待辨识系统的传递函数可以写出它的差分方程形式为

常见的信号处理滤波方法

低通滤波:又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC 低通滤波器的功能。 适用范围:单个信号,有高频干扰信号。 一阶低通滤波的算法公式为: Y(n)X(n)(1)Y(n 1)αα=+-- 式中: α是滤波系数;X(n)是本次采样值;Y(n 1)-是上次滤波输出值;Y(n)是本次滤波输出值。 滤波效果1: 红色线是滤波前数据(matlab 中生成的正弦波加高斯白噪声信号) 黄色线是滤波后结果。 滤波效果2:

matlab中函数,相当于一阶滤波,蓝色是原始数据(GPS采集到的x(北)方向数据,单位m),红色是滤波结果。 一阶滤波算法的不足: 一阶滤波无法完美地兼顾灵敏度和平稳度。有时,我们只能寻找一个平衡,在可接受的灵敏度范围内取得尽可能好的平稳度。

互补滤波:适用于两种传感器进行融合的场合。必须是一种传感器高频特性好(动态响应好但有累积误差,比如陀螺仪。),另一传感器低频特性好(动态响应差但是没有累积误差,比如加速度计)。他们在频域上互补,所以进行互补滤波融合可以提高测量精度和系统动态性能。 应用:陀螺仪数据和加速度计数据的融合。 互补滤波的算法公式为: 1122Y(n)X (n)(X (n)Y(n 1))αα+=+-- 式中:1α和2α是滤波系数;1X (n)和2X (n)是本次采样值;Y(n 1)-是上次滤 波输出值;Y(n)是本次滤波输出值。 滤波效果 (测试数据): 蓝色是陀螺仪 信号,红色是加 速度计信号,黄 色是滤波后的 角度。

. 互补滤波实际效果: .

卡尔曼滤波:卡尔曼滤波器是一个“optimal recursive data processing algorithm (最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测。 首先,用于测量的系统必须是线性的。 (k)(k 1)(k)(k)X AX BU w =-++ (k)(k)(k)Z HX v =+ (k)X 是系统k 时刻的状态,(k)U 是系统k 时刻的控制量。(k)Z 是系统k 时 刻的测量值。A 和B 为系统参数,(k)w 和(k)v 分别表示过程和测量的噪声,H 是测量系统参数。 在进行卡尔曼滤波时: 首先进行先验预测: (k 1|k)(k |k)(k)(k)X AX BU w +=++ 计算先验预测方差: '(k 1|k)(k |k)(k)P AP A Q +=+ 计算增益矩阵: (k 1)(k 1|k)'/((k 1|k)'(k 1))Kg P H HP H R +=++++ 后验估计值: (k 1|k 1)(k 1|k)(k 1)(Z(k 1)(k 1|k))X X Kg HX ++=++++-+ 后验预测方差: (k 1|k 1)(1(k 1))(k 1|k)P Kg H P ++=-++ 其中,(k)Q 是系统过程激励噪声协方差,(k)R 是测量噪声协方差。 举例说明: (下文中加粗的是专有名词,需要理解) 预测小车的位置和速度的例子(博客+自己理解):

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案) 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5 .1)5()0(======h h h h h h ,其幅 度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 一、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

自适应信号处理最速下降法实验

自适应信号处理最速下降法实验 一 实验目的 考察最速下降法应用于预测器的瞬态特性。通过保持特征值扩散度不变,而改变步长参数,观察过阻尼和欠阻尼两种情况下()1v n 和()2v n 以及)(1n ω和 )(2n ω随n 改变而改变的过程。 二 实验要求 固定特征值扩散度()10R χ=,令步长参数μ分别为0.3和1.0,1 1.1955a =-, 20.95a =,1 1.818λ=,20.182 λ=,2m in 0.0322J σ==,观察()1v n 和()2v n 以及 ()1n ω和()2n ω随n 改变而变化的情况。 三 实验过程 首先让步长参数为0.3,得到过阻尼情况下()1v n 和()2v n 以及()1n ω和()2n ω随n 改变而变化的曲线。如下图所示: 图 1:步长参数0.3μ=过阻尼情况 图中曲线中的同心椭圆从内到外依次对应n=0,1,2,3……的情况,下同。

图 2:步长参数0.3μ=过阻尼情况 再让步长参数为1.0,得到欠阻尼情况下()1v n 和()2v n 以及()1n ω和()2n ω随n 改变而变化的曲线。如下图所示: 图 3:步长参数 1.0μ=欠阻尼情况

图 4:步长参数 1.0μ=欠阻尼情况 四 实验结果和分析 通过观察上述曲线,可得到如下结论: 1 最速下降法的瞬态特性对步长参数的变化是高度敏感的。而且当步长μ较小时,最速下降法的瞬态特性是过阻尼的,即连接点V (0),V (1),V (2)…所组成的轨迹沿着一条连续的路径;当步长μ达到或接近最大值max 2max λμ=时,最 速下降法的瞬态特性是欠阻尼的,即轨迹显现振荡现象。 2上面的实验验证了当max 2 0λμ< <时,根据式k mse k μλτ21,≈ 可得步长参 数μ越小,最速下降法中每一个自然模式的衰减速率越慢。且当max 2max λμ=时,出现欠阻尼现象,如果μ再大,则算法发散。 3 对于固定的()J n ,()()12,v n v n ????随n 变动的轨迹正交于()J n 固定时 ()()12,v n v n ????的轨迹,这也适用于()J n 固定时()()12,n n ωω????的轨迹。

信号处理知识点总结

第一章信号 1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体 2.信号的特性:时间特性,频率特性 3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号 若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号 4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的 5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限 6.信号的频谱有两类:幅度谱,相位谱 7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析 第二章连续信号的频域分析 1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数 2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位 4.周期信号频谱的特点:离散性,谐波性,收敛性 5.周期信号由无穷多个余弦分量组成 周期信号幅频谱线的大小表示谐波分量的幅值 相频谱线大小表示谐波分量的相位 6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和 7.非周期信号可看成周期趋于无穷大的周期信号 8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少 9.非周期信号频谱的特点:非周期信号也可以进行正交变换; 非周期信号完备正交函数集是一个无限密集的连续函数集; 非周期信号的频谱是连续的; 非周期信号可以用其自身的积分表示 10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号 11.周期信号的傅里叶变换:周期信号:一个周期绝对可积à傅里叶级数à离散谱 非周期信号:无限区间绝对可积à傅里叶变换à连续谱 12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合 脉冲函数的位置:ω=nω0 , n=0,±1,±2, ….. 脉冲函数的强度:傅里叶复指数系数的2π倍 周期信号的傅立叶变换也是离散的; 谱线间隔与傅里叶级数谱线间隔相同 13.信号的持续时间与信号占有频带成反比 14.信号在时域的翻转,对应信号在频域的翻转 15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

(完整版)数字信号处理试卷及答案

江 苏 大 学 试 题 课程名称 数字信号处理 开课学院 使用班级 考试日期

江苏大学试题第2A页

江苏大学试题第3A 页

江苏大学试题第页

一、填空题:(每空1分,共18分) 8、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 9、 双边序列z 变换的收敛域形状为 圆环或空集 。 10、 某序列的DFT 表达式为∑-== 10 )()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N , 变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 11、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值4)0(=h ; 终值)(∞h 不存在 。 12、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长 序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 13、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换 关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之 间的映射变换关系为)2tan(2ωT = Ω或)2 arctan(2T Ω=ω。 当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,

自适应信号处理

自适应信号处理-唐正必马长芳科学出版社 赵春晖哈尔滨工程大学出版社 本书全面系统地阐述了自适应信号处理的理论及其应用,包括确定性信号与随机过程(平稳与非平稳信号)滤波检测理论,不用训练序列的本身自适应的盲信号处理理论,从一维到多维、线性到非线性、经典自适应到神经智能自适应等近代信号处理。它将信息论、时间序列分析、系统辨识、谱 估计理论、高阶谱理论、优化理论、进化计算,以及神经网络理论等学科知识综合而成一体。 本书共十章,内容有自适应滤波基本原理、自适应LMS滤波器、自适应RLS滤波器、自适应格型滤波器、自适应递归滤波器、自适应谱线增强与谱估计、自适应噪声干扰抵消器、自适应均衡器、自适应阵列处理与波束形成,以及自适应神经信息处理。对于盲信号处理的理论与方法,将分散在最后三章中论述。 本书取材新颖,内容丰富;叙述深入浅出,系统性强,概念清楚。它总结了自适应信号处理的最新成果,其中包括作者在该领域内所取得的科研成果,是一部理论联系实际的专业理论专著。可作为信息与通信、雷达、声纳、自动控制、生物医学工程等专业的研究生的教材或主要参考书,也可供广大科研人员阅读。 第1章绪论 1.1 自适应滤波的基本概念 1.2 自适应信号处理的发展过程 1.3 自适应信号处理的应用 第2章维纳滤波 2.1 问题的提出 2.2 离散形式维纳滤波器的解 2.3 离散形式维纳滤波器的性质 2.4 横向滤波器的维纳解 第3章最小均方自适应算法 3.1 最陡下降法 3.2 牛顿法 3.3 LMS算法 3.4 LMS牛顿算法 第4章改进型最小均方自适应算法 4.1 归一化LMS算法 4.2 块LMS算法 4.3 快速块LMS算法 第5章最小均方误差线性预测及自适应格型算法 5.1 最小均方误差线性预测 5.2 Lev ins on-Durbi n算法 5.3 格型滤波器 5.4 最小均方误差自适应格型算法 第6章线性最小二乘滤波 6.1 问题的提出 6.2 线性最小二乘滤波的正则方程 6.3 线性最小二乘滤波的性能 6.4 线性最小二乘滤波的向量空间法分析 第7章最小二乘横向滤波自适应算法 7.1 递归最小二乘算法 7.2 R LS算法的收敛性 7.3 R LS算法与LMS算法的比较

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

数字信号处理试卷大全..

北京信息科技大学 2010 ~2011 学年第一学期 《数字信号处理》课程期末考试试卷(A) 一、填空题(本题满分30分,共含4道小题,每空2分) 1.两个有限长序列x1(n),0≤n≤33和x2(n),0≤n≤36,做线性卷积 后结果的长度是,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至为线性卷积结果。 W的、和三个固有特性来实现2.DFT是利用nk N FFT快速运算的。 3.IIR数字滤波器设计指标一般由、、和等 四项组成。 4.FIR数字滤波器有和两种设计方法,其结构 有、和等多种结构。 二、判断题(本题满分16分,共含8道小题,每小题2分,正 确打√,错误打×) 1.相同的Z变换表达式一定对应相同的时间序列。() 2.Chirp-Z变换的频率采样点数M可以不等于时域采样点数N。() 3.按频率抽取基2 FFT首先将序列x(n)分成奇数序列和偶数序列。() 4.冲激响应不变法不适于设计数字带阻滤波器。() 5.双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。() 6.巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等

波纹特性。( ) 7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相 位。( ) 8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于 FIR 阶数。( ) 三、 综合题(本题满分18分,每小问6分) 若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=? 2) 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列g(n)=? 3) 若y(n) =x(n)⑨x(n),求y(n)=? 四、 IIR 滤波器设计(本题满分20分,每小问5分) 设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。 1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。 2. 试用上述指标设计一个二阶巴特沃思模拟低通滤波器,求其系 统函数H a (s),并画出其零极点图。 3. 用双线性变换法将H a (s)转换为数字系统的系统函数H(z)。 4. 画出此数字滤波器的典范型结构流图。 五、 FIR 滤波器设计(本题满分16分,每小问4分)

自适应信号处理课后题答案

自适应信号处理课后题答案 1.求下列R 的特征值设 (1)?? ?? ? ?????=4202630341R (2)?? ? ???-=2)3/exp(6)3/exp(632ππj j R 解:(1)令λ为R 的特征值,则 (2)令λ为R 的特征值: 0)d e t (=-I R λ 0)d e t (=-I R λ 即: 042 2630 34=---λ λ λ 即: 02) 3/exp(6)3/exp(63=---λ ππλ j j 于是R 1的三个特征值分别为: 于是R 2 的两个特征值为: 1451454321-=,+=,λλλ= 5,021==λλ 2.证明任何两个实数的单输入自适应线性组合器的特征向量矩阵均为: ?? ????-= 111121Q 证明:由已知条件知相关矩阵为R : ? ? ? ???=a b b a R 则R 的特征值为:b a b a -=+=21,λλ 当b a +=1λ时,??? ???--=-b b b b I R λ,则特征向量为:]1,1[11q x = 当b a -=2λ时,? ? ? ???=-b b b b I R λ,则特征向量为:]1,1[22-=q x 则特征向量为: ?? ? ???-=111121Q 3.如图3.1所示,若自适应系统的输入和期待响应分别为:

(1))6/2cos(],6/)1(2sin[),6/2sin(10k d k x k x k k k πππ=-== (2)6/)]5.1(2[]6/)2(2[]6)1(2[1)6/2(04,,2--+-=+==k j k k j k j k k j k e d e e x e x ππππ 试计算最佳权向量和最小均方误差输出,并说明在两种情况下的自适应系统有什么不同? 解:(1)由题中条件知: 5.0][2 0=k x E 5.0][2 1=k x E [] 25.010=* k k x x E []00=k k x d E 4/3][1-=k k x d E 于是输入相关矩阵为: ??????=5.025.025.05.0R ? ?????-=4/30P 则最优权为:?? ? ???-==* -1547.15774.01 P R W opt 最小均方误差为:3889.0][2 min -=-=opt T k W P d E ζ (2)由题中已知条件知: 4][2 0=k x E 6/26/22 12][ππj j k e e x E -++= 6/308][πj k k e x d E =* 6/6/144][ππj j k k e e x d E -*+= 6/46/21022][ππj j k k e e x x E --*+= 6/46 /21122][ππj j k k e e x x E +=* 于是输入相关矩阵为: ??????++++=---6/26/26/46 /26/46/2222224ππππππj j j j j j e e e e e e R ?? ????+=-6/6 /6 /3448πππj j j e e e P R 的逆不存在, 则最优权为: ??? ? ????-=j c c W o p t 3234 最小均方误差为:0][2 min =-=opt T k W P d E ζ

数字信号处理期末试卷及答案

A 一、选择题(每题3分,共5题) 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20 点 DFT ,得 )(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

相关主题
文本预览
相关文档 最新文档