当前位置:文档之家› 凑微分法

凑微分法

凑微分法
凑微分法

不定积分(含变上限积分)和微分解题方法

不定积分和微分 一、公式 )()(x f dx x f dx d =? 和??+==c x f dx x f dx d dx x f )()()(/ 的应用 注意:)(x f 的不定积分为?+c x F )()(x F 是)(x f 的原函数?)(x f 是)(x F 的导数,即 ? +=c x F dx x f )()(或)()(/x f x F = 1、已知不定积分的值,求被积函数或被积函数中的一部分,利用两边求导处理 已知 ?+=c x F dx x f )())((?,求)(x f 方法:求导得)())((/ x F x f =?,令t x =)(?,则)(1 t x -=?,即))(()(1/x F x f -=? 例1(1)?+=c x dx x f 2 )(,求?-dx x xf )1(2 解:对 ? +=c x dx x f 2)(求导得x x f 2)(=,2222)1(x x f -=- 则c x x dx x x dx x xf +-=-=-??3 2)22()1(2 2 2 2 (2)?+=c x dx x xf arcsin )(,求 ? ) (x f dx 解:对? +=c x dx x xf arcsin )(两边求导得2 11)(x x xf -= ,即2 11)(x x x f -= c x x d x dx x x x f dx +--=---=-=??? 23 2222)1(3 1 )1(1211)( 2、已知导数值,求原函数,利用两边积分的方法处理 已知)())((/ x f x F =?,求)(x F 方法:令t x =)(?,则)(1 t x -=? ,即))(()(//t f t F ?=,故?=dt t f x F ))(()(/? 例2(1)x x f 22 / tan )(sin =,求)(x f 解:令t x =2 sin ,则t t -=1cos 2 ,t t x x x -==1cos sin tan 222

导数、微分、不定积分公式

一、导数的概念及其计算 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0 lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导,或说无导数 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率 x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。 3.常见函数的导出公式. (1)0)(='C (C 为常数) (2)1 )(-?='n n x n x (3)x x cos )(sin =' (4)x x sin )(cos -=' 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),

凑微分法解不定积分(个人用讲义)

凑微分法 一,凑微分法原理 回忆一下,我们导函数的几种表示方法:f′(x) dy/dx df(x)/dx 等等,那么我们对于同一个函数是否就有如下等式:f′(x)= df(x)/dx 再加以变形可得f′(x) dx=df(x)我们把这个式子称之为凑微分法的原理公式。(我自己定义的,别和别人说哦,教科书上没定义) 为了说明这个式子,我们来看几个例子: 例题一:d(2x+1)= dx 解析:由凑微分法原理公式可知,所填处为2x+1的导函数,既2,所以d(2x+1)= 2 d(x) 例题二:d(e^x)= dx 解析:由凑微分法原理公式可知,所填处为e^x的到函数,既e^x,所以d(e^x)= e^x dx 因为做题目的时候,往往是告诉你们e^x dx要你们求d(e^x)。 我再举一个凑微分法的事例: 例题三:1 2dx x = - ? 解析:我们会求解的,其实都是最原始的积分公式有的,如果这题是要我们求1/x我想你们都会吧,但是这里是x-2所以就很麻烦了,那你们就牢记一点,谁可恨,我们就把谁弄到d 后面去。所以我就想到用d(x-2),根据凑微分法原理公式可知d(x-2)=1*d(x),所以我们可以将这题变为d(x-2),如果你们还看不出来,那你们用t来代替x-2,是不是就是你们会解的题目了,最后再把t还原为x-2就好了。 具体的实例就不举了,多操作。 下面我要重点说说,讨厌,这个问题 二,什么函数可以凑微分,什么函数讨厌 什么函数最讨厌,什么函数一看就是要凑微分

我们知道,凑微分其实是把被积函数的一个部分与dx看作一个整体,运用凑积分法原理公式进行替换。所以被积函数可以表示为两个有求导关系的函数时,一般采用凑微分法。 根据已知的不定积分公式我们可以知道: 1三角函数求导仍为三角函数2反三角函数求导为有理函数3幂函数求导认为幂函数 4对数函数求导为指数幂为-1的幂函数5幂函数求导仍为幂函数所以,当我们发现一个大的函数是由上述关系中的一种构成的,那么我们就会把求导为的那个函数拿去d一下,然后与原来的式子进行比较,缺什么,补什么,有的时候,甚至要进行多次的凑微分,但是不要怕,一步步往下做一定可以。 最后给你们一个提醒:最容易被扔到d后面的函数有e为底的指数函数,1/根号x。而最不能扔的,就是把对数函数,反三角函数想方法扔到d后面去,因为你们想想,什么函数求导会等于对数函数和反三角函数啊对吧。

定积分与微分基本定理

定积分与微积分基本定理 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义. ● 直观了解微积分基本定理的含义,并能用定理计算简单的定积分. ● 应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体验定积分的价值. 重点难点: ● 重点:正确计算定积分,利用定积分求面积. ● 难点:定积分的概念,将实际问题化归为定积分问题. 学习策略: ● 运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念. ● 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数. ● 求导运算与求原函数运算互为逆运算. 二、学习与应用 常见基本函数的导数公式 (1)()f x C =(C 为常数),则'()f x = (2)()n f x x =(n 为有理数),则'()f x = (3)()sin f x x =,则'()f x = (4)()cos f x x =,则'()f x = (5)()x f x e =,则'()f x = (6)()x f x a =,则'()f x = “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(7)()ln f x x =,则'()f x = (8)()log a f x x =,则'()f x = 函数四则运算求导法则 设 ()f x ,()g x 均可导 (1)和差的导数:[()()]'f x g x ±= (2)积的导数:[()()]'f x g x ?= (3)商的导数:()[]'() f x g x = (()0g x ≠) 知识点一:定积分的概念 如果函数)(x f 在区间[,]a b 上连续,用分点b x x x x x a n n =<

不定积分(含变上限积分)和微分解题方法

不定积分和微分 -J 、公式 一 f (x)dx f (x)和 f /(x)dx —f (x)dx dx dx 注意:f(x)的不定积分为F(x) c F(x)是f (x)的原函数 f (x)是F(x)的导数, 即 f(x)dx F (x) c 或 F ,(x) f (x) 1、已知不定积分的值,求被积函数或被积函数中的一部分,禾U 用两边求导处理 已知 f( (x))dx F(x) c ,求 f(x) 2 2 f (x)dx x c ,求 xf (1 x )dx 2、已知导数值,求原函数,利用两边积分的方法处理 已知 F ,( (x)) f(x),求 F(x) 方法:令(x) t ,则 x 1(t),即 F ,(t) f( /(t)),故 F(x) f( /(t))dt / 2 2 方法:求导得f ( (x)) F / (x),令(x) t ,则x 1 (t),即 f(x) / 1 F ( (x)) f (x) c 的应用 解:对 f (x)dx x 2 c 求导得 f(x) 2x , f (1 x 2) 2x 2 2 则 xf (1 x )dx x(2 2x 2)dx x 2 咚 c (2) xf (x)dx dx arcsinx c ,求 --------- f(x) 解:对 xf (x)dx arcsinx c 两边求导得xf (x) _1_ 一1一X 2 ,即 f(x) _1_ X 2 dx x 1 m 2 1 x 2d(1 "I 3 x 2)2 c

例 2 (1) f (sin x) tan x ,求f (x)

?2 222 sin x 解:令 sin x t ,贝y cos t 1 t , tan x — cos x (2)已知 f /( x) x[ f /(x) 1],求 f (x) 解:令In x t 得x 即 f /(t) & 两边积分的 f(t) &dt t In |t 解:令 x t ,则上式为f '(t) t[f /( t) 1],即 f /(x) x[f /( x) 1] 由上面两式得f /(x) 两边积分得f(x) 2x x 2 1 2x ~~2~ x In (x 2 1) c (3 )设 f (u)在 内可导,且 f(0) f (In x) ,求 f(u) f /(t) 0 e t e t 1 即 f /(t) 1 t e 2 当 t 0 时,fit) 两边积分得 f(t) dt C 1 当 t 0 时,f /(t) t e 2,两边积分得 f(t) t e^dt t 2e 2 C 2 又因为设f(t)在 内可导,所以 f(t)在 内连续 t 而 lim f (t) lim (2e 2 t 0 t 0 C 2) 2 c 2, lim t 0 f(t) 阿(t

2凑微分法

第二讲 Ⅰ 授课题目(不定积分): §5.2 凑微分法 Ⅱ 教学目的与要求: 熟练掌握基本的不定积分公式,熟悉“凑微分法”与“变量代换法” 的一般原则。 Ⅲ 教学重点与难点: 重点:凑微分法,变量代换法。 难点:凑微分法, 变量代换法。 Ⅳ 讲授内容: 一、 凑微分法 利用基本性质和基本积分公式,可以解决一些较为简单的函数的积分问题。但是,很多函数是经过复合而成的,无法直接利用公式。来看下面几个例子。 例1 求dx x ?2cos 这个不定积分不直接在表.5.1中,因为x 2cos 不是x 2sin 的导数。 解 因为x x 2cos 2)2(sin =' 而x x 2cos )2sin 21 (=', 所以c x xdx +=?2sin 2 12cos 。 例2 求dx x ?)4sin(3 解 ) 4sin(3))4cos(4 3() 4sin())4cos(4 1()4sin(4])4[cos(x x x x x x =- ?='-?-=' 按照等价命题 c x dx x +-=?)4cos(4 3)4sin(3 例3 求dt t ?+12 这样想:) (12+=' t ,联想到 )(u = ' ,再想到 u u u u u u = '?= = '=')3 2( 2 32 3)()(3 23 23 3 如果12+=t u

1 2))12(3 1( 1 22)12(12))12(3 2( 3 3 += '+?+='+?+='+t t t t t t 最后一个等式正是我们想要的。利用等价命题,就可以得到 c t dt t ++= +? 3 )12(3 112。 在以上的例子中,基本想法是找F 使F f '=具体做法是利用链法则,按f 的具体情况凑出了F 。这种计算不定积分的方法叫做凑微分法,或叫换元法(integration by substitution ) 例4 求dx x x ?+212 如果我们能想到)1(22'+=x x 和),1()(,)(2 x x g u u u f +=== 那么这个不定积分就可以看作? ?'=+dx x g x g f dx x x )())((122 如果F 是f 的反导数,根据链法则 )())(())((x g x g f x g F dx d '= 所以,将u 看作是 2 1x +, 由于 c u du u du u f += =?? 23 3 2)( 就可以得到 c x dx x x ++= +?32 2 2 )1(3 212 还可以通过求导数来验证结果是正确的。 把上面的思路理清楚:如果F 是f 的反导数,而)(x g u =是某个可导函数,那么根据链法则 或者 ?? = +=du u f c u F dx dx du u f )()()(, 例5 求? +dx x x 2 32 dx du u f dx du u F u F dx d )()()(='=

定积分与微积分含答案

定积分与微积分基本定理 基础热身 1.已知f (x )为偶函数,且 ??0 6f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2. 设f(x)=??? x 2,x ∈[0,1], 1 x ,x ∈ 1,e ] (其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) B .2 C .1 3.若a =??0 2x 2d x ,b =??0 2x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关 系是( ) A .a

8.若??0 k (2x -3x 2)d x =0,则k 等于( ) A .0 B .1 C .0或1 D .以上均不对 9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( ) A . J B . J C . J D . J 10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函 数f K (x )=? ?? ?? K ,f x ≤K , f x ,f x >K , 则当函数f (x )=1 x ,K =1时,定积分??2 1 4f K (x)d x 的值为________. | (x -x 2)d x =________. 12. ∫π 20(sin x +a cos x)d x =2,则实数a =________. 13.由抛物线y 2 =2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________. 14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围 成的区域(阴影)面积为27 4,求f(x)的解析式. 图K 15-2 15.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t(0

不定积分的例题分析及解法[1]

不定积分的例题分析及解法 这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ?=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将?υud 转化成?du υ,这种转化应是朝有利于求积分的方向转化。对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。 应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如 dx x x ? sin ;dx e x ?-2 ;dx x ? ln 1;? -x k dx 2 2 sin 1(其中10<

高等数学导数、微分、不定积分公式

一、基本导数公式: ()()()()()()()()()()()()( )( )()' '1 ' ' ' ' ' ' '2 ' 2 ' ' '' ' 2 1.2.3.ln 4.1 5.log ln 1 6.ln 7.sin cos 8.cos sin 9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1 13.arcsin 114.arccos 115.arctan 11n n x x x x a kx k x nx a a a e e x x a x x x x x x x x x x x x x x x x x x x -===== = ==-==-==-= =- = +()' 2 16.a cot 1rc x =- + 二、基本微分公式: ()()()()()()()()()()()()( )()12 21.2.3.ln 4.1 5.ln 1 6.log ln 7.sin cos 8.cos sin 9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1 13.arcsin 14.arccos n n x x x x a d kx k d x nx dx d a a adx d e e dx d x dx x d x dx x a d x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dx d x -========-==-==-= ()()2 2 1 1 15.arctan 11 16.cot 1dx d x dx x d arc x dx x =-=+=-+

不定积分换元法例题

【不定积分的第一类换元法】 已知 ()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????= =? ?? 【凑微分】 ()()f u du F u C = =+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ? 的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????= =??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==? ??()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+?

2凑微分法

第二讲 Ⅰ 授课题目(不定积分): §5.2 凑微分法 Ⅱ 教学目的与要求: 熟练掌握基本的不定积分公式,熟悉“凑微分法”与“变量代换法” 的一般原 则。 Ⅲ 教学重点与难点: 重点:凑微分法,变量代换法。 难点:凑微分法, 变量代换法。 Ⅳ 讲授内容: 一、 凑微分法 利用基本性质和基本积分公式,可以解决一些较为简单的函数的积分问题。但是,很多函数是经过复合而成的,无法直接利用公式。来看下面几个例子。 例1 求dx x ?2cos 这个不定积分不直接在表.5.1中,因为x 2cos 不是x 2sin 的导数。 解 因为x x 2cos 2)2(sin =' 而x x 2cos )2sin 2 1 (=', 所以c x xdx += ? 2sin 2 12cos 。 例2 求dx x ?)4sin(3 解 )4sin(3))4cos(4 3()4sin())4cos(41()4sin(4])4[cos(x x x x x x =-?='-?-=' 按照等价命题 c x dx x +-=?)4cos(43)4sin(3 例3 求dt t ?+12 这样想:)( 12+='t ,联想到 )(u =' ,再想到 u u u u u u ='?=='=')3 2(2323)()(32323 3 如果12+=t u

12))12(3 1(122)12(12))12(32(33+='+?+='+?+='+t t t t t t 最后一个等式正是我们想要的。利用等价命题,就可以得到 c t dt t ++=+? 3)12(3 112。 在以上的例子中,基本想法是找F 使F f '=具体做法是利用链法则,按f 的具体情况凑出了F 。这种计算不定积分的方法叫做凑微分法,或叫换元法(integration by substitution ) 例4 求dx x x ? +212 如果我们能想到)1(22'+=x x 和),1()(,)(2x x g u u u f +=== 那么这个不定积分就可以看作??'=+dx x g x g f dx x x )())((122 如果F 是f 的反导数,根据链法则 )())(())((x g x g f x g F dx d '= 所以,将u 看作是 21x +, 由于 c u du u du u f +==??23 32)( 就可以得到 c x dx x x ++=+?3222)1(3 212 还可以通过求导数来验证结果是正确的。 把上面的思路理清楚:如果F 是f 的反导数,而)(x g u =是某个可导函数,那么根据链法则 或者 ??=+=du u f c u F dx dx du u f )()() (, 例5 求?+dx x x 2 32 dx du u f dx du u F u F dx d )()()(='=

凑微分法解不定积分

一,凑微分法原理 回忆一下,我们导函数的几种表示方法:f′(x) dy/dx df(x)/dx 等等,那么我们对于同一个函数是否就有如下等式:f′(x)= df(x)/dx 再加以变形可得f′(x) dx=df(x)我们把这个式子称之为凑微分法的原理公式。(我自己定义的,别和别人说哦,教科书上没定义)为了说明这个式子,我们来看几个例子: 例题一:d(2x+1)= dx 解析:由凑微分法原理公式可知,所填处为2x+1的导函数,既2,所以d(2x+1)= 2 d(x)例题二:d(e^x)= dx 解析:由凑微分法原理公式可知,所填处为e^x的到函数,既e^x,所以d(e^x)= e^x dx 因为做题目的时候,往往是告诉你们e^x dx要你们求d(e^x)。 我再举一个凑微分法的事例: 例题三: 1 2 dx x = - ? 解析:我们会求解的,其实都是最原始的积分公式有的,如果这题是要我们求1/x我想你们都会吧,但是这里是x-2所以就很麻烦了,那你们就牢记一点,谁可恨,我们就把谁弄到d 后面去。所以我就想到用d(x-2),根据凑微分法原理公式可知d(x-2)=1*d(x),所以我们可以将这题变为 d(x-2),如果你们还看不出来,那你们用t来代替x-2,是不是就是你们会解的题目了,最后再把t还原为x-2就好了。 具体的实例就不举了,多操作。 下面我要重点说说,讨厌,这个问题 二,什么函数可以凑微分,什么函数讨厌 什么函数最讨厌,什么函数一看就是要凑微分 我们知道,凑微分其实是把被积函数的一个部分与dx看作一个整体,运用凑积分法原理公式进行替换。所以被积函数可以表示为两个有求导关系的函数时,一般采用凑微分法。 根据已知的不定积分公式我们可以知道: 1三角函数求导仍为三角函数 2反三角函数求导为有理函数 3幂函数求导认为幂函数 4对数函数求导为指数幂为-1的幂函数 5幂函数求导仍为幂函数 所以,当我们发现一个大的函数是由上述关系中的一种构成的,那么我们就会把求导为的那个函数拿去d一下,然后与原来的式子进行比较,缺什么,补什么,有的时候,甚至要进行多次的凑微分,但是不要怕,一步步往下做一定可以。 最后给你们一个提醒:最容易被扔到d后面的函数有e为底的指数函数,1/根号x。而最不能扔的,就是把对数函数,反三角函数想方法扔到d后面去,因为你们想想,什么函数求导会等于对数函数和反三角函数啊对吧。

不定积分解题方法及技巧总结

不定积分解题方法及技巧总结 1、利用基本公式。(这就不多说了~) 2、第一类换元法。(凑微分)设f(μ)具有原函数F(μ)。则其中可微。用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例 1、例2:例1: 【解】 例2: 【解】 3、第二类换元法:设是单调、可导的函数,并且具有原函数,则有换元公式第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种:(7)当根号内出现单项式或多项式时一般用代去根号。 但当根号内出现高次幂时可能保留根号,(7)当根号内出现单项式或多项式时一般用代去根号。 但当根号内出现高次幂时可能保留根号, 4、分部积分法、公式:分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取

时,通常基于以下两点考虑:(1)降低多项式部分的系数(2)简化被积函数的类型举两个例子吧~!例3: 【解】 观察被积函数,选取变换,则例4: 【解】 上面的例3,降低了多项式系数;例4,简化了被积函数的类型。有时,分部积分会产生循环,最终也可求得不定积分。在中,的选取有下面简单的规律:将以上规律化成一个图就是: (a^xarcsinx)(lnxPm(x)sinx)νμ但是,当时,是无法求解的。对于(3)情况,有两个通用公式:(分部积分法用处多多~在本册杂志的《涉及lnx的不定积分》中,常可以看到分部积分)5 不定积分中三角函数的处理 1、分子分母上下同时加、减、乘、除某三角函数。被积函数上下同乘变形为令,则为 2、只有三角函数时尽量寻找三角函数之间的关系,注意的使用。 三角函数之间都存在着转换关系。被积函数的形式越简单可能题目会越难,适当的使用三角函数之间的转换可以使解题的思路变得清晰。 3、函数的降次①形如积分(m,n为非负整数)当m为奇数时,可令,于是,转化为多项式的积分当n为奇数时,可令,于是,同样转化为多项式的积分。

积分微分知识点及习题和答案(仅供参考)

仅供参考 积分和微分 积分一般分为不定积分、定积分和微积分三种 1、不定积分 设F(x) 是函数f(x) 的一个原函数,我们把函数f(x) 的所有原函数F(x)+C (C 为任意常数)叫做函数f(x) 的不定积分. 记作∫f(x)dx其. 中∫叫做积分号, f(x) 叫做被积函数, x 叫做积量,f(x)dx 叫做被积式,C 叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分. 由定义可知: 求函数f(x) 的不定积分,就是要求出f(x) 的所有的原函数,由原函数的性质可知,只要求出函数f(x) 的一个原函数,再加上任意的常数C,就得到函数f(x) 的不定积分. 也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数. 2、定积分 众所周知,微积分的两大部分是微分与积分.微分实际上是求一函数的导数,而积分是已 知一函数的导数,求这一函数.所以,微分与积分互为逆运算. 实际上,积分还可以分为两部分.第一种,是单纯的积分,也就是已知导数求原函数,而若 F(x) 的导数是f(x), 那么F(x)+C (C 是常数)的导数也是f(x), 也就是说,把f(x) 积分,不一定能得到F(x), 因为F(x)+C 的导数也是f(x),C 是无穷无尽的常数,所以f(x) 积分的结果有无数个, 是不确定的,我们一律用F(x)+C 代替,这就称为不定积分. 而相对于不定积分,就是定积分. 所谓定积分,其形式为∫f(x) dx 上(限 a 写在∫上面,下限 b 写在∫下面).之所以称其为定积分, 是因为它积分后得出的值是确定的,是一个数,而不是一个函数. 定积分的正式名称是黎曼积分,详见黎曼积分.用自己的话来说,就是把直角坐标系上的 函数的图象用平行于y 轴的直线把其分割成无数个矩形,然后把某个区间[a,b] 上的矩形累加 起来,所得到的就是这个函数的图象在区间[a,b] 的面积.实际上,定积分的上下限就是区间的两 个端点a、b. 我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函 数的原函数.它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢? 定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系.把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论, 可以转化为计算积分.这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F'(x)=f(x) 那么∫f(x) dx(上限 a 下限b)=F(a)-F(b) 牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下 限在原函数的值的差. 正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数 学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理. 3、微积分 积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,积分作用不仅如此, 它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质 决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一 函数.其中:[F(x) + C]' = f(x) 。一个函数在区间[a,b] 上的定积分,是一个实数.它等于该函数的一个原函数在 b 的值减去在 a 的值. 几何意义: 设Δx是曲线y = f(x) 上的点M 的在横坐标上的增量, Δy是曲线在点M 对应Δx在纵坐标上的增量,dy 是曲线在点M 的切线对应Δx在纵坐标上的增量.当| Δx很| 小时,| Δ-y dy|比| Δy|

不定积分第一类换元法

不定积分第一类换元法(凑微分法)
一、 方法简介
设 f (x) 具有原函数 F(u) ,即 F'(u) f (u) , f (u)du F(u) C ,如果U 是
中间变量, u (x) ,且设(x) 可微,那么根据复合函数微分法,有
dF[(x)] f [(x)]'(x)dx 从而根据不定积分的定义得
则有定理:
f [(x)]'(x)dx F[(x)] C [ f (u)du]u(x) .
设 f (u) 具有原函数, u (x) 可导,则有换元公式
f [(x)]'(x)dx [ f (u)du]u(x)
由此定理可见,虽然
f
[ ( x)] ' ( x)dx
是一个整体的记号,但如用导数记号
dy dx
中的 dx 及 dy 可看作微分,被积表达式中的 dx 也可当做变量 x 的微分来对待,从
而微分等式'(x)dx du 可以方便地应用到被积表达式中。 几大类常见的凑微分形式:
○1
f
(ax
b)dx
1 a
f
(ax
b)d (ax
b)
(a 0) ;
○2 f (sin x) cosxdx f (sin x)d sin x , f (cosx)sin xdx f (cosx)d cosx ,
f
(tan x)
dx cos2
x
f
(tan x)d
tan
x,
f
(c ot x)
dx sin 2
x
f
(c ot x)d
cot x ;
○3
f
(ln
x)
1 x
dx
f
(ln
x)d
ln
x,
f
(ex )exdx
f
(ex )dex

○ 4
f (xn )xn1dx 1 f (xn )dxn (n 0) , n
f
(1) x
dx x2
f (1)d(1) xx

f(
x)
dx x
2
f
(
x )d (
x);
○5 f (arcsin x)
dx 1 x2
f (arcsin x)d arcsin x ;

高考理科数学定积分与微积分基本

定积分与微积分基本定理 [时间:45分钟 分值:100分] 基础热身 1.[2011·郑州一中模拟] 已知f (x )为偶函数,且 ??0 6 f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2.[2011·福州模拟] 设f(x)=???? ? x 2,x ∈[0,1],1x ,x ∈(1,e ](其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) A .43 B .2 C .1 D .23 3.[2011·临沂模拟] 若a =??02x 2d x ,b =??02x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系 是( ) A .a

相关主题
文本预览
相关文档 最新文档