当前位置:文档之家› 凑微分法解不定积分(个人用讲义)

凑微分法解不定积分(个人用讲义)

凑微分法解不定积分(个人用讲义)
凑微分法解不定积分(个人用讲义)

凑微分法

一,凑微分法原理

回忆一下,我们导函数的几种表示方法:f′(x) dy/dx df(x)/dx 等等,那么我们对于同一个函数是否就有如下等式:f′(x)= df(x)/dx 再加以变形可得f′(x) dx=df(x)我们把这个式子称之为凑微分法的原理公式。(我自己定义的,别和别人说哦,教科书上没定义)

为了说明这个式子,我们来看几个例子:

例题一:d(2x+1)= dx

解析:由凑微分法原理公式可知,所填处为2x+1的导函数,既2,所以d(2x+1)= 2 d(x)

例题二:d(e^x)= dx

解析:由凑微分法原理公式可知,所填处为e^x的到函数,既e^x,所以d(e^x)= e^x dx

因为做题目的时候,往往是告诉你们e^x dx要你们求d(e^x)。

我再举一个凑微分法的事例:

例题三:

1

2

dx x

=

-

?

解析:我们会求解的,其实都是最原始的积分公式有的,如果这题是要我们求1/x我想你们都会吧,但是这里是x-2所以就很麻烦了,那你们就牢记一点,谁可恨,我们就把谁弄到d 后面去。所以我就想到用d(x-2),根据凑微分法原理公式可知d(x-2)=1*d(x),所以我们可以将

这题变为 d(x-2),如果你们还看不出来,那你们用t来代替x-2,是不是就是你们

会解的题目了,最后再把t还原为x-2就好了。

具体的实例就不举了,多操作。

下面我要重点说说,讨厌,这个问题

二,什么函数可以凑微分,什么函数讨厌

什么函数最讨厌,什么函数一看就是要凑微分

我们知道,凑微分其实是把被积函数的一个部分与dx看作一个整体,运用凑积分法原理公式进行替换。所以被积函数可以表示为两个有求导关系的函数时,一般采用凑微分法。

根据已知的不定积分公式我们可以知道:

1三角函数求导仍为三角函数 2反三角函数求导为有理函数 3幂函数求导认为幂函数

4对数函数求导为指数幂为-1的幂函数 5幂函数求导仍为幂函数

所以,当我们发现一个大的函数是由上述关系中的一种构成的,那么我们就会把求导为的那个函数拿去d一下,然后与原来的式子进行比较,缺什么,补什么,有的时候,甚至要进行多次的凑微分,但是不要怕,一步步往下做一定可以。

最后给你们一个提醒:最容易被扔到d后面的函数有e为底的指数函数,1/根号x。而最不能扔的,就是把对数函数,反三角函数想方法扔到d后面去,因为你们想想,什么函数求导会等于对数函数和反三角函数啊对吧。

第六章 定积分的应用

第六章 定积分的应用 第一节 定积分的元素法 教学目的:理解和掌握用定积分去解决实际问题的思想方法即定积分的元素法 教学重点:元素法的思想 教学难点:元素法的正确运用 教学内容: 一、 再论曲边梯形面积计算 设 f x ()在区间],[b a 上连续,且0)(≥x f ,求以曲线y f x =()为曲边,底为] ,[b a 的曲边梯形的面积A 。 1.化整为零 用任意一组分点 b x x x x x a n i i =<<<<<<=- 110 将区间分成 n 个小区间[,]x x i i -1,其长度为 ),,2,1(1n i x x x i i i =-=?- 并记 },,,m ax {21n x x x ???= λ 相应地,曲边梯形被划分成 n 个窄曲边梯形,第 i 个窄曲边梯形的面积记为 n i A i ,,2,1, =?。 于是 ∑=?= n i i A A 1 2.以不变高代替变高,以矩形代替曲边梯形,给出“零”的近似值

),,2,1(],[)(1n i x x x f A i i i i i i =∈??≈?-ξξ 3.积零为整,给出“整”的近似值 ∑=?≈ n i i i x f A 1 )(ξ 4.取极限,使近似值向精确值转化 ?∑=?==→b a n i i i dx x f x f A )()(lim 1 ξλ 上述做法蕴含有如下两个实质性的问题: (1)若将],[b a 分成部分区间),,2,1(],[1n i x x i i =-,则 A 相应地分成部分量 ),,2,1(n i A i =?,而 ∑=?=n i i A A 1 这表明:所求量A 对于区间],[b a 具有可加性。 (2)用i i x f ?)(ξ近似i A ?,误差应是i x ?的高阶无穷小。 只有这样,和式 ∑=?n i i i x f 1 )(ξ的极限方才是精确值A 。故关键是确定 ))()(()(i i i i i i i x o x f A x f A ?=?-??≈?ξξ 通过对求曲边梯形面积问题的回顾、分析、提炼, 我们可以给出用定积分计算某个量的条件与步骤。 二、元素法 1.能用定积分计算的量U ,应满足下列三个条件 (1) U 与变量x 的变化区间],[b a 有关; (2) U 对于区间],[b a 具有可加性; (3) U 部分量i U ?可近似地表示成i i x f ??)(ξ。 2.写出计算U 的定积分表达式步骤

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

(完整版)定积分典型例题精讲

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

不定积分换元法例题1

__________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+? 【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-?? 3(2)cos cos cot sin sin sin sin xdx x xdx dx d x x x x = ==? ??? sin ln |si ln |sin |n |sin x x d C x C x ==+=+? 【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==?=? 4(1) 1()11d dx a x a x a d x x a x =?=?++++??? ln |1(|)ln ||d C a x a x a x a x C ++=?=+=+++? 【注】()'1,(),()a x d a x dx dx d a x +=+==+?? 4(2) 1()11d dx x a x x x d a a x a =?=?----??? ln |1(|)ln ||d C x a x a x a x a C --=?=+=--+? 【注】()'1,(),()x a d x a dx dx d x a -=-==-?? 4(3) 22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ??- ?--+??? =-+?==- ? -?? ?????

凑微分法解不定积分(个人用讲义)

凑微分法 一,凑微分法原理 回忆一下,我们导函数的几种表示方法:f′(x) dy/dx df(x)/dx 等等,那么我们对于同一个函数是否就有如下等式:f′(x)= df(x)/dx 再加以变形可得f′(x) dx=df(x)我们把这个式子称之为凑微分法的原理公式。(我自己定义的,别和别人说哦,教科书上没定义) 为了说明这个式子,我们来看几个例子: 例题一:d(2x+1)= dx 解析:由凑微分法原理公式可知,所填处为2x+1的导函数,既2,所以d(2x+1)= 2 d(x) 例题二:d(e^x)= dx 解析:由凑微分法原理公式可知,所填处为e^x的到函数,既e^x,所以d(e^x)= e^x dx 因为做题目的时候,往往是告诉你们e^x dx要你们求d(e^x)。 我再举一个凑微分法的事例: 例题三: 1 2 dx x = - ? 解析:我们会求解的,其实都是最原始的积分公式有的,如果这题是要我们求1/x我想你们都会吧,但是这里是x-2所以就很麻烦了,那你们就牢记一点,谁可恨,我们就把谁弄到d 后面去。所以我就想到用d(x-2),根据凑微分法原理公式可知d(x-2)=1*d(x),所以我们可以将 这题变为 d(x-2),如果你们还看不出来,那你们用t来代替x-2,是不是就是你们 会解的题目了,最后再把t还原为x-2就好了。 具体的实例就不举了,多操作。 下面我要重点说说,讨厌,这个问题 二,什么函数可以凑微分,什么函数讨厌 什么函数最讨厌,什么函数一看就是要凑微分 我们知道,凑微分其实是把被积函数的一个部分与dx看作一个整体,运用凑积分法原理公式进行替换。所以被积函数可以表示为两个有求导关系的函数时,一般采用凑微分法。 根据已知的不定积分公式我们可以知道: 1三角函数求导仍为三角函数 2反三角函数求导为有理函数 3幂函数求导认为幂函数 4对数函数求导为指数幂为-1的幂函数 5幂函数求导仍为幂函数 所以,当我们发现一个大的函数是由上述关系中的一种构成的,那么我们就会把求导为的那个函数拿去d一下,然后与原来的式子进行比较,缺什么,补什么,有的时候,甚至要进行多次的凑微分,但是不要怕,一步步往下做一定可以。 最后给你们一个提醒:最容易被扔到d后面的函数有e为底的指数函数,1/根号x。而最不能扔的,就是把对数函数,反三角函数想方法扔到d后面去,因为你们想想,什么函数求导会等于对数函数和反三角函数啊对吧。

不定积分第一类换元法

不定积分第一类换元法(凑微分法) 一、 方法简介 设)(x f 具有原函数)(u F ,即)()('u f u F =,C u F du u f +=?)()(,如果U 是中间变量,)(x u ?=,且设)(x ?可微,那么根据复合函数微分法,有 dx x x f x dF )(')]([)]([???= 从而根据不定积分的定义得 ) (] )([)]([)(')]([x u du u f C x F dx x x f ????=??=+=. 则有定理: 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ) (] )([)(')]([x u du u f dx x x f ???=??= 由此定理可见,虽然?dx x x f )(')]([??是一个整体的记号,但如用导数记号 dx dy 中的dx 及dy 可看作微分,被积表达式中的dx 也可当做变量x 的微分来对待,从而微分等式du dx x =)('?可以方便地应用到被积表达式中。 几大类常见的凑微分形式: ○1??++=+)()(1 )(b ax d b ax f a dx b ax f )0(≠a ; ○ 2??=x d x f xdx x f sin )(sin cos )(sin ,??-=x d x f xdx x f cos )(cos sin )(cos ,?? =x d x f x dx x f tan )(tan cos ) (tan 2,x d x f x dx x f cot )(cot sin )(cot 2??-=; ○3??=x d x f dx x x f ln )(ln 1 )(ln ,??=x x x x de e f dx e e f )()(; ○ 4n n n n x d x f n dx x x f ??=-)(1)(1)0(≠n ,??-=)1()1()1(2x d x f x dx x f ,? ?=)()(2) (x d x f x dx x f ; ○ 5??=-x d x f x dx x f arcsin )(arcsin 1)(arcsin 2 ;

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

2凑微分法

第二讲 Ⅰ 授课题目(不定积分): §5.2 凑微分法 Ⅱ 教学目的与要求: 熟练掌握基本的不定积分公式,熟悉“凑微分法”与“变量代换法” 的一般原则。 Ⅲ 教学重点与难点: 重点:凑微分法,变量代换法。 难点:凑微分法, 变量代换法。 Ⅳ 讲授内容: 一、 凑微分法 利用基本性质和基本积分公式,可以解决一些较为简单的函数的积分问题。但是,很多函数是经过复合而成的,无法直接利用公式。来看下面几个例子。 例1 求dx x ?2cos 这个不定积分不直接在表.5.1中,因为x 2cos 不是x 2sin 的导数。 解 因为x x 2cos 2)2(sin =' 而x x 2cos )2sin 21 (=', 所以c x xdx +=?2sin 2 12cos 。 例2 求dx x ?)4sin(3 解 ) 4sin(3))4cos(4 3() 4sin())4cos(4 1()4sin(4])4[cos(x x x x x x =- ?='-?-=' 按照等价命题 c x dx x +-=?)4cos(4 3)4sin(3 例3 求dt t ?+12 这样想:) (12+=' t ,联想到 )(u = ' ,再想到 u u u u u u = '?= = '=')3 2( 2 32 3)()(3 23 23 3 如果12+=t u

1 2))12(3 1( 1 22)12(12))12(3 2( 3 3 += '+?+='+?+='+t t t t t t 最后一个等式正是我们想要的。利用等价命题,就可以得到 c t dt t ++= +? 3 )12(3 112。 在以上的例子中,基本想法是找F 使F f '=具体做法是利用链法则,按f 的具体情况凑出了F 。这种计算不定积分的方法叫做凑微分法,或叫换元法(integration by substitution ) 例4 求dx x x ?+212 如果我们能想到)1(22'+=x x 和),1()(,)(2 x x g u u u f +=== 那么这个不定积分就可以看作? ?'=+dx x g x g f dx x x )())((122 如果F 是f 的反导数,根据链法则 )())(())((x g x g f x g F dx d '= 所以,将u 看作是 2 1x +, 由于 c u du u du u f += =?? 23 3 2)( 就可以得到 c x dx x x ++= +?32 2 2 )1(3 212 还可以通过求导数来验证结果是正确的。 把上面的思路理清楚:如果F 是f 的反导数,而)(x g u =是某个可导函数,那么根据链法则 或者 ?? = +=du u f c u F dx dx du u f )()()(, 例5 求? +dx x x 2 32 dx du u f dx du u F u F dx d )()()(='=

(完整版)不定积分习题与答案

不定积分 (A) 1、求下列不定积分 1)?2 x dx 2) ? x x dx 2 3) dx x ?-2)2 ( 4) dx x x ? +2 2 1 5)??- ? dx x x x 3 2 5 3 2 6) dx x x x ?2 2sin cos 2 cos 7) dx x e x) 3 2(?+ 8) dx x x x ) 1 1( 2 ?- 2、求下列不定积分(第一换元法) 1) dx x ?-3)2 3( 2) ? - 33 2x dx 3) dt t t ?sin 4) ? ) ln(ln ln x x x dx 5)? x x dx sin cos6) ?- +x x e e dx 7) dx x x) cos(2 ? 8) dx x x ? -4 3 1 3 9) dx x x ?3 cos sin 10) dx x x ? - - 2 4 9 1 11)? -1 22x dx 12) dx x ?3 cos 13)?xdx x3 cos 2 sin 14) ?xdx x sec tan3 15) dx x x ? +2 3 916) dx x x ? +2 2sin 4 cos 3 1 17) dx x x ? -2 arccos 2 1 10 18) dx x x x ? +) 1( arctan

3、求下列不定积分(第二换元法) 1) dx x x ? +2 1 1 2) dx x ?sin 3) dx x x ?-4 2 4) ?> - )0 (, 2 2 2 a dx x a x 5)? +3 2)1 (x dx 6) ? +x dx 2 1 7)? - +2 1x x dx 8) ? - +2 1 1x dx 4、求下列不定积分(分部积分法) 1) inxdx xs ? 2) ?xdx arcsin 3)?xdx x ln 2 4) dx x e x ?- 2 sin 2 5)?xdx x arctan 2 6) ?xdx x cos 2 7)?xdx 2 ln 8) dx x x 2 cos2 2 ? 5、求下列不定积分(有理函数积分) 1) dx x x ? +3 3 2)? - + + dx x x x 10 3 3 2 2 3)? +)1 (2x x dx (B) 1、一曲线通过点 )3, (2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的 方程。 2、已知一个函数 ) (x F的导函数为2 1 1 x -,且当1 = x时函数值为 π 2 3 ,试求此函数。

不定积分换元法例题

不定积分换元法例题

【不定积分的第一类换元法】 已知()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????==??? 【凑微分】 ()()f u du F u C ==+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ?的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????==??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==???()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9999(57)(57)(5711 (57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?=+?++???? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1 ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2 x x x d C x C =?=+=+?

不定积分的例题分析及解法[1]

不定积分的例题分析及解法 这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ?=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将?υud 转化成?du υ,这种转化应是朝有利于求积分的方向转化。对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。 应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如 dx x x ? sin ;dx e x ?-2 ;dx x ? ln 1;? -x k dx 2 2 sin 1(其中10<