当前位置:文档之家› 电液比例位置控制系统的研究

电液比例位置控制系统的研究

电液比例位置控制系统的研究
电液比例位置控制系统的研究

电液控制系统方案

:平顶山平煤集团飞行化工 ' 15MW机组调试作业指导书' 汽轮机数字电液控制系统 调试方案 新乡华新电力工程有限公司 2006年7月19日

-中电松H足仝K 批准:审定: 审核: 编写:

-中电 ----------------------------------------------------------------------------------------------------------------------------------- 1 目的 (3) 2 依据 (3) 3. 调试范围及系统简介 (3) 4 调试前的准备 (5) 5 控制装置的功能测试 (5) 6 回路检查及信号传动 (8) 7 与液压系统的联动调试及有关配合试验 (9) 8 系统恢复,系统投运及启动试验 (9) 9 安全注意事项10

-中---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 目的 为了检验电液控制系统的功能,记录制造和现场整定数据,发现并及时消除系统中可能存在的不足,完善控制系统,必须进行静态试验和动态调整。为了规范调试人员的行为,明确参与控制系统改造启动调试各方的职责,提高DEH控制系统的调试质量,使系统如期投入稳定运行,特编制此方案。 2 依据 2.1南京汽轮电机有限公司《DEH-NK系列汽轮机综合控制系统技术说明书》 2.2南京汽轮电机有限公司《CC15- 3.43/0.98/0.49 型15MW抽汽式汽轮机调 节系统说明书》 2.3《汽轮机启动运行说明书》 2.4南京汽轮电机有限公司的其它图纸资料 2.5机组原设计图纸资料 2.6有关合同/协议条款 3 调试范围及系统简介 3.1概况 飞行集团化工有限公司#4汽轮机系南京汽轮电机有限公司生产的CC15-3.43/0.98/0.49 型中温中压冲动式双抽凝汽式汽轮机。DEH电子控制装置采用南京科远控制有限公司的的DEH-NK综合控制系统,装置包括1个控制机柜,一个操作员站。 3.3主要功能: 3.3.1转速控制和程序启动方式 3.3.2功率控制方式 3.3.3主汽压力控制方式 3.3.4阀门试验和阀位限制 3.3.5超速保护功能 3.3.6甩负荷保护 3.3.7超速试验 3.3.8控制回路连锁保护

电液比例阀工作原理 (2)

电液比例阀就是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀与比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感与压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别就是电控先导操作、无线遥控与有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类与形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类就是螺旋插装式比例阀(screwin cartridge proportional valve),另一类就是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀就是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路与成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通与多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也就是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性与更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,就是移动式机械液压系统最基本元件之一,就是能实现方向与流量调节复合阀。电液滑阀式比例多路阀就是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作与负载传感等先进控制手段。它就是工程机械分配阀更新换代产品。 出于制造成本考虑与工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测与纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器与其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温与提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿就是一个很相似概念,都就是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲就是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统就是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。 压力补偿就是提高阀控制性能而采取一种保证措施。将阀口后负载压力引入

自动控制系统位置随动系统课程设计

摘要 随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。 位置随动系统要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性为位置随动系统的主要特征。 本次课程设计研究的是位置随动系统的超前校正,并对其进行分析。 关键词:随动系统超前校正相角裕度

目录 1 位置随动系统原理 (1) 1.1 位置随动系统原理图 (1) 1.2 各部分传递函数 (1) 1.3 位置随动系统结构框图 (4) 1.4 位置随动系统的信号流图 (4) 1.5 相关函数的计算 (4) 1.6 对系统进行MATLAB仿真 (5) 2 系统超前校正 (6) 2.1 校正网络设计 (6) 2.2 对校正后的系统进行Matlab仿真 (8) 3 对校正前后装置进行比较 (9) 3.1 频域分析 (9) 3.2 时域分析 (9) 4 总结及体会 (10) 参考文献 (12)

位置随动系统的超前校正 1 位置随动系统原理 1.1 位置随动系统原理图 图1-1 位置随动系统原理图 系统工作原理: 位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系及绳轮等组成,采用负反馈控制原理工作,其原理图如图1-1所示。 在图1-1中测量元件为由电位器Rr 和Rc 组成的桥式测量电路。负载固定在电位器Rc 的滑臂上,因此电位器Rc 的输出电压Uc 和输出位移成正比。当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc ,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。当偏差ΔU=0时,电动机停止转动,负载停止移动。此时δ=δL ,表明输出位移与输入位移相对应。测速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。 1.2 各部分传递函数 (1)自整角机: 作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。自整角机作为角位移传感器,在位置随动系统中是成对使用的。与指令轴相连的是发送机,与系统输出轴相连的是接收机。 12()(()())()u t K t t K t εεθθθ=-=? (1-1) 零初始条件下,对上式求拉普拉斯变换,可求得电位器的传递函数为

伺服系统设计.

辽宁工程技术大学《电力拖动自动控制系统》课程设计 目录 1、前言 (1) 1.1设计目的 (1) 1.2设计内容 (1) 2、伺服系统的基本组成原理及电路设计 (2) 2.1伺服系统基本原理及系统框图 (2) 2.2 伺服系统的模拟PD+数字前馈控制 (4) 2.3 伺服系统的程序 (6) 3、仿真波形图 (9) 结论 (12) 心得与体会 (13) 参考文献 (14)

1、前言 1.1设计目的 1、使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力; 2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 1.2设计内容 1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图; 2、分析并理解具有三环结构的伺服系统原理。

2、伺服系统的基本组成原理及电路设计 2.1伺服系统基本原理及系统框图 伺服系统三环的PID控制原理: 以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号. 图2-1 转台伺服系统框图 伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路. 转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示. 图2-2 伺服系统位置环框图 图2-3 伺服系统速度环框图

PLC钻床主轴进给控制系统程序的设计说明

第十四组题目:钻床主轴进给控制系统程序设计 控制要求: 钻头从初始位置开始向右进行钻深孔工作,钻孔过程中,钻头向右钻一段距离后返回初始位置,然后再向右钻一段距离后再返回初始位置,如此反复,完成钻深孔工作过程。 钻头初始位置在原点(光电开关SQ1处),按下启动按钮SB1,钻头进给至SQ2光电开关处后返回原点,然后再进给至SQ3光电开关处后返回原点,依此类推,最后返回原点停止,至此完成钻床主轴进给控制系统全过程。工艺流程图: 钻床主轴工作示意图 按照任务书的要求,完成控制设计。

0.前言 PLC = Programmable logic Controller,可编程逻辑控制器,一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。 编程序控制器简称PLC,是一种以微处理器为基础,综合了计算机技术、自动控制技术、通信技术和传统的继电器控制技术而发展起来的新型工业控制装置,具有编程容易、体积小、使用灵活方便、抗干扰能力强、可靠性高等一系列优点,是专门为工业控制应用而设计的一种通用控制器,近年来在工业生产的许多领域,如冶金、机械、电力、石油、煤炭、化工、轻纺、交通、食品、环保、轻工、建材等工业部门得到了广泛的应用,已经成为工业自动化的三大支柱之一。由于PLC的应用日益广泛,学习和掌握其原理与应用设计对于工业领域的广大科技工作者以及大专院校电气和机电等有关专业的学生而言很有必要

目录 0. 前言 1. 课程设计的任务和要求 1.1 控制要求 1.2 课程设计任务书 1.3 设计思想 2. 总体设计 2.1 操作面板示意图 2.2 端子分配图 3. PLC程序设计 3.1 顺序功能图 3.2 PLC控制梯形图 4. 程序模拟调试说明 5. 结束语 6. 参考文献

电液位置伺服控制系统设计方法

电液位置伺服控制系统设计方法 电液位置伺服系统是最基本和最常用的一种液压伺服系统,如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。在其它物理量的控制系统中,如速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节 电液位置伺服系统主要是用于解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量对给定量的及时和准确跟踪,并要具有足够的控制精度。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。它由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂。因此,电液伺服控制系统的设计及仿真受到越来越多的重视。 液压伺服系统的基本设计步骤 ○1分析整理所需的设计参数,明确设计要求;○2拟定控制方案,构成控制系统原理图;○3确定动力元件参数(如供油压力、执行元件规格、伺服阀容量)和其他组成元件;○4分析计算系统的静、动态特性,确定回路放大系数和设计校正措施等。○5根据技术要求设计出系统以后,需要检查所设计的系统是否满足全部性能指标,如不满足,可通过调整参数或改变系统结构(即校正)等方法重复设计过程,直至满足要求为止。因为设计是试探性的,所以设计方法具有很大的灵活性,在设计中结合MATLAB的SIMULINK软件进行仿真,对系统的参数进行调整和可靠性作进一步验证,最终可以得出比较可靠的电液伺服系统。 (一)组成控制系统原理图 由于系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。系统方块原理如图1

(二)由静态计算确定动力元件参数,选择位移传感器和伺服放大器 1.绘制负载轨迹图 负载力由切削力c F ,摩擦力f F 和惯性力a F 三部分组成。摩擦力具有“下降”特性,为了简化,可认为与速度无关,是定值,取最大值f F = 1500N 惯性力按最大加速度考虑 a max F 800t m a N == 假定系统是在最恶劣的负载条件下工作(即所有负载力都在存在,且速度最大)下工作,则总负载力为 max f F F F F =l c a =++400+1500+800=2700N 2.选取供油压力 5s P 6310Pa =? 3.求取液压马达排量 设齿轮减速比'm i=/2m θθ=,丝杠导程2 1.210/t m r -=?,则所需液压马达力矩为 2 2700 1.210 2.58222 L L F t T N m i ππ-??===?? 取L s 2P =P 3,则液压马达弧度排量为-63L 5s 3T 3 2.58D ==0.610m /2P 26310 m rad ?=??? 液压马达每转排量为-63-632D 20.610m / 3.710m /m m Q r r ππ==??=? 计算出的液压马达排量需标准化。按选取的标准化值再计算负载压力L P 值。本例液压马达排量计算符合标准化。 4.确定伺服阀规格 液压马达的最大转速为2max max 2 2810800/min 13.3/1.210iv n r r s t --??====? 所以负载流量为-6-6max q 3.71013.3/49.2110l m Q n r s ==??=? 此时伺服阀的压降为 55L s Lmax s -6T 2.58P P P 631020.010D 0.610 v m P Pa Pa =-=-=?-=?? 考虑到泄漏等影响,将q l 增大15%,取q l = 3.4L/min 。根据q l 和v P ,查得额定流量为

位置随动控制系统设计与实现

位置随动控制系统设计与实现 王桂霞, 李 媛 (中国船舶重工集团公司第704研究所,上海 200031) 摘 要:计算机控制系统是保证位置随动系统功能和性能的重要部分,文中结合船用仿真 转台阐述了多机集散控制结构形式的位置随动转台的计算机控制系统方案,并以某位置随动转台为背景,对系统工程实现中的接口电路设计、电机、伺服放大器以及采样频率选取、程序设计等一系列问题进行了讨论,设计结果在位置随动试验样机中应用取得了良好效果. 关键词:位置随动;控制系统;采样频率;设计 中图分类号:T M571,TP273 文献标识码:A 文章编号:100528354(2007)1220029204 Desi gn and reali zati on of control syste m of rando m positi on WANG Gui 2Xia,L I Yuan (No .704Research I nstitute,CSI C,Shanghai 20031,China ) Abstract :The co m puter control syste m is an i m portant part of guaranteeing perfor m ance of control syste m of rando m position .Co m bining the m arine si m ulation turntable,this paper set forth the co m puter control syste m sche m e on the rando m position turntable w ith m ulti 2co m puter distributes control structure .Then taking a certain turntable of rando m position as background,it respectively discussed such key proble m s of syste m engineering re 2alization as the interface circuit design,choice of m otor ,servo am plifier and sam ple frequency and the program design .The design sche m e is applied in a rando m position proto type and gets a good result . Key words :rando m position;control syste m;sam ple frequency;design 收稿日期:2007211219 作者简介:王桂霞(19772),女,工程师,主要从事自动控制的工作位置随动控制系统设计与实现 0 引言 位置随动转台系统由机械台体和计算机控制系统两个重要部分组成,前者是实现仿真功能的基础,而后者是保证转台系统功能和性能的核心部分.转台既要满足一定的动态、静态指标要求,也要为试验提供方便的操作界面和数据采集、处理手段,计算机控制系统不仅要具有实时控制功能,而且应具备监控管理功能,因此,计算机控制系统设计就成为仿真转台设计和工程实现的重要内容. 当前在各种控制系统中计算机已得到非常广泛的应用,根据不同的情况,控制系统的结构形式各不相同,一般分为操作指示系统、直接数字控制系统(DDC )和集散控制系统(DCS )等类型,在下文中将讨论集散控制结构形式的计算机控制系统的设计问题,其中主 要包括结构设计、系统工程实现中的接口线路设计、采样频率选择、程序设计等内容,并给出设计结果. 1 结构设计 本仿真转台采用多机集散控制形式,即采用上下位机的两级式结构.图1 为集散控制系统应用于本转 图1 原理框图

异步电动机综合控制系统设计

摘要:本文设计了一种基于PLC的异步电动机调速与定位综合控制系统 ,应用模糊-PI复合控制算法实现了异步电动机的速度控制,应用比例因子自调整模糊控制算法实现了异步电动机的位置控制。该系统集异步电动机速度控制和位置控制为一体,达到了一定的控制精度。 1 引言 随着变频调速技术的不断发展,交流传动系统的性能突飞猛进。交流异步电动机以其低廉的造价、坚固的结构得到了越来越广泛的应用。在交流传动的许多应用场合中,均对电机的调速性能和定位性能提出了较高的要求。例如在加工设备和机床的主轴伺服系统中,主轴应兼备速度和位置控制的功能;在住宅小区和高层建筑的恒压供水系统中,要求电机有较高的调速性能;在炼钢转炉的准确定位、堆垛机械的位置控制系统中,要求电机有精确的定位功能。在上述应用场合中,异步电动机以其大功率、高性价比的独特优势而占有一席之地,但同时其调速性能和定位性能却不甚完美,尚需完善。 本文提出了一种基于可编程控制器(PLC)硬件平台的异步电动机综合控制系统。该系统在没有增加硬件投资的情况下集异步电动机速度控制和位置控制为一体,应用模糊控制策略,达到了一定的控制精度。 2 硬件设计 异步电动机综合控制系统硬件如图1所示。图1中,上位计算机和PLC通过变频器对异步电动机进行速度和位置控制。通过旋转编码器的脉冲计数值可以获得异步电动机的速度和位置信息。脉冲计数由PLC完成,并不断与上位机通讯,将计数值传送给上位机。上位机根据PLC 传送过来的脉冲计数值得到速度和位置信息,根据不同的控制策略,得到输出控制量——速度给定值,再传送给PLC,经过PLC的A/D转换模块,将速度给定值的模拟量送到变频器的模拟控制端进行控制,形成闭环控制。

浅识电液比例控制系统

浅识电液比例控制系统 张明飞机械设计及理论TS14050104 17世纪帕斯卡提出著名的帕斯卡定律,奠定了液压传动的理论基础,而到1940年底在飞机上首先出现了电液伺服系统,其滑阀由伺服电机拖动,但伺服电机惯量很大,成了限制系统动态性的主要环节。50年代初出现了高速响应的永磁式力矩马达,后期又出现了以喷嘴挡板阀作为先导级的电液伺服阀,使电液伺服系统成为当时响应最快,控制精度最高的伺服系统。1958年美国学者勃莱克布恩等公布了他们在麻省理工学院的研究工作,为现代电液伺服系统的理论和实践奠定了基础。但是由于电液伺服器件的价格过于昂贵,对油质要求十分严格,控制损失(阀压降)较大,使伺服技术难以为更广泛的工业应用所接受。随着现代电子技术和测试技术的发展为工程界提供了可靠而廉价的检测、校正技术,这也为电液比例技术的发展提供了有利的条件。 电液比例技术的发展可以划分为下面四个阶段: 第一阶段,从1967年瑞士Beringer公司生产KL比例复合阀起,到70年代初日本油公司申请了压力和流量比例阀两项专利为止,是比例技术的诞生时期。这一阶段的比例阀,仅仅是将比例型的电一机械转换器(如比例电磁铁)用于工业液压阀,以代替开关电磁铁或调节手柄。阀的结构原理和设计准则几乎没有变化,大多不含受控参数的反馈闭环,其工作频宽仅在1~5Hz之间,稳态滞环在4.7%之间,多用于开环控制。 第二阶段,1975年至1980年间可以认为比例技术的发展进入了第二阶段。采用各种内反馈原理的比例元件大量问世,耐高压比例电磁铁和比例放大器在技术上日趋成熟,比例元件工作频宽己经达到5一1SHz,稳态滞环亦减少到3%左右。其应用领域日渐扩大,不仅用于开环控制,也被应用于闭环控制。 第三阶段,20世纪80年代,比例技术的发展进入了第三阶段。比例元件的设计原理进一步完善,采用了压力、流量、位移内反馈和动压反馈及电校正手段,使阀的稳态精度、动态响应和稳定性都有了进一步提高。除了因制造成本所限,比例阀在中位仍保留死区外,它的稳态和动态特性均己和工业伺服阀无异。另一项重大进展是,比例技术开始和插装阀相结合,己开发出各种不同功能和规格的

单轴位置控制系统设计

1.单轴位置控制系统设计 1.1. 基本控制要求 该单元有电机带动轴运动,气泵产生气体带动气缸(用气缸模拟机械手)上下运动和吸附物块组成。电机带动轴的左移Y0和右移Y1。轨道有三个接近开关(1、2、 3)定位三个工位, 气缸由电磁阀控制进气和出气,实现气缸的上升和下降(Y2), 吸附开关X3控制吸附物块(Y3),设计有手动和自动控制部分,可以通过开关X14选择控制方式。 1.1.1.手动控制要求 通过X14开关选择手动控制方式,通过控制面板来控制,手柄控制气缸向左X16、向右X17移动,气缸的上X4和X5下通过面板旋钮控制,物块的吸附通过面板旋钮 X3控制,来完成物块在三个工位上的移动。 1.1. 2.自动控制要求 通过X14开关选择自动控制方式,按复位按钮,气缸回到工位1,按启动按钮后,气缸下降吸附物块,然后上升,再从工位1移动到工位2,再下降,释放物块回升气缸,4秒过后气缸下降吸附物块从工位2移动到工位3,再下降释放物块回升气缸,4秒后再下降吸附物块从工位3移动到工位1,下降释放物块回升气缸,工作全部完成,气缸停止在工位1。

1.2.硬件设计 1.2.1 I/O地址分配表 根据对单轴运动控制系统的分析,分配对应的I/O口,I/O地址分配表如表XO 急停按钮X11 停止按钮X1 位置1 X12 右移 X2 位置2 X13 手动 X3 位置3 X14 吸附 X5 吸附/松开X15 上移 X6 上位X16 下移 X7 下位X17 左移 X10 启动按钮 表1.2.1.1 PLC输入设备 Y4 吸附控制 Y10 上升控制 Y11 下降控制 Y2 左移控制 Y3 右移控制 Y6 启动控制 Y5 停止控制 Y7 复位控制 表1.2.2.2PLC输出设备

自动控制原理课程设计 速度伺服控制系统设计

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指导老师 机电工程学院 2009年12月

目录一课程设计设计目的 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参考文献

一、课程设计目的: 通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB实现系统的仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,要求利用根轨迹法确定测速反馈系数' k,以 t 使系统的阻尼比等于0.5,并估算校正后系统的性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改善控制系统的性能,除可选用串联校正方式外,常常采用反馈校正方式。常见的有被控量的速度,加速度反馈,执行机构的输出及其速度的反馈,以及复杂系统的中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中的一部分环节以实现校正,。从控制的观点来看,采用反馈校正不仅可以得到与串联校正同样的校正效果,而且还有许多串联校正不具备的突出优点:第一,反馈校正能有效地改变被包围环节的动态结构和参数;第二,在一定

条件下,反馈校正装置的特性可以完全取代被包围环节的特性,反馈校正系数方框图从而可大大削弱这部分环节由于特性参数变化及各种干扰带给系统的不利影响。 该设计应用的是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +() =22t 1T s T K s ζ+(2+)+1 =22'1 T s 21Ts ζ++ 试中,' ζ=ζ+ t K 2T ,表明微分负反馈不改变被包围环节的性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改善了系统的平稳性。 微分负反馈校正系统方框图

高精度数控焊接变位机控制系统设计与实现

第24卷第4期 焊接学报v。1.24N。420O3年8月TRANSACTl0NS0FTHECHINAWELDINGINS7nTUTl0NA“gust2O03 高精度数控焊接变位机控制系统设计与实现 石圩,樊丁。王政 (甘肃:[业大学甘肃省有色金属新材料省部共建国家重点实验室,兰州730050)摘要:研制弧焊机器人用数控焊接变位机对弧焊机器人柔性加工单元(wEMc)的设 计具有重要的意义。作者以基于数字信号处理器(DsP)的研华多轴运动控制乍PcL一 832}为设计核心,采用基于模糊规则的智能双模协调控制器,即采用比例积分微分控 制器(P1D)和模糊控制器的加权合成算法,控制过程中模糊控制器和PID控制器同时 输出控制量,当控制误差较大时模糊控制器的输出权重较大,而当控制误差较小时PID 控制器的输出权重较大,有效避免了变结构控制器切换过程中的震荡,实现了焊接变位 机的高精度位置控制。作者对实时控制软件的结构设计和实时性要求进行了详细的理 论分析,提出了基于DOs(Diskoperationsystem)系统下的高精度数控焊接变位机多任 务实时控制软件的设计与实现方法。进行了多种工件的焊接试验,试验表明该控制系 统工作可靠,效果良好。 关键词:数控焊接变位机;智能双模控制器;实时多任务控制系统;弧焊机器人 中圈分类号:TG43l文献标识码:A文章编号:0253—360x(2003)04—21一040序言 近年来,为了适应快速变化的市场需求,生产商 频繁地更换产品的品种和批量,这就对生产设备的自 动化程度和柔性化程度提出了很高的要求。弧焊机器 人柔性加工单元正是一种具有柔性化特点的高度自 动化焊接设备。它不仅能提高焊接生产率、产品的焊 接质量和可靠性、加工柔性和制造精度,而且还能改 善工人的劳动环境,降低劳动强度,提高经济效益u-。 目前,我国研制的焊接机器人尚未产业化,焊接 柔性加工单元技术尚处于探索阶段,国内生产、应用 主要靠全套引进。弧焊机器人在国外已经批量化, 价格相对较低,而与机器人相配套的数控变位系统 却因加工对象而异,多属单件生产,因此价格往往是 机器人本身价格的3~7倍。作者的研究目的是在 进口弧焊机器人的基础上,再根据特定产品,自行研 制焊接变位机等机器人的外围设备及控制系统,可 以节约大量外汇,实现低成本焊接自动化。高精度 数控焊接变位机控制系统必须具有合理的体系结 构、较强的数据运算和处理能力、良好的信息融合控 制功能,以及开放的软硬件接口。 l系统的硬件组成 收稿日期:200212一05 基金砺目:甘肃省“九?五”攻关项目(J曲74218IB)石圩 根据设计要求,变位机载重500b,能在两旋转 轴所确定的空间旋转并可在任意位置定位,且要保 持速度均匀,这就要求对电机实行速度和位置控制。 作者选用了交流伺服控制系统,并采用二l:业控制计 算机作为核心,应用全闭环控制方案,保证在恶劣条 件下系统的控制精度与工作可靠性。图l为控制系 统的硬件结构框图。 图1系统硬件框图 Fi昏1System∞nst八lctionofhardware 2控制结构及算法 2.1控制结构 按伺服系统的反馈控制方式来分,可分为开环 万方数据

电液比例控制系统的实验分析的毕业论文

电液比例控制系统的实验分析的毕业论文 目录 第1章序论 (1) 1.1电液比例控制技术的形成和发展趋势 (1) 1.2F ESTO D IDACTIC自动化控制技术培训简介 (3) 1.3研究思路与容 (4) 第2章电液比例控制技术概述 (5) 2.1电液比例控制技术的含义与容 (5) 2.2电液比例控制的特点 (5) 2.3比例控制的基本原理 (6) 2.4比例控制的应用 (6) 2.5电液比例控制元件的围 (6) 第3章电液比例控制系统主要元件 (7) 3.1额定值信号给定单元 (7) 3.2放大器 (8) 3.3比例溢流阀。 (11) 3.4液压缸 (14) 3.5三位四通比例阀 (16)

第4章电液比例控制系统实验研究 (20) 4.1F ESTO试验台须知 (20) 4.2压力机(单向放大器的特性曲线) (20) 4.3滚轧机的接触滚轮(比例压力阀) (25) 4.4夹紧装置(压力回路) (29) 4.5铣床(双向放大器的特性曲线) (33) 4.6压印机(斜坡额定值的设定) (37) *4.7车斗(额定值的外部控制) (42) 第5章总结 (49) 参考文献 (50) 致谢 (51) 诚信声明

第1章序论 电液比例控制技术,是在以开环传动为主要特征的传统液压传动技术,和以闭环控制为特征的电液伺服控制技术基础上,为适应一般工程系统对传动与控制特性或有所侧重或兼而有之的特别要求,从20世纪60、70年代开始,逐步发展起来的流体传动与控制领域中一个具有旺盛生命力的新分支。现今,电液比例控制技术已成为工业机械、工程建设机械及国防尖端产品不可或缺的重要手段,引起相关工业界、技术界的格外目重视。但由于所具有的一些特点,对这种技术的了解、掌握、运用,不论是理论上,还是实践上,都有很多问题研究、探讨、总结、提髙,使其形成相应的科学体系,以更好地推动技术的发展和相关人才的培养。 电液比例技术本来就是流体传动与控制技术中的一个新的分支。所以,原来一般液压传动技术和电液伺服技术所共有的主要特点、优点与缺点、电液比例技术照样具备。但由于它是新发展起来的技术分支,所以,在应用电子技术,计算机技术、位息技术、自动控制技术、摩擦磨损技术及新工艺、新材料等方面,往往表现出更前卫,这给电液比例技术带来更多新的特点。此外,诸如数字技术、高速开关技术等,也与电液比例技术结合得非常紧密。 1.1电液比例控制技术的形成和发展趋势 电液比例控制技术从形成至今,大致上可划分为四个阶段: 从1967年瑞士Beringer公司生产XL比例复合阀,到70年代初日本油研公司申请压力和流量两项比例阀专利,标志着比例技术的诞生时期。此间,比例技术开始在液压控制领域中作为独立的分支,并以开环控制应用为主。这一阶段的比例阀仅仅是将新型

机器人抓取装置位置控制系统校正装置设计

自动控制原理课程设计题目:机器人抓取装置位置控制系统校正装置设计 专业:电气工程及其自动化 姓名: 班级:学号: 指导老师:职称:

初始条件: 一个机器人抓取装置的位置控制系统为一单位负反馈控制系统,其传递函数为()()() 15.013 0++=s s s s G ,设计一个滞后校正装置,使系统的相 角裕度?=45γ。 设计内容: 1.先手绘系统校正前的bode 图,然后再用MATLAB 做出校正前系统的bode 图,根据MATLAB 做出的bode 图求出系统的相角裕量。 2.求出校正装置的传递函数 3. 用MATLAB 做出校正后的系统的bode 图,并求出系统的相角裕量。 4.在matlab 下,用simulink 进行动态仿真,在计算机上对人工设计系统进行仿真调试,确使满足技术要求。 5.对系统的稳定性及校正后的性能说明 6.心得体会。

1频率法的串联滞后校正特性及方法 1.1特性:当一个系统的动态特性是满足要求的,为改善稳态性能,而又不影响其动态响应时,可采用此方法。具体就是增加一对靠的很近并且靠近坐标原点的零、极点,使系统的开环放大倍数提高β倍,而不影响开环对数频率特性的中、高频段特性。 1.2该方法的步骤主要有: ()1绘制出未校正系统的bode 图,求出相角裕量0γ,幅值裕量g K 。 ()2在bode 图上求出未校正系统的相角裕量εγγ+=期望处的频率 2c ω,2c ω作为校正后系统的剪切频率,ε用来补偿滞后校正网络2c ω处的 相角滞后,通常取??=15~5ε。 ()3令未校正系统在2c ω的幅值为βlg 20,由此确定滞后网络的β值。 ()4为保证滞后校正网络对系统在2c ω处的相频特性基本不受影响,可 按10 ~ 2 1 2 2 2c c ωωτ ω= =求得第二个转折频率。 ()5校正装置的传递函数为()1 1 ++= s s s G C βττ ()6画出校正后系统的bode 图,并校验性能指标 2确定未校正前系统的相角裕度 2.1先绘制系统的bode 图如下:

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

数控铣床控制系统设计

控制系统课程项目 设计说明书 项目名称:数控铣床控制系统设计 系别:机械电子工程系 专业:机械设计制造及其自动化 姓名:city 学号:09128888 组员:学号: 学号: 指导教师:陈少波

完成时间:2012 年 6 月8 日至2012 年 6 月22 日 目录 1 概述 (3) 1.1 设计目的 (3) 1.2使用设备 (3) 1.3设计内容及要求 (4) 2 NUM1020控制系统设计 (4) 2.1 功能概述 (4) 2.2 主要元器件选型 (5) 2.2.1电机选型 (5) 2.2.2 伺服驱动器与变频器选型 (8) 2.3 电路原理设计 (9) 2.3.1 电源供电设计 (9) 2.3.2 驱动电路设计 (10) 2.3.3 电机编码器与伺服驱动器连接设计 (10) 2.3.4 手轮与轴卡连接设计 (11) 2.3.5铣床控制电路设计 (12) 2.4 控制系统设计 (13)

2.4.1控制系统功能设计 (13) 2.4.2 参数设置 (14) 2.4.3 程序设计 (16) 3 总结 (20) 1 概述 1.1 设计目的 1)、掌握简单数控铣床控制系统的设计过程 2)、掌握常用数控系统(NUM1020)的操作过程 3)、掌握交流伺服电机的工作方式及应用过程 4)、了解数控系统内置式PLC 的实现原理及编程方式 5)、掌握数控系统自动控制功能程序的设计及开发过程 1.2使用设备 1)、NUM1020数控系统一套 2)、安川交流伺服电机3套 3)、计算机及梯形图编辑软件一套

1.3设计内容及要求 1)、以实验室现有的设备(NUM1020数控系统)作为控制器,参照实验室现有的数控铣床的功能,完成一台具有3轴联动功能的数控铣床的电气系统设计过程。 2)、移动轴(3轴)采用实验室现有的交流伺服电机进行驱动,采用半闭环位置控制模式。 3)、主轴采用实验室现有的变频调速器进行设计驱动,系统不要求具备自动换刀功能。 4)、完成PLC输入输出点的分配。 5)、具有行程及其他基本的保护功能。 6)、设计相关功能的梯形图控制程序(要求具有:手动进给功能、手轮进给功能、MDI功能、自动控制功能及各种基本的逻辑保护功能) 7)、完成设计报告。 2 NUM1020控制系统设计 2.1 功能概述 此三轴联动数控铣床由X、Y、Z轴三轴及主轴组成,X、Y、Z轴采用伺服电机传动,由伺服驱动器驱动。主轴采用普通三相异步电机,由变频器驱动。数控系统采用NUM1020数控系统。由NUM1020数控系统作为控制核心,三台伺服驱动器通过NUM1020系统的轴卡地址编码控制,主轴变频器由数控系统

步进电机定位控制系统设计

学生学号 课程设计 题目步进电机定位控制系统设计 学院信息工程学院 专业 班级 姓名 指导老师

2013~2014学年6月20日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:步进电机定位控制系统设计 初始条件: 1. 具备电子电路的基础知识及查阅资料和手册的能力; 2. 熟悉ISE 仿真软件的操作与运用; 3. 掌握步进电机的工作原理。 要求完成的主要任务: 1. 设计一个基于FPGA 的4 相步进电机定位控制系统,包括步进电机方向设定 电路模块、步进电机步进移动与定位控制模块和编码输出模块。 2.撰写符合学校要求的课程设计说明书。 时间安排: 1、2014 年06月11日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年06月12日至2014年06月17日,设计说明书撰写。 3、2014年06月18日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1 设计目标及简介 (1) 1.1设计目标 (1) 1.2 步进电机简介 (1) 2 VHDL语言介绍 (2) 3 Quartus Ⅱ介绍 (3) 4 系统组成 (4) 4.1 四相步进电机工作原理 (4) 4.2 系统组成 (6) 5 模块设计 (7) 5.1 FPGA模块图及信号说明 (7) 5.2 系统模块构成 (7) 5.3 各模块间整体共享的电路内部传递信号 (7) 5.4 电机方向设定电路模块 (8) 5.5 步进电机步进移动与定位控制模块 (9) 5.6 编码输出模块 (9) 6 程序设计与仿真 (10) 7 仿真结果 (16) 8 实验总结 (18) 参考文献 (19)

相关主题
文本预览
相关文档 最新文档