当前位置:文档之家› 图像去噪论文要点

图像去噪论文要点

图像去噪论文要点
图像去噪论文要点

图像去噪

内容摘要

图像是人类传递信息的主要媒介。然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。

关键词:小波变换中值滤波去噪

目录

序言 (1)

一、小波分析 (1)

(一)小波分析的发展 (1)

(二)小波变换 (1)

(1)小波函数 (2)

(2)小波函数的性质 (3)

(三)均值滤波与中值滤波 (3)

(1)均值滤波 (3)

(2)中值滤波 (3)

二、数学基础 (4)

(一)希尔伯特变换 (4)

(二)傅里叶变换 (5)

三、小波去噪与中值滤波去噪 (6)

(一)MATLAB介绍 (6)

(二)小波去噪与中值滤波去噪 (7)

四、总结 (10)

参考文献 (11)

序言

图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。

图像在采集、传输和转换中常常受到外部环境的干扰。图像中夹杂了噪声和混响干扰,不仅使得图像质量下降,影响了图像的视觉效果,而且给图像的进一步处理也带来了不便。为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。

一、小波分析

(一)小波分析的发展

小波分析是近年来国际上掀起新潮的一个前沿研究领域,是继Fourier分析的一个突破性进展,它给信号处理领域带来了崭新的思想,提供了强有力的工具,在科技界引起了广泛的关注和高度的重视。探讨小波的新理论、新方法以及新应用成为当前一个非常活跃和富有挑战性的研究领域。

小波的起源可以追溯到本世纪初。1910年,Haar最早提出了规范正交小波基的思想,构造了紧支撑的正交函数系--Haar 函数系。1946年,Gabor提出了加窗 Fouricr变换(Gabor:变换)理论,使得对信号的表示具有时频局部化性质,1981 年,Morlet 仔细研究了Gabor变换方法,对Fourier变换和加窗Fourier变换的异同、特点及函数构造作了创造性的研究,首次提出了“小波分析”的概念,并建立了以他的名字命名的Morlet小波。1986年,Mallat和 Meyer提出了多分辨分析的理论框架,为正交小波基的构造提供了一般的途径,多分辨分析的思想是小波的核心,至此,小波分析才真正形成为一门学科。1988 年,Daubechies 给出了具有紧支集和任意有限正则度的小波函数的一般构造方法,该小波得到了非常广泛的应用。1989年,随着小波理论的进一步发展,Mallat提出了实现小波变换的快速算法一 Mallat塔式算法,为小波应用铺平了道路。1990年,崔锦泰和王建中构造出了基于样条函数的正交小波函数,并讨论了具有最好局部化性质的多尺度分析生成函数及相应的小波函数。同年,Wickethauser和Coifman等人提出了小波包的概念,并将Mallat算法进一步深化,得到了小波包算法。使得小波变换的分析性质有了很大的改善。1994年,Goodmkan 等人在 r 元多分辨分析基础上建立了多重小波的基本理论框架,进一步丰富了小波理论。

(二)小波变换

小波变换作为一种多分辨率分析方法,具有信号“显微镜”的美称。近年来一直受到人们的关注。图像去噪是小波应用范围中的一个部分,噪声主要分布在高频区域,但同时图像的细节也分布在高频区域。在传统的基于傅氏变换的信号去噪方法中,当信号和噪声的频带重叠部分小时可以轻易地不损失信号的条件下去除噪声,但是当重叠区域很大时这种方法就无能为力了。由于图像细节和噪声分布在高频段,利用传统去噪方法可能破坏图

像的细节信息,利用小波分析理论,可以构造一种既能降低图像噪声,又能保持图像细节信息的方法。

小波分析去噪法的基本思想在于小波变换将大部分有用信号的信息压缩而将噪声的信息分散】【2。对信号进行小波分解,就是把信号向)()((22R L R L 是平方可积的实数空间)空间各正交基分量投影,即求信号与各小波基函数之间的相关系数,亦即小波变换值。由于局部信号的小波分解系数仅仅在一些尺度上有较大的值,而噪声的分解系数则广泛分布于各尺度上,所以噪声与局部信号在小波分解后呈现出完全不同的特性

】【3。基于这个特点,

对含噪局部信号进行小波分解与重构就可以达到去噪的目的。

一般地,函数(信号)的局部奇异性用李普西兹(Lipschitz )指数来描述,简称lip 指数,亦称奇异性指数。

1、小波函数

定义一个函数)(x f 在0x 处是一致李普西兹a ,当且仅当存在一个常数K ,使得在0x 的某一邻域内的任意一点x ,均有 a

x x K x f x f 00)()(-≤- (1)

如果式(6)对所有的x ),(0b a x ?都成立,则称f(x)在区间),(b a 上一致李普西兹a 。由上式定义不难看出,函数在某一点的李普西兹指数越大,则在该点函数越光滑。函数在某处有间断或某阶导数不连续,则称该函数在此处有奇异性,该点就为函数的奇异点。 函数)(x f 的局部奇异性与小波变换的渐近衰减之间的关系可以描述如下:

设)()(2R L x f ?, []b a , 为R 上的闭区间, 0,10?x 有

a s As x f W ≤)( (2)

其中)(x f W s 为f (x)在尺度s 上的小波变换,设j

s 2=,则上式变为 ja k A x f W f 2)(2≤ (8)

两边取对数

ja A x f W k f +≤222log )(log (9)

由此可知,如果函数)(x f 的Lipschitz 指数0>a ,则该函数的小波变换的系数将随着尺度的增大而增大。反之,若0--=εεa ,由式(9)易得,信号和噪声在不同尺度的小波变换下呈现的特性截然相反。随着尺度的增大,信号所对应的小波变换幅值是增大的,而噪声对应的小波变换幅值减小。我们可以利用这个特点,在不同的分解尺度上设定一定的阈值,将小于给定阈值的极大模值点认为是噪声的小波变换,将其置于零;反之大于该阈值的极大模值点认为是由信号的小波变换引起的,

将它们保留。最后将阈值处理后的小波系数通过小波逆变换重构信号,这样就达到了去噪的目的。

2、小波函数的性质

小波函数的主要性质:①小波函数ψ(t)可以由尺度函数(scaling function )φ(t)求得。φ(t)长度有限,支撑区间在t=0 ~(2N-1)范围内,例如N=2,φ(t)在0 ~ 3。图5.6.5给出了不同N 值下的φ(t)的波形。②ψ(t)是φ(2t)的移位加权和)2()(k t t k k

g -=∑φψ,K

值从(2-2N )~ 1。 N 值不同权值gk 也不同。由于φ(t)是有限支撑,故由式(5.6.1)得到的ψ(t)也是有限支撑,且它的长度与φ(t)相同,是2N-1,始于1-N ,终于N.

③尺度函数φ(t)是低通函数,求法后述。图为N=2,3,5,7,9时的φ(t)和ψ(t)的波形图,它们很难用解析表示。

(三)均值滤波与中值滤波

1、均值滤波

对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的局部均值滤波器就非常适合用于去除扫描图像中的颗粒噪声。邻域平均法是一种局部空间域处理的算法。

均值滤波的思想是:对于给定一幅N N ?的图像()y x f ,,图像中的每个像素点()y x ,,去噪后的图像()y x g ,,去噪后图像中的每个像素的灰度级由包含()y x ,邻域的几个像素的灰度级的平均值所决定。也就是说,用某一像素邻域内各像素的灰度平均值来代替该像素原来的灰度值。即用下式得到处理后的图像:

()()()∑∈=w j i M

y x f y x g ,1

,, (3.1) 式中;1,...,2,1,0,-=N y x w 是以点()y x ,为中心的邻域的集合,

M 是w 内坐标的总数。图像邻域平均法的处理效果与所用的邻域半径有关。半径越大,则图像的模糊程度也越大。此外,图像邻域平均法算法简单,计算速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处,邻域越大,模糊越厉害。

另外,从实现难易程度上看,线性平滑滤波器比较容易实现,在信号频谱和噪声频谱具有显著不同特征时,表现出较好的性能。然而,在实际的图像处理过程中,线性滤波器也不能完全去除脉冲噪声。因此在许多应用场合,选用中值滤波来克服这些问题。

2、中值滤波

中值滤波是一种非线性滤波[21,22],由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所引用。在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。但是对一些细节多,特别是点、线、尖顶细节多的图像不宜采用中值滤波的方法。

中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值

的中值代替。

对于给定的n 个数值{}n a a a ,...,,21,将它们按大小顺序排列。当n 为奇数时,位于中间位置的数值称为这n 个数值的中值。当n 为偶数时,则将位于中间位置的两个数值的平均值称为这n 个数值的中值,记作{}n a a a med ,...,,21。中值滤波就是图像滤波后某个像素的输出等于该像素邻域中各个像素灰度的中值。对于二维信号进行中值滤波时,滤波窗口也是二维的,但这种二维窗口可以有各种不同的形状,例如线状、方形、圆形、十字形、圆环形等。

一般在实际使用窗口时,窗口的尺寸一般先用小窗口,然后再逐渐增大窗口,直到其滤波效果满意为止。与平均滤波器相比,中值滤波器从总体上来说,它能够较好地保留原图像中的跃变部分。相比较于局部均值滤波,中值滤波有以下优点:

①降噪效果比较明显;

②在灰度值变化比较小的情况下,可以得到很好的平滑效果;

③降低了图像边界的模糊程度,但有时会失掉图像中的细节和小块的目标区域。在有些情况下,中值滤波在降低了噪声的同时也抑制了信号。也就是说,中值滤波在去除脉冲噪声的同时较好地保持了图像的边缘细节信息,解决了多数线性滤波在去噪的同时模糊图像这一缺点,复原效果较好。但是对于大面积的噪声污染,例如高斯分布的白噪声,在均方误差准则下,中值滤波的能力却不及均值滤波。这是因为滤波窗口(即邻域)中如果多数图像点被噪声污染,中值滤波的输出仍然是某个被噪声污染了的像素,而均值滤波却对噪声进行了求均值运算,在某种程度上对噪声进行了平滑。

中值滤波的主要步骤如下:

(a )将模板在图中依次移动,使模板中心与图中的某个象素的位置重合;

(b )读取与模板对应的各象素的灰度值;

(c )将这些灰度值从小到大排序;

(d )找出中间值赋给对应模板中心位置的象素;

可以看出,中值滤波器主要功能就是让与区域周围象素值接近的值取代与周围象素灰度值的差别比较大的象素的灰度值,从而可以消除孤立噪声点,即所谓的椒盐噪声。由于它不是简单区域均值,因此产生的模糊度比较小。中值滤波器适用于处理噪声点激励情况。

二、数学基础

(一)希尔伯特变换 (Hilbert Transform)

?()??()()()sgn()

f

t f t F w jF w w ??==-??(1)的傅里叶变换F []cos()sin()wt wt ??+=+(2)余弦信号的希尔伯特变换H

(二) 傅里叶变换

傅里叶变换(Fourier 变换)是一种线性的积分变换。因其基本思想首先由法国学者约

[]?()():sin()cos()f t f t wt wt ????=-??+=-+(3)信号的两次希尔伯特变换推出H H [][]?()()()*()?()*()

?()*()g t g t f t h t f t h t f t h t ===(4)两信号卷积的希尔伯特

=H H [][][]0000()os()()sin(),

()sin()()s()()()0a t c w t a t w t a t w t a t co w t A w w B a t ==-?<=??(5)调制信号的希尔伯特变换

其中其它由此产生单边带信号,在通信中很重要.H H H

对可积,则卷积函数f*g=\int_{-\infty}^{+\infty} f(x-\xi)g(\xi)d\xi的傅里叶变换存在,且\mathcal[f*g]=\mathcal[f]\cdot\mathcal[g]。卷积性质的逆形式为

\mathcal^[F(\omega)G(\omega)]=\mathcal^[F(\omega)]*\mathcal^[G(\omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积,同时还有两个函数卷积的傅里叶逆变换等于它们各自的傅里叶逆变换的乘积。

Parseval

定理若函数f \left( x\right )可积且平方可积,则\int_{-\infty}^{+\infty} f^2 (x)dx = \frac{2\pi}\int_{-\infty}^{+\infty} |F(\omega)|^d\omega。其中 F(ω)是f(x) 的傅里叶变换。

三、小波去噪与中值滤波去噪

(一)MATLAB介绍

MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国The MathWorks 公司出品的商业数学软件。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。

尽管MATLAB主要用于数值运算,但利用为数众多的附加工具箱(Toolbox)它也适合不同领域的应用,例如控制系统设计与分析、图像处理、信号处理与通讯、金融建模和分析等。另外还有一个配套软件包Simulink,提供了一个可视化开发环境,常用于系统模拟、动态/嵌入式系统开发等方面。

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB 也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,

Matlab是一个高级的矩阵阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。新版本的MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深入到科学研究及工程计算各个领域的重要原因。

图形处理

MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。

编程环境

MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。随着MATLAB的商业化以及软件本身的不断升级,MATLAB的用户界面也越来越精致,更加接近Windows的标准界面,人机交互性更强,操作更简单。而且新版本的MATLAB提供了完整的联机查询、帮助系统,极大的方便了用户的使用。简单的编程环境提供了比较完备的调试系统,程序不必经过编译就可以直接运行,而且能够及时地报告出现的错误及进行出错原因分析。

MATLAB软件特点

1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;

2) 具有完备的图形处理功能,实现计算结果和编程的可视化;

3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;

4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

(二)中值滤波去噪与小波去噪

加入高斯噪声和去除高斯噪声的步骤

步骤1:在Matlab软件中读入原始的图像

步骤3:显示加入噪声后的图像

步骤4:用中值滤波去高斯噪声

步骤5;显示中值滤波去高斯噪声后的图像

步骤6;总结分析图像处理的特点和结果

加入椒盐噪声和去除椒盐噪声的步骤

步骤1:在Matlab软件中读入原始的图像

步骤2:对原始图像加入椒盐噪声

步骤3:显示加入噪声后的图像

步骤4:用中值滤波去高斯噪声

步骤5;显示中值滤波去椒盐噪声后的图像

步骤6;总结分析图像处理的特点和结果

利用中值滤波加高斯噪声并且去噪声原程序代码clear all

clc

I=imread('001.bmp');

figure(1);imshow(f)

J=imnoise(I,'gaussian',0,0.005);

subplot(1,2,1);

imshow(J);title('001.bmp');

I=imread('001.bmp');

L=medfilt2(J,[3 3]);

subplot(221),imshow(L)

利用小波加加入椒盐噪声并且去噪声原程序代码clear all

clc

f=imread('001.jpg');

figure(1);imshow(f)

g=imnoise(f,'salt & pepper',0.2);

figure(2);imshow(g)

g1=double(g)/255;

g2=medfilt2(g1,'symmetric');

figure(3);imshow(g2)

实验过程原始数据记录

实验所用的为图一原始图像

图1原始图像

图2 加高斯噪声图像图图3 加椒盐噪声图像

图4 中值滤波去高斯噪声图像图5 小波去椒盐噪声图像

在原始图像中加入方差为0.005的高斯白噪声,生成含噪图像如图2和图3 高斯噪声图像和加椒盐噪声对比(左)所示,通过中值滤波后,生成如图4 高斯噪声恢复图像。

在原始图片中加入了方差为0.005的高斯噪声,应用中值滤波去除高斯噪声的图片图4中所有像素都参加滤波,不能很好的保护图片的细节和边缘信息。

在原始图片中加入椒盐噪声,应用小波变换去除椒盐噪声的图片图5能够很好的保护图片的边缘信息。

用中值滤波去除高斯噪声图像清晰度没有用小波滤波去除噪声的清晰度高,但是小波滤波去除椒盐噪声后仍然存在少量的椒盐噪声在图片上,基本不影响图像的整体效果,并且图像清晰度高。

小波滤波的过程可以看作是一个计算的过程,他的时效性比较好。

时效性就是指滤波的速度,小波滤波可以较快的给出结果这个在实际应用中很重要。

从试验的结果来看,自适应滤波去噪效果比线性滤波要好,对保留图像的边缘信息和高频部分很有用,对含有白噪声的图像滤波效果最佳;中值滤波对椒盐噪声有很好的滤除作用;小波去噪对服从高斯分布的噪声有很好的去噪效果,并且可以很好地保留原图像的细节信息。

四结论

图像作为人们认识世界的最主要的信息源之一,在当今的信息社会中占据着越来越重要的地位。而现实中的图像多为含噪图像,去噪的质量好坏决定了对图像所作的后续工作的成败。除此之外,相关学科的发展和新兴学科的出现,也为图像去噪的发展注入了新的活力。小波函数及小波变换近乎完美的数学特性使得它日益受到人们的重视。本文在前人提出的有关小波应用的基础上,展开更加系统、深入的分析和研究。

参考文献

[1] 吴玉莲, 王鹏, 冯象初. 基于中值滤波和偏微分方程的图像去噪[J]. 福建电脑, 2008.

[2] 陈华, 陈婷, 谢敏. 基于小波包分析二次阈值去噪图像复原方法[J]. 光学技术, 2008.

[3]张丰德《MATLAB数字图像处理》机械工业出版社.

[4]张强《精通MATLAB图像处理》电子工业出版社.

[5]王正林《MATLAB从零开始学》基于中值滤波和小波变换的图像去噪.

图像阈值分割及去噪的实现毕业论文

图像阈值分割及去噪的实现毕业论文 目录 摘要 (1) Abstract (2) 目录 (3) 引言 (4) 第一章图像噪音 (5) 第二章图像缩放和灰度变换处理 (6) 2.1图像缩放处理方法 (6) 2.2图像灰度变换处理 (6) 第三章图像阈值分割 (8) 3.1 图像分割技术概要 (8) 3.2图像阈值分割原理 (8) 3.3图像阈值分割方法 (9) 第四章图像去噪 (12) 4.1 滤波原理 (12) 4.2滤波实现方法 (12) 第五章仿真实验结果和讨论 (16) 5.1图像二值化算法对比 (16) 5.2图像去噪效果对比 (17)

结论 (21) 参考文献 (22) 致谢语 (23)

引言 数字图像处理是从 20 世纪 60 年代以来随着计算机技术和 VLSI 的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用上都取得了巨大的成就,并引起各方面人士的广泛重视[1]。首先,视觉是人类最重要的感知手段,图像又是视觉的基础。因此数字图像成为心理学、生物医学、计算机科学等诸多方面的学者研究视觉感知的有效工具。其次,数字图像处理在军事、遥感、工业图像处理等大型应用中也有不断增长的需求。为适用特殊的场合和获得较好的视觉效果,常常需要一种有效的方法来对图像进行处理。 数字图像处理技术从广义上可看作是各种图像加工技术的总称。它包括利用计算机和其他电子设备完成的一系列工作,如图像分割、图像变换、图像去噪等。本文主要是在整合各种优秀的阈值分割和滤波算法的基础上,实现对图像进行分割和去噪,达到处理和读取图像的目的。在MATLAB仿真的基础上,比对各种分割和去噪方法的优缺点。

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

数字图像处理毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

基于变换域和基于特征点的图像配准方法毕业论文

基于变换域和基于特征点的图像配准 方法毕业论文 目录 摘要 ...................................................................... III Abstract.................................................................... V 第一章绪论.. (1) 第一节引言 (1) 第二节论文研究的意义 (1) 第三节图像拼接技术概述 (2) 1.3.1 图像拼接技术的发展历程 (2) 1.3.2 图像拼接技术的国研究现状 (3) 第四节本文主要研究容和组织结构 (3) 1.4.1 主要研究容 (3) 1.4.2 论文组织结构 (4) 第二章图像拼接流程 (6) 第一节图像拼接的步骤 (6) 第二节主要拼接步骤简介 (7) 第三章图像预处理 (9) 第一节相机成像原理模型 (9) 3.1.1 摄像机垂直转动 (10) 第二节图像预处理的容 (12) 第三节本章小结 (13) 第一节相位相关度法原理 (14) 第二节基于二幂子图像的FFT对齐算法 (15) 4.2.1 二幂子图像 (15) 4.2.2 二幂子图像的对齐 (16)

第三节本章小结 (17) 第五章图像配准 (18) 第一节图像配准的定义及关键要素 (18) 5.1.1 图像配准的原理和图像变换 (18) 5.1.2 图像配准的步骤 (19) 5.1.3 图像配准的关键要素 (21) 第二节常用的配准方法分析 (23) 5.2.1 基于灰度信息的图像配准方法 (23) 5.2.2 基于变换域的图像配准方法 (24) 5.2.3 基于特征的图像配准方法 (24) 5.2.4 配准算法的优缺点分析 (24) 第三节基于变换域的图像配准方法 (26) 5.3.1 相位相关技术原理 (26) 5.3.2 傅里叶算法步骤 (27) 第四节基于特征的图像配准方法 (28) 5.4.1算法流程 (28) 5.4.2 算法原理 (29) 第六节本章小结 (38) 第六章图像融合 (39) 第一节直接平均融合法 (39) 第二节多分辨率样条技术融合法 (40) 第三节加权平均融合法 (40) 第四节合方法优缺点分析 (42) 第五节实验结果及分析 (43) 第六节本章小结 (45) 第七章图像拼接的实现与应用 (46) 第一节图像拼接的实现 (46) 第二节图像拼接的具体仿真过程 (48) 第三节图像拼接的应用 (51)

数字图像处理系统毕业论文

数字图像处理系统毕业论文基于ARM的嵌入式数字图像处理系统设计

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

最新图像去噪处理的研究及MATLAB仿真

图像去噪处理的研究及M A T L A B仿真

目录 引言 (1) 1图像去噪的研究意义与背景 (2) 1.1数字图像去噪研究意义与背景 (2) 1.2 数字图像去噪技术的研究现状 (3) 2 邻域平均法理论基础 (3) 2.1 邻域平均法概念 (3) 3 中值滤波法理论基础 (3) 3.1中值滤波法概念 (3) 3.2中值滤波法的实现 (4) 4中值滤波法去噪技术MATLAB仿真实现 (4) 4.1Matlab仿真软件 (4) 4.2中值滤波法的MATLAB实现 (5) 4.3邻域平均法的MATLAB实现 (6) 总结 (8) 全文工作总结 (8) 工作展望 (8) 参考文献 (9) 英文摘要 (10) 致谢语 (11)

图像去噪处理的研究及MATLAB仿真 电本1102班姓名:杨韬 指导老师:刘明军摘要:图像是生活中一种重要的信息来源,通过对图像的处理可以帮助我们了解信息的内在信息。数字图像去噪声涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系非常完善,且其应用很广泛,在医学、军事、艺术、农业等都有广泛且充分的应用。MATLAB是一种高效的工程计算语言,在数值计算、数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。MATLAB是一种向量语言,它非常适合于进行图像处理。 本文概述了邻域平均法与中值滤波法去噪的基本原理。对这两种常用的去噪方法进行了分析比较和仿真实现。最后根据理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。为实际工作中的图像处理,去噪方法的选择和改进提供了数据参考和依据。 关键字:邻域平均法;中值滤波法;MATLAB 引言 图像因为一些原因总会被外界干扰,所以图像质量往往不是很好,而质量不好的图片又不容易进行进一步的处理。在对图像的地处理过程中,图像去噪是很重要的一个环节,所以想对图像进行进一步的处理,对图像的去噪就变得重要起来,所以很多研究人员对这一课题进行了比较全面的研究,图像的处理最传统的方法是在空域中的处理,也就是说在图像的空间范畴内对图像质量进行改善。也可以对图像进行平滑处理等,这属于第一类图像处理方法。 中值滤波法与邻域平均法是出现最早的去噪手段,而且由于其具备良好的空频特性,实际应用也非常广泛。其中图像的邻域平均去噪方法是众多空域图像去噪方法中效果最好的去噪方法。基本思想就是用邻近的像素平均值来代替噪声的像素,且图像尺寸越大,去噪

数字图像处理论文,图像去噪

数字图象处理(论文) 学 院 计算机学院 专 业 计算机科学与技术、管路敷设技术标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

图像去噪算法论文 图像在生成或传输过程中常常因受到各种噪声的干扰和影响而使图像爱那个的质量下降,对后续的图像处理(如分割、理解等)产生不利影响。因此,图像爱那个去噪是图像处理中的一个重要环节。而对图像去噪的方法又可以分为两类,一种是在空间域内对图像进行去噪,一种是将图像变换到频域进行去噪的处理。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声,还有加性、乘性噪声等,如上,减少噪声的方法,可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法。图像频率域去噪方法是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。在这节课上我学习的是借助Matlab 软件对图像进行处理。在图像去噪方面,在 Matlab 中常用的去噪函数有 imfilter( ), wiener2( ), medfilt2( ), ordfilt2( )以及小波分析工具箱提供的wrcoef2( )和 wpdencmp( )等,好像随着Matlab 的发展,有些函数变了,不过早大致上变化不大,也有可能是我下载的Matlab 不完整吧,总之在实践过程中有些错误让我很纠结。因为我是刚接触到这类知识,所以很多都还不懂,虽然从课上有了一些了解,但我觉得还远远不够,然而最近实在时间不多,只、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

关于车牌识别图像预处理技术的研究

关于车牌识别图像预处理技术的研究 【摘要】随着交通事业的飞速发展,ITS系统在道路交通领域占有极其重要的位置。通过智能化的车牌识别方式,可以对机动车进行自动进行记录、查验、监控、报警,在很多情况下可以有很好的适用性。本文主要介绍了在图像预处理阶段利用图像灰度化以及一种图像灰度增强方法初步处理被捕捉图像,随后叙述了边缘检测的工作原理及意义,并对传统边缘检测算子进行了分析和介绍,并描述了各个算子在实际应用的优点和不足。 【关键词】车牌识别;图像处理;灰度拉伸;边缘检测 1.引言 在摄像机捕获图像的过程中,因受环境因素的影响,图片预处理通过必要的技术手段把被识别车牌图像进行标注,以提高车牌识别系统的性能。 相应的技术手段有车牌图像的灰度图转换、边缘检测、二值化处理、图像增强、形态学处理等技术[1-3]。 2.灰度化(Image grizzled processing) 灰度化的基本方法是将彩色图片的各个颜色分量R、G、B分量取其最大值或平均值并代替之这样就消除了图像中每个像素点的颜色差异,仅仅通过亮度值大小来区别像素点。对于现有主流的图像像素颜色划分有256个亮度级的灰度图像,其灰度值最高值为255就代表白色,灰度值最低值为0就代表黑色[2]。 使用函数H(x,y)描述像素点(x,y)的灰度值,R(x,y)表示像素点(x,y)的红色分量的色度值,G(x,y)表示像素点(x,y)的绿色分量的色度值,B(x,y)表示像素点(x,y)的蓝色分量色度值。可用如下公式进行灰度转换。 3.灰度拉伸(Gray stretch) 灰度拉伸主要是以图像中的像素点为着眼点对图像进行适当的变换从而达到对噪声的去除或者削弱的目的。通过一系列的变换处理,从而使得图像能够被计算机更好地识别。 5.总结 本文详细叙述了图像灰度化以及一种图像灰度增强方法初步处理被捕捉图像,随后叙述了边缘检测的工作原理及意义。在本文中采用Canny算子对图像边缘进行纹理、轮廓、区域定位等特征的提取的同时对图像中的噪声进行抑制。基本达到图像预处理的目的,同时也应该认识到,也有很多的方法同样适用。

基于Matlab的数字图像处理系统毕业设计论文

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGACPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

数字图像处理论文

华东交通大学理工学院课程设计报告书 所属课程名称数字图像处理期末论文分院电信分院专业班级14 计科 学号20140210440214 学生姓名习俊 指导教师熊渊 2016 年12 月13 日

摘要 数字图像处理是用计算机对图像信息进行处理的一门技术,主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。本文论述了用Matlab编程对数字图像进行图像运算的基本方法。图像运算涵盖了MA TLAB程序设计、图像点运算、代数运算、几何运算等基本知识及其应用(点运算是图象处理的一个重要运算)。以及对图像加入噪声、图像缩放和图像旋转。 关键词图像点运算;代数运算;几何运算;图像缩放;图像旋转

目录 绪论 第一章图像运算 2.1点运算 2.2代数运算 2.3几何运算 第二章程序设计与调试 结束语 参考文献

绪论 早期的计算机无论在计算速度或存储容量方面,难于满足对庞大图像数据进行实时处理的要求。随着计算机硬件技术及数字化技术的发展,计算机、内存及外围设备的价格急剧下降,而其性能却有了大幅度的提高。 图像信息是人类获得外界信息的主要来源,数字图像处理技术越来越多的应用于人们日常工作、学习和生活中。和传统图像处理相比,它具有精度高、再观性好、通用性和灵活性强等特点。在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中也得到了广泛应用。 近几年来,随着计算机和各个相关领域研究的迅速发展,科学计算可视化、多媒体技术等研究和应用的兴起,数字图像处理从1个专门领域的学科,变成了1种新型的科学研究和人机界面的工具。数字图像作为一门新兴技术,它是二十一世纪五十年代数字计算机发展到相当水平后开拓出来的计算机应用新领域,它把图像转换成数据矩阵存放于计算机中,并进行滤波、增强、删除等处理,包括图像输入输出技术、图像分析、变换于处理技术以及图像识别和特征提取等方面。六十到七十年代数字处理技术的理论和方法更加完善,其准确性、灵活性和通用性逐步提高。 在日常生活中,电脑人像艺术,电视中的特殊效果,自动售货机钞票的识别,邮政编码的自动识别和利用指纹、虹膜、面部等特征的身份识别等均是图像处理的广泛应用。 进行数字图像处理时主要涉及数字图像点运算处理,针对图像的像素进行加、减、乘、除等运算,有效地改变了图像的直方图分布。

图像处理毕业设计题目

图像处理毕业设计题目 篇一:数字图像处理论文——各种题目 长春理工大学——professor——景文博——旗下出品1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识

别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容: 基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1> 对原始参考图和实时图像进行去噪处理; 2> 对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑;

(完整版)基于matlab的数字图像处理毕业设计论文

优秀论文审核通过 未经允许切勿外传 摘要 数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。关键词:MATLAB,数字图像处理,图像增强,二值图像

Abstract Digital image processing is an emerging technology, with the development of computer in various areas on the processing speed requirement is relatively ),线性量化(liner quantization ),对数量化,MAX 量化,锥形量化(tapered quantization )等。 3. 采样、量化和图像细节的关系 上面的数字化过程,需要确定数值N 和灰度级的级数K 。在数字图像处理中,一般都取成2的整数幂,即: (2.1) (2.2) 一幅数字图像在计算机中所占的二进制存储位数b 为: *log(2)**()m N N b N N m bit == (2.3) 例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。随着N 和m 的增加,计算机所需要的存储量也随之迅速增加。 由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N 值)以及量化的级数K(或m 值)。N 和K 的值越大,图像越清晰。 2.2 数字图像处理概述 2.2.1 基本概念 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的

图像去噪论文要点

图像去噪 内容摘要 图像是人类传递信息的主要媒介。然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。 关键词:小波变换中值滤波去噪

目录 序言 (1) 一、小波分析 (1) (一)小波分析的发展 (1) (二)小波变换 (1) (1)小波函数 (2) (2)小波函数的性质 (3) (三)均值滤波与中值滤波 (3) (1)均值滤波 (3) (2)中值滤波 (3) 二、数学基础 (4) (一)希尔伯特变换 (4) (二)傅里叶变换 (5) 三、小波去噪与中值滤波去噪 (6) (一)MATLAB介绍 (6) (二)小波去噪与中值滤波去噪 (7) 四、总结 (10) 参考文献 (11)

序言 图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像在采集、传输和转换中常常受到外部环境的干扰。图像中夹杂了噪声和混响干扰,不仅使得图像质量下降,影响了图像的视觉效果,而且给图像的进一步处理也带来了不便。为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。 一、小波分析 (一)小波分析的发展 小波分析是近年来国际上掀起新潮的一个前沿研究领域,是继Fourier分析的一个突破性进展,它给信号处理领域带来了崭新的思想,提供了强有力的工具,在科技界引起了广泛的关注和高度的重视。探讨小波的新理论、新方法以及新应用成为当前一个非常活跃和富有挑战性的研究领域。 小波的起源可以追溯到本世纪初。1910年,Haar最早提出了规范正交小波基的思想,构造了紧支撑的正交函数系--Haar 函数系。1946年,Gabor提出了加窗 Fouricr变换(Gabor:变换)理论,使得对信号的表示具有时频局部化性质,1981 年,Morlet 仔细研究了Gabor变换方法,对Fourier变换和加窗Fourier变换的异同、特点及函数构造作了创造性的研究,首次提出了“小波分析”的概念,并建立了以他的名字命名的Morlet小波。1986年,Mallat和 Meyer提出了多分辨分析的理论框架,为正交小波基的构造提供了一般的途径,多分辨分析的思想是小波的核心,至此,小波分析才真正形成为一门学科。1988 年,Daubechies 给出了具有紧支集和任意有限正则度的小波函数的一般构造方法,该小波得到了非常广泛的应用。1989年,随着小波理论的进一步发展,Mallat提出了实现小波变换的快速算法一 Mallat塔式算法,为小波应用铺平了道路。1990年,崔锦泰和王建中构造出了基于样条函数的正交小波函数,并讨论了具有最好局部化性质的多尺度分析生成函数及相应的小波函数。同年,Wickethauser和Coifman等人提出了小波包的概念,并将Mallat算法进一步深化,得到了小波包算法。使得小波变换的分析性质有了很大的改善。1994年,Goodmkan 等人在 r 元多分辨分析基础上建立了多重小波的基本理论框架,进一步丰富了小波理论。 (二)小波变换 小波变换作为一种多分辨率分析方法,具有信号“显微镜”的美称。近年来一直受到人们的关注。图像去噪是小波应用范围中的一个部分,噪声主要分布在高频区域,但同时图像的细节也分布在高频区域。在传统的基于傅氏变换的信号去噪方法中,当信号和噪声的频带重叠部分小时可以轻易地不损失信号的条件下去除噪声,但是当重叠区域很大时这种方法就无能为力了。由于图像细节和噪声分布在高频段,利用传统去噪方法可能破坏图

基于matlab的数字图像处理本科毕业设计论文

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

数字图像处理论文——各种题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

相关主题
文本预览
相关文档 最新文档