当前位置:文档之家› 地物光谱反射率的测定

地物光谱反射率的测定

地物光谱反射率的测定
地物光谱反射率的测定

地物光谱反射率的测定

山西师范大学实验报告

时间:2011年9月20日

学院:城环学院班级:0904班姓名:任红霞实验名称:地物光谱反射率的测定气压:常压温度:15?

实验目的:

1(学习地物光谱反射率的测定方法;

2(认识地物光谱反射率的规律。

实验仪器:

1(便携式地物波谱仪

2(标准参考板

实验步骤:

(光谱仪、计算机充电。 1

2(连接电池、网线、探头电源、光纤,准备好白板。

3(打开光谱仪电源,然后打开计算机电源,并启动RS3软件。 4(在软件上调整光谱平均、暗电流平均和白板采集平均次数。 5(在软件中选择或填写需要存储数据的路径、名称和其他内容。 6(开始测量:

(1)打开探头电源,探头放在白板上面,点击OPT优化;

(2)探头仍然对准白板,点击WR采集参比光谱。此时,软件自动进入反射率测量状态。

(3)探头移向被测目标的测量位置,按空格键存储采集到的目标反射光谱。

7(先关闭计算机再关闭仪器。

8(分析实测结果:

(1)准确绘出地物光谱反射率曲线;

玄武岩反射率曲线

页岩反射率曲线

(2)根据地物光谱反射率曲线,比较地物光谱曲线特征; 页岩和玄武岩光谱曲线比较

玄武岩

页岩10000

8000

6000

DN4000

2000

350-2000

444wavelength538 632

通过图片可以明显看出,玄武岩和页岩在不同波段有相同的变化规律,而726

820玄武岩的反射率在各波段普遍低于页岩. 914

1008

1102

1196

1290

1384

1478

1572

1666

1760

1854

1948

2042

2136

2230

2324

2418

(3)分析实习过程中可能引起误差的因素。

在波长为1000纳米及1850纳米附近,曲线有较大的跳跃,造成这样现象的原因,可能是由于预热时间不充足,电压不稳定,也有可能是由于不同波段的光纤出现交叉.

地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定 一、实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二、原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()()() λρλλλρs Vs V ?= 式中, ()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量 物体和标准板的仪器测量值。 三、实验仪器 1、可见光-近红外光谱辐射计,波长范围0.4—2.5μm(有0.4—1.1μm 或1.3—2.5μm 二种仪器),仪器性能稳定,携带方便,数据提取容易。表1.1列出了目前常用的光谱仪。 2、标准参考板(白板或灰板)。 表1.1常见的光谱辐射仪

四、实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距,并充满仪器视场,保证板面清洁。 2、记录测量目标基本信息 主要内容如下: 土壤:土类、土属、土种;地貌类型、成土母质、侵蚀状况;干湿度、粗糙度等。 植被:植物名称、所属类别、覆盖率、生长状况、叶色、高度等。 水体:水体名称、水体状况、水色、水温、透明度、泥沙含量、叶绿素含量、污染状况等。 人工目标:目标名称、内容描述、估算面积、几何特征、表面颜色、坡度、坡面等。 岩矿:岩矿名称、所属类别、植被覆盖及名称、土壤覆盖及名称、岩矿露头面积、所属构造、地质年代、风化状况等。 3、记录环境参数 主要内容如表1.2,内容由教学教师定,制成表格填写。见附表。 4、安装仪器开始测试 ①对准标准板,读取数据为Vs。 ②移开标准板对准地物,读取数据Vg。 ③重复步骤①②,测量5—9次,记录数据,计算平均值。 ④更换目标,做好信息记录,重复①—③步骤。 ⑤整理数据,根据上述公式计算反射率 ()λ ρg ,标准 ()λ ρs 为已知值。 仪器安装注意事项: 测量高度:仪器保持水平架设,离被测地物表面距离不小于1m。 几何关系:仪器轴线与天顶的倾斜角<±2°,标准面水平放置。

实验1——地物光谱的测试

实验1 可见光与近红外波谱测试 1.1实习概述 按照国家光谱数据库数据测试参考标准选择典型进行地物反射、发射光谱测试。根据所测的光谱曲线特征选择最佳遥感波段和最佳遥感时间。 1.2实习目的 ①掌握地物反射、发射光谱特性的基本概念,特点; ②掌握典型地物光谱的测试方法和实验数据分析处理的基本流程和方法; ③分析影响地物波谱特性测定的因素;了解地物表面不同几何状况、含水状况、 风化状况、粗糙程度对反射、发射光谱的影响;了解多种地物光谱随时间变化的特征与规律;了解入射和观测角度变化对地物光谱的影响。 ④培养学生理论联系实际及知识的综合运用能力,为后续专业课程学习创造条 件。 1.3实习任务 测量试验区的植被、水、土壤、道路的光谱特性。要求测定不同植被、水、土壤、道路的波谱特性曲线,即每类地物至少选择5个小类(或样本)。 ①清水、营养化水、污染水反射光谱、发射光谱测试与特征分析; ②不同覆盖度、不同长势植被覆盖反射光谱、发射光谱测试与特征分析; ③城乡非自然目标反射光谱、发射光谱测试与特征分析; ④土壤反射光谱、发射光谱测试与特征分析; ⑤岩石反射光谱、发射光谱测试与特征分析。 要求:上述5个实验根据具体情况必作2个,选作1个。

1.4设备(软件)及资料准备 1.4.1 实习设备及软件 测定地物反射光谱特性的仪器是可见光、近红外光谱仪。仪器由收集器、分光器、探测器和显示或记录器组成。测定地物发射光谱特性的仪器是热红外波谱仪、热红外辐射计。 1.4.2 实习前准备工作 1.4. 2.1 光谱测试仪器的标定 测量仪器在采集数据前必须通过指定的定标实验室的定标检测,检验仪器的工作性能。仪器的定标在室定标和实验场地现场定标,并在提交数据时附上相应测量仪器的定标报告。若对同一种典型地物(农作物、岩矿、水体等)的相同观测项目采用不同型号的测量仪器,则必须在观测实验前到指定的实验室或实验场进行统一校准和比对:即在相同的条件下,同时测量同一目标,进行归一化处理,分析各仪器的误差,以精度高的仪器为准,进行误差订正,并在提交数据时应附上相应测量仪器的比对报告。其中波谱仪与辐射计的性能要求为: ⑴可见光、近红外波段波谱仪 ①波谱仪读数时间漂移最大值,在0.38-1.1μm 围平均不得超过3%; ②波谱仪的读数的线性度误差不得超过1%; ③波谱仪在0.38-1.1μm 围波长绝对误差平均不得超过0.8nm。 ⑵短波红外波段波谱仪 ①在1.1-2.5μm 围波谱仪读数时间漂移最大值,平均不得超过5%; ②波谱仪读数的线性度误差不得超过3%;

光谱学与光谱分析解析

光谱学与光谱分析990342 微波消解一氢化物发生原子吸收光谱法测定 食物中的汞 鲁丹李海湾 摘要本文采用微波消解、氢化物发生原子吸收光谱法测定食物中的汞,研究了微波消解样品的最佳条件,并和国家标准消解方法进行了比较,结果令人满意。本方法简便、快速,重现性好,准确度高,灵敏度为0.43μg/L,检测限为0.35μg/L,相对标准偏差为2.8%,回收率为93.5%~103.0%。 主题词微波消解,氢化物发生原子吸收3 食物,汞 前言 汞是环境中重要的有毒元素[1],在自然界中,汞由于其性质活泼易于蒸发而造成对环境、生物及食品等的污染,因此,微量汞的测定直接关系到人们的健康。要准确测定样品中的汞,关键之一是样品的消解。采用干法消化法或湿法消化法消解样品,因其为间接、敞开式加热,不仅费时费电,还容易损失易挥发的汞元素,带进干扰。采用微波消解,由于微被辐射引起的内加热和吸收极化作用所达到的较高温度和压力,使消解速度大大加快,消解效率大大提高,并减少了氧化剂的用量[2]:又由于是在密闭的溶样罐中消解,避免了汞的挥发损失。 本文介绍了微波消解、氢化物发生原子吸收光谱法测定食物中汞含量的方法,研究了微波消解样品的最佳条件,并和国家标准消解方法进行了比较。本方法试剂用量少、溶样速度快、样品分解完全、待测元素无挥发损失、无污染、空白值低、灵敏、准确、精密度好、检测限低,特别适合于柔的测定。 1 实验部分 1.1基本原理 京蒸气对波长253.7nm的共振线有强烈的吸收作用。样品经酸消解使汞转化为离子状态,在酸性介质中与硼氢化钾发生强还原反应,生成气态汞原子、由载气(高纯氧气〉将汞原子导入石英管,在常温下,对录空心阴极灯发射的特征谱线产生吸收,在一定浓度范围内其吸收值与汞含量成正比,与标准系列比较定量。 1.2仪器 AA4701型原子吸收光谱仪(日本岛津),带HVG-1氢化物发生器,COMPAQ486微机工作站,user Jet 5L打印机,汞空心阴极灯; MK-1型压力自控微波溶样系统。1.3试剂 实验用水为去离子水,试剂为优级纯。 1.硝酸-重铭酸钾溶液(5+0. 05+94.5);称取0.05g重铬酸钾, 溶于水中,加入5ml硝酸,用水稀释至l00mL。 2.汞标准储备液: 准确称取0.1354g经干燥过的二氧化汞,溶于硝酸-重铬酸钾溶液中,并移入l00mL容量瓶中,以硝酸-重铬酸钾溶液稀释至刻度,摇匀。此溶液每毫升含汞1.0mg。 3.汞标准中间液:将2中液用硝酸-重铬酸钾溶液稀释,使含汞为10.0μg/mL。

植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体与其她的典型地物,植被对电磁波的响应就是由其化学特征与形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素就是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总就是呈现“峰与谷”的图形,可见光谱内的谷就是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0、45um与0、67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区与红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素与叶黄素在0、45um(蓝色)附近有一个吸收带,但就是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区与红区吸收带减弱,常使红波段反射率增强,以至于我们可以瞧到植物变黄(绿色与红色合成)。 从可见光区到大约0、7um的近红外光谱区,可瞧到健康植被的反射率急剧上升。在0、7-1、3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0、7-1、3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的 40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0、76um附近,反射率急剧上升,形成“红边”现象,这就是植物曲线的最为明显的特征,就是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这就是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

不同积雪及雪被地物光谱反射率特征与光谱拟合_张佳华

专题二地表反照率 不同积雪及雪被地物光谱反射率特征与光谱拟合 张佳华1* 周正明1王培娟1沙依然2许云1孟倩文1 (1. 中国气象科学研究院,北京100081;2. 新疆气候中心,乌鲁木齐,830002) 摘要:积雪覆盖是影响全球气候、水循环的重要特征参数,准确测量和分析积雪光谱特征是提高遥感反演积雪特征的重要途径。本文在试验场基于野外光谱辐射仪测定了北京地区多种地表积雪和雪被地物的光谱,并对测得光谱数据进行分析。结果表明,对于纯雪光谱,反射率的峰值明显集中在从可见光波段到800n m 波段位置,积雪光谱具有反射率稳定较高的特点;在1030nm附近,光谱出现了一个明显的吸收谷。由于水的强吸收,积雪光谱在1500nm和2000nm附近的反射率几乎降到了0;在300-1300nm、1700-1800nm、2200-2300nm处,老雪和融化的雪反射峰比起新雪有不同程度的下降,最低为压实冻结的冰雪。对积雪和植被混合象元的光谱特性分析表明:雪被地物(包括覆有积雪的松叶和有积雪背景的松叶),由于受积雪的影响下,在350-1300nm光谱的反射率有所增加,但主要的植被光谱特性仍然保留得比较完整。最后,本文依据积雪、植被和混合光谱的定量分析,建立了混合光谱的拟合方程,结果显示模拟的混合光谱与实测光谱有较好的相关性(复相关系数R2=0.952)。 关键词:积雪; 光谱特征; 光谱拟合; ASD野外光谱仪 Spectrum reflectance characteristics of different snow and snow –covered land surface objects and mixed spectrum fitting ZHANG Jia-hua1*,ZHOU Zheng-ming1 , WANG Pei-juan1, SHA Yi-ran2, XUN Yun1, MENG Qian-wen1 (1. Chinese Academy of Meteorological Sciences, Beijing 100081,China; 2. Xinjiang Climate Center of, Urumqi,830002, China ) *通讯作者简介:张佳华 联系方式:zhangjh@https://www.doczj.com/doc/5418425386.html, 33

地物光谱反射率的测定

山西师范大学实验报告 时间:2011年9月20日 学院:城环学院班级:0904班姓名:任红霞实验名称:地物光谱反射率的测定气压:常压温度:15℃ 实验目的: 1.学习地物光谱反射率的测定方法; 2.认识地物光谱反射率的规律。 实验仪器: 1.便携式地物波谱仪 2.标准参考板 实验步骤: 1.光谱仪、计算机充电。 2.连接电池、网线、探头电源、光纤,准备好白板。 3.打开光谱仪电源,然后打开计算机电源,并启动RS3软件。 4.在软件上调整光谱平均、暗电流平均和白板采集平均次数。 5.在软件中选择或填写需要存储数据的路径、名称和其他内容。 6.开始测量: (1)打开探头电源,探头放在白板上面,点击OPT优化; (2)探头仍然对准白板,点击WR采集参比光谱。此时,软件自动进入反射率测量状态。 (3)探头移向被测目标的测量位置,按空格键存储采集到的目标反射光谱。7.先关闭计算机再关闭仪器。 8.分析实测结果: (1)准确绘出地物光谱反射率曲线;

玄武岩反射率曲线 页岩反射率曲线 (2)根据地物光谱反射率曲线,比较地物光谱曲线特征; -2000 0200040006000 8000100003504445386327268209141008110211961290138414781572166617601854194820422136223023242418 wavelength D N 玄武岩页岩 通过图片可以明显看出,玄武岩和页岩在不同波段有相同的变化规律,而玄武岩的反射率在各波段普遍低于页岩.

(3)分析实习过程中可能引起误差的因素。 在波长为1000纳米及1850纳米附近,曲线有较大的跳跃,造成这样现象的原因,可能是由于预热时间不充足,电压不稳定,也有可能是由于不同波段的光纤出现交叉.

各种物质漫反射光谱的测定

093858 张亚辉 应化 实验三:各种物质漫反射光谱的测定 一.实验目的 通过各种样品的紫外-可见漫反射光谱测定,掌握紫外-可见漫反射原理,熟悉InstantSpec BWS003的使用。 二.实验原理 光是一种电磁辐射,具有波粒二相性。太阳光是全色光,人眼只能看到380-750nm 的光,称为可见光。 紫外-可见漫反射光谱与紫外-可见吸收光谱相比,所测样品的局限性要小很多。后者符合朗伯-比尔定律,对透射光进行分析,溶液必须是稀溶液才能测量,否则将破坏吸光度与浓度之间的线性关系。而前者,紫外-可见漫反射光谱则可以浑浊溶液、悬浊溶液及固体和固体粉末等,试样产生的漫反射符合Kublka —Munk 方程式 式中K -吸收系数 S -为散射系数 R∞ 表示无限厚样品的反射系数R 的极限值,其数值为一个常数。 实际上,反射系数R 通常是采用与一已知的高反射系数的标准物质(本实验采用PTFE ,其反射系数在紫外可见光区高达98%左右)比较来测量,测定R∞(样品)/ R∞(标准物质)比值,将此比值对波长作图,构成一定波长范围内该物质的反射光谱。 积分球是漫反射测量中的常用附件之一.其内表面的漫反射物质反射系数高达98%,使得光在积分球内部的损失接近零。漫反射光是指从光源发出的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。这些光在积分球内经过多次漫反射后到达检测器. 2(1)/2/R R K S ∞∞ -=

三.实验仪器和试剂 1.InstantSpec BWS003 紫外可见漫反射光谱仪; 2.有颜色的纸张;

3.不同颜色的树叶; 4.手臂上的某处皮肤(测试者自己选择)。 四.实验步骤 1.双击打开软件,从菜单栏中选择“Option”-“Enable Reference Material File”-“Set”。 2. 设置“Integration Time”为800。 3. 点击“Open FlashLight”。 4. Dark scan (1)将port reducer装在取样口,拧紧螺丝; (2)将light trap罩在取样口上。 (3)点击软件上的“dark scan”。 5. Reference scan] (1) 将Spectralon Reference Standard(参比)放置在样品口 (2)点击“Reference Scan”。 6. Sample scan (1)取下参比,将样品放置在取样口,点击“Acquire one Spectrum”; (2)选择“%T/R”得到漫反射光谱曲线。 (3)换另一个样品,点击“Acquire Overlay”得到该样品的漫反射光谱曲线。 五.数据处理 以λ为横坐标,R%为纵坐标作所测样品的反射光谱图。 1)下面为红、黄、蓝三种纸片的漫反射光谱图 从图中可看出红黄蓝分别在其对应波长处的反射率最大,并且各种颜色对应的最

实验一 地物光谱反射率的野外测定(更新)汇总

实验一 地物光谱反射率的野外测定 一 实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二 原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()()()λρλλλρs Vs V ?= 式中, ()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量物体和 标准板的仪器测量值。 三 实验仪器 1、ISI921VF-256野外地物光谱辐射计,波段范围为可见-近红外的380~1050nm ,仪器性能稳定, 携带方便,数据提取容易。 2、标准参考板(白板或灰板)。 图1ISI921VF-256野外地物光谱辐射计 3、仪器介绍 3-1主机面板结构

图2.主机面板示意图 3-2光学头部结构

图3.光学头部 如图所示,光学头部上有以下部件: 电缆: 用于连接主机箱 镜头: 配有与主光轴平行的半导体激光指示器 把手: 手持之用,上置有“测量”和“指示”按钮(大拇指部位) 支架安装孔: 2个M4螺孔,用于固定安装 ※摄像头: 同步显示功能的图象获取;为选择配置 3-3 基本配置连接 注意:所有电气连接必须在关电的状态下进行,否则可能引起设备损害! 3-3-1安装 如测试采用手持操作方式,则无需任何机械安装。 如采用手持测量杆,需事先使用两个M4×10螺钉将测量头部固定于测量杆顶部,并调整好所需的测量角度。 3-3-2测量工作 测量工作状态仅需主机和测量头部,无需连接电脑;如在非移动场合进行长时间连续测量,并欲同步查看测量曲线,也可同时连接笔记本或台式电脑。 3-3-3数据传输 数据传输时无需连接测量头部,只需使用通讯电缆连接主机的通讯端口和计算机的USB 口。电缆连接工作必须在关机状态下进行。 3-3-4 充电 充电时将充电器连接220V 电源,使用充电电缆连接充电器和主机。 四 实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距, 并充满仪器视场,保证板面

地物光谱仪在野外光谱测量中的使用解析

地物光谱仪在野外光谱测量中的使用(一) 论文关键词地物光谱仪;野外测量;工作规范 论文摘要在遥感技术中,为了更精确地判读多光谱图像,掌握地面上各种地物的光谱辐射特性是十分重要的。介绍FieldSpec?悖HandHeld手持便携式 光谱分析仪的测量原理方法、工作规范及注意事项,概要地说明了影响光谱测量的因素。 在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。对野外地物光谱进行测量,我们使用的是美国 ASD公司FieldSpec?悖HandHeld手持便携式光谱分析仪。其主要技术指标为:波长范围为 300~1100nm光谱采样间隔为1.6nm, 灵敏度线性:土1% FieldSpec?悖HandHeld手持便携式光谱分析仪可用于户外目标可见一近红外波段的光谱辐射测量。该光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度;利用漫反射参考板对比测量,可获得目标的反射率光谱信息;通过对经过标定的漫反射参考板的测量,可获得地面的总照度以及直射、漫射照度光谱信息;利用特定的辅助测量机械装置,可获得地面目标的BRDF(方向反射因子)光谱信 息参数。 为了使地物光谱数据可靠和高的质量,使数据便于对比和应用,有必要提出地物光谱测试规范和测量要求。 1仪器的标准和标定 1.1光谱分辨率 实用分辨宽度对0.04~1.10卩m小于5nm 1.1~2.5卩m小于15nm。对于FieldSpec?悖HandHeld手持便携式光谱分析仪,起始波长为325nm终止波长 为1075nm波长步长为1nm则光谱分辨率取3nm 1.2线性标定 线性动态范围有3个量级,最大信号对应为0.8~1.0,太阳常数照明的白板(V 90%)峰值响应输出。线性误差小于 3%(回归误差)。 1.3光谱响应度的标定 反射率小于、等于15%(大于1%)的目标,信噪比应大于10。反射率大于15%的目标,信噪比应大于20。 2野外测定方法与工作规范 2.1目标选取 选取测量目标要具有代表性,应能真实反映被测目标的平均自然性。对于植被冠层及用物的测量应考虑目标和背景的综合效应。 2.2能见度的要求

地物光谱反射率分析

实习报告 实习题目:地物光谱测定 实习时间,地点:天山堂前面空地贺兰堂地信专业机房 实习目的:认识地物光谱反射率的规律,分析典型地物的光谱特征 使用仪器:地物光谱分析仪 测量目标的基本信息:草地,裸地,水泥路,红灌丛,绿灌丛 环境参数表:气温:18度 实习内容,实习步骤:1. 用ASD软件打开外业测量地物光谱数据,去除十条曲线中明显异常曲线 打开ASD软件→file→open→选中测得的十条曲线→打开→选择加载的十条数据→view→graph data→在空白处右击→customization dialog→axis→min/max(设置max为1),根据图形删除其中一条或多条异常曲线(在目录中直接删除) 2.对符合条件的地物光谱曲线进行处理(导出每种地物的JPG、tab和平均值.mn数据) ①加载符合条件的曲线(方法与步骤1相同)→export→分别

选择jpg,设置输出路径和文件名,点击export即可 ②求每种地物的平均值曲线 Process→statistics→选择mean→设置输出路径和文件名即可 对于上述导出的平均值曲线,点击export→分别选择text格式,设置输出路径和文件名,点击export即可导出.dat文件 3.处理数据 ①对每种地物的jpg文件,只需要分析其曲线特征(联系地物实际特性来分析其在可见光(380-760nm)和近红外(760-1500nm)之间的光谱特征) ②将上述的dat文件(五个)分别用excel打开,并且计算红、绿、蓝波段的平均值,蓝光101-171,绿光171-251,红光281-341,将计算好的五组数据放入新的excel表中,并绘制折线图 ③将步骤2中的各种地物平均值数据在ASD中打开,方法如步骤1所示,并将其按照jpg格式导出,并对其进行分析。 反射率曲线及分析:

几个典型颜色的光谱反射率曲线

bc=380:10:730; data=[5.37 8.44 11.44 12.37 12.43 12.30 12.19 12.04 11.86 11.58 11.24 10.94 10.61 10.26 9.93 9.84 10.13 10.86 12.30 14.79 21.49 32.18 39.65 42.77 43.76 43.86 43.76 43.56 43.46 43.07 42.72 42.43 42.25 42.02 41.72 41.55 3.33 4.94 6.25 6.90 7.27 7.69 8.33 9.31 10.93 14.02 18.84 23.89 28.42 32.50 34.83 33.53 29.91 2 5.14 20.04 15.65 11.93 8.74 6.10 4.38 3.49 3.05 2.79 2.58 2.47 2.48 2.63 2.88 3.17 3.38 3.33 3.24 5.02 9.73 17.92 24.85 28.13 31.79 37.19 42.99 48.73 54.68 57.69 57.36 53.72 47.53 39.61 31.37 24.20 18.07 13.06 9.70 7.69 6.54 5.64 5.00 4.70 4.57 4.53 4.66 4.95 5.12 5.03 4.78 4.45 4.20 4.41 5.19 1.42 1.65 1.76 1.83 1.82 1.86 1.93 2.03 2.11 2.21 2.34 2.58 3.21 5.90 12.10 18.07 21.00 22.29 23.49 2 4.86 2 5.59 25.78 25.65 25.41 25.17 24.92 24.72 24.54 24.44 24.20 24.00 23.82 23.73 23.62 23.48 23.39 ]; hold on plot(bc,data(1,:),'-',... bc,data(2,:),'*-',... bc,data(3,:),':',...

地物光谱反射率的测定

地物光谱反射率的测定 山西师范大学实验报告 时间:2011年9月20日 学院:城环学院班级:0904班姓名:任红霞实验名称:地物光谱反射率的测定气压:常压温度:15? 实验目的: 1(学习地物光谱反射率的测定方法; 2(认识地物光谱反射率的规律。 实验仪器: 1(便携式地物波谱仪 2(标准参考板 实验步骤: (光谱仪、计算机充电。 1 2(连接电池、网线、探头电源、光纤,准备好白板。 3(打开光谱仪电源,然后打开计算机电源,并启动RS3软件。 4(在软件上调整光谱平均、暗电流平均和白板采集平均次数。 5(在软件中选择或填写需要存储数据的路径、名称和其他内容。 6(开始测量: (1)打开探头电源,探头放在白板上面,点击OPT优化; (2)探头仍然对准白板,点击WR采集参比光谱。此时,软件自动进入反射率测量状态。 (3)探头移向被测目标的测量位置,按空格键存储采集到的目标反射光谱。 7(先关闭计算机再关闭仪器。 8(分析实测结果:

(1)准确绘出地物光谱反射率曲线; 玄武岩反射率曲线 页岩反射率曲线 (2)根据地物光谱反射率曲线,比较地物光谱曲线特征; 页岩和玄武岩光谱曲线比较 玄武岩 页岩10000 8000 6000 DN4000 2000

350-2000 444wavelength538 632 通过图片可以明显看出,玄武岩和页岩在不同波段有相同的变化规律,而726 820玄武岩的反射率在各波段普遍低于页岩. 914 1008 1102 1196 1290 1384 1478 1572 1666 1760 1854 1948 2042 2136 2230 2324 2418 (3)分析实习过程中可能引起误差的因素。 在波长为1000纳米及1850纳米附近,曲线有较大的跳跃,造成这样现象的原因,可能是由于预热时间不充足,电压不稳定,也有可能是由于不同波段的光纤出现交叉.

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析 一、实验目的与要求 1.实验意义: (1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 2.实验目的: (1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。 (2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。认识并掌握典型地物反射光谱特征。

二、实验内容与方法 1.实验内容 (1)典型地物反射波谱测量 选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外 波段(0.4-2.5微米)的反射光谱曲线。 地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植 被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。 (2)地物波谱特征分析 a)标准波谱库浏览 b)波谱库创建 c)高光谱地物识别 ●从标准波谱库选择端元进行地物识别 ●自定义端元进行地物识别 2.实验方法 (1)ASD光谱仪简介 FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。便携式光谱仪是“我国典型地物标准波谱数据库”获取光谱数据的主要设备。 基本技术参数: 线性度:+/-1%

你看得懂颜色的光谱反射率曲线吗(干货)

你看得懂颜色的光谱反射率曲线吗?(干货) 这周主要介绍光谱反射率曲线。今天先介绍如何根据光谱反射率曲线判断颜色。而颜色又分为彩色和非彩色,以下逐一分析: 1、彩色与非彩色的概念 2、非彩色的特征 3、彩色的三种判断方法:峰值法、补色法、混合法 1彩色与非彩色的概念 我们知道人眼能感知到的光的平均波长,只有380nm到750nm,称为「可见光」。这些仅仅是光这偌大范围中的一小部分。相比之下,这个部分似乎很小,但仅仅这一部分,已经足够为我们的视觉和思维提供一幅奇幻的空间。 我们可以辨别出可见光谱中的一千万种区别。当我们看见了全部范围的可见光,或者说各个波长的可见光比例都一样,眼睛就会读出「白色」或者说「非彩色」。当某些光波消失时,眼睛就会读出「彩色」(根据补色原理,我们看到消失光波颜色的补色)。2非彩色 没有色相的白色,灰色,黑色物体的光谱反射率曲线都是比较平缓的曲线,反射出来的各个波长的光都一样,反射比例高就是白色,反射比例低成为黑色,反射比例居中,就是灰色。如下图所示。

▲白色 ▲灰色 ▲黑色3彩色 有色相的彩色物体的光谱反射率曲线可以看到明显的高低 起伏。因为某些波长的光被物体吸收掉,物体能反射该波长的光的比例就小。而没有被物体吸收掉的光大部分被反射出来,比例就大。 (1)峰值法——最容易理解,有特征峰。峰值就是占最大比例的波长,显示出来的颜色当然是该峰值所在的波长的颜色。 ▲蓝色 ▲绿色 (2)补色法——也很容易理解,被吸收的补色,看特征谷。被吸收的波长少,而反射出来的波长种类多时,可以采用这种方法——反射出来的光的颜色就是被吸收的波长的补色。例如:红色,是因为物体吸收了蓝和绿光,即青色。▲红色黄色,是因为物体吸收了蓝光。 ▲黄色 而橙色是由红黄的混合而来,特征居于红黄之间。▲橙色(3)混色法:一般只针对红紫色。因为由于红紫色(purple)是非光谱色,也就是说没有代表该颜色的波长的光。但是色环的定义是每个颜色都跟该颜色相邻的颜色相近,而且色环

反射光谱量测原理及试验

固態光學實習 二、反射光譜量測原理及實驗 1. 原理 1-1.反射率與固態物理光學特性之關係 光學常數是用來表徵固態宏觀光學性質物理量,折射率n 和散射係數?是兩個基本的光學常數,二者分別構成複數折射率n 的實部與虛部。另外,複介電係數ε(εr ,εi )和複光電導率σ(σr ,σi )也叫做光學常數,它們都與(n ,?)有關。實際上光學常數並非真正意義上的常數,而是人射光頻率的函數,光學常數的這種頻率依賴性叫做色散關係。 這些色散關係可以以簡單的物理模型出發推導出來。光強(反射、透射、散射、輻射等)的射散就是所謂的光譜。 勞倫茲(Lorentz )射散觀念是基於阻尼諧振子近似,適用於絕緣體和半導體。為簡單起見,設所觀測的對象為均勻、各向同性的固體,在一階近似下,光與物質的相互作用,也就是固體對光的響應可以看成阻尼諧振子系統在入射光作用下的受激振蕩。諧振子之間相互作用,用阻尼系數γ來表徵,並且假設固體中只有一種共振振蕩頻率為ω0質量為m 的諧振子,因此只需要考慮以座標X 表示的諧振子在光波作用下的運動。系統受到的作用力有:與位移成正比的彈性恢復力-mw 02 x ,與速度成正比的阻尼力' x m γ-,以及電磁場驅動力).exp(0*t i E e ω-, 其中是*e 諧振子的有效電荷,在這些作用力之下,一個諧振子的運動方程式可以表示為 ).exp(0*2 0' ' 't i E e x m x m x m ωωγ-=++ (1) 可以得到諧振子在光波作用下的位移)(ωx ).exp(/)(02 20*t i E i m e x ωγωωωω---= (2) 由電極化強度P 的定義知道 E x Ne p χε0*==,可以得到 2 2222 02202)() ()(1)(ω γωωωωωωχωε+--=+=p r r (3) 2 2222 02)()()(ω γωωγω ωωχωε+-==p i i (4)

光谱分析培训资料解析

光谱分析培训资料 2006年9月

原子吸收光谱分析培训资料 说明:以下内容仅是该类检测人员需要掌握的最基本知识,还涉及到的理论知识需用业余时间学习,实际经验需在操作中去积累。有关实验室认可内容将以质量手册和程序文件为依据进行专题培训。 理论知识 一、原子吸收光谱分析的基本原理 1.原理: 原子吸收分光光度法,又称原子吸收光谱法,是基于从光源发出的被测元素特征辐射通过元素的原子蒸气时被其基态原子吸收,由辐射的减弱程度测定元素含量的一种现代仪器分析方法2.分类:通常分为2类 a).火焰原子吸收分析:由火焰将试样分解成自由原子。 b).石墨炉无火焰原子吸收分析:依靠电加热的石墨管将试样气化及分解。 3.优点: a).检出限低。可达ng.ml-1级。 b).选择性好,原子吸收光谱是元素的固有特征。 c).精密度高,相对标准偏差达到1%没有困难,最好可以达到0.3%或更好。 d).抗干扰能力强,一般不存在共存元素的光谱干扰。干扰主要来自化学干扰。 e).分析速度快,使用自动进样器,每小时测定几十个样品没有任何困难。 f).应用范围广,可分析周期表中绝大多数的金属与非金属元素。 g).进样量小,一般进样量3~6ml.min-1 h).仪器设备相对简单,操作简便。 4.不足: 主要用于单元素的定量分析,标准曲线的动态范围通常小于2个数量级。 二、原子吸收光谱分析的定量方法 吸光度与试样中被测元素含量成正比

A=Kc(A—吸光度;c—被测元素的含量;) 常用的定量方法: 有标准曲线法——最基本的定量方法 标准加入法 浓度直读法。 1.标准曲线法: 用标准物质配制标准系列溶液,在标准条件下,测定各标准样品的吸光度值Ai,对被测元素的含量ci。在同样条件下,测定样品的吸光度值Ax,根据被测元素的吸光度值Ax,从校正曲线求得其含量ci。 2.标准加入法: 分取几份等量的被测试样,在其中分析加入不等量的被测元素标准溶液,依次在标准条 件下测定它们的吸光度值,制作吸光度值对加入量的校正曲线,用外推法求得样品溶液的浓度3.浓度直读法: 在标准曲线为直线的浓度范围内,先用一个标样定标,通过标尺扩展,将测定吸光度值 调整为浓度值,以后测定试样时直接得到它的浓度值。 三、原子吸收光谱仪的组成 光源 原子化器、氢化物发生器 分光系统 检测系统 1.光源——空心阴极灯:由待测元素本身或其合金制成,内充惰性气体。 2.火焰原子化器:由雾化器、雾化室及燃烧器三部分组成 a). 雾化器:通过毛细管由气流的负压吸入溶液,并将溶液分散成非常细的雾滴。 b). 雾化室:预混室,燃气、助燃气、分散雾滴在此充分地混合均匀。 c). 燃烧器:用于混合气燃烧之用。一般是单缝燃烧器。我们所使用的是空气乙炔火焰燃烧器 与氧化亚氮乙炔燃烧器。 3.氢化物发生器:用于易形成氢化物的元素测定,As、Se、Sb、Hg元素 4.光学系统:单色器,分单光束与双光束。 5.检测系统:接收被火焰吸收后信号输入到光电倍增管,变成电讯号,最后经过转换由记记录仪

光谱反射比是颜色最全面最准确的描述方式。基于光谱的颜 …

题目(中)基于光谱重构的颜色复现 姓名与学号李江 3110104345 指导教师徐海松 年级与专业光电1102 所在学院光电信息工程学系

基于光谱重构的图像复现 光谱反射比是颜色最全面最准确的描述方式。基于光谱的颜色复制,其技术核心是实现颜色的光谱数据描述,即采用不同波段范围内的光谱反射率或透射率来唯一标定颜色。颜色的光谱数据在任何条件下均是唯一的,光谱复制的颜色在视觉宽容度之内和大多数照明条件之下都是恒定不变的,这就保证了复制的颜色在不同的照明和观察条件下都能够精确呈现。 一、国内外现状(研究、应用) 1、研究: 基于自然界物质表面光谱分布多数连续并且可用几个基函数的线性组合来表示的原理, 颜色科学中的光谱重构问题主要研究如何由有限的几个色度分量(如RGB 、XYZ 等)重构颜色原有光谱,其常见方法有主元分析法(PCA)、多项式模型、人工神经网络(ANN)、离散傅里叶变换(DFT)、修正离散余弦变换(MDCT)等。 (1)主元分析法 主元分析法是一种统计意义上的特征提取方法,在颜色科学中已得到广泛研究,并成功应用于多种成像设备的图像光谱重构。反向传播(BP)神经网络是对非线性系统进行建模的重要方法之一。 一个光谱反射比样本可以用一个n 维列向量r = (x 1 ,x 2 ,… ,x n )T 来表示, n 表示采样点数目, x i 为对应采样波长的反射比, 所有的光谱反射比向量将分布在 一个n 维的光谱反射比空间中。假如获得q 个光谱反射比样本, 组成一个向量组R ={r 1 ,r 2 ,… , r q }。通过统计分析及线性运算获得R 的k 个非零特征基向量{e 1 , e 2 ,… , e k },k ≤n 以及对应的特征值{a 1 , a 2 ,… , a k }, k ≤n;R 中任意r 都是 k 个基向量的线性组合;a i 的大小反映了R 中所有样本在光谱反射比空间中基坐 标e i 上的变化幅度, 其值越大则变化越大, 即e i 对R 的贡献将越大;若将k 个特征 向量按对应特征值的降序排列, 定义前p 个基向量的累积方差贡献率V p 为 若V p 高达99.9%以上,那么R 中任一光谱反射比样本r 都可以由下式进行估计, 从 而达到数据压缩的目的: A E r p ?=, E P ={e 1 , e 2 ,… , e P }称为主元,A = (β 1 ,β 2 ,… ,βp )T 称为主元系数向量。 A 可以通过已知的光谱反射比样本R 计算得到:

光谱仪简介解析

光谱仪简介 一、光谱仪 光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长辐射是不可缺少的手段。由于现代单色仪可具有很宽的光谱范围(UV- IR),高光谱分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设备融合为高性能自动测试系统,使用电脑自动扫描多光栅单色仪已成为光谱研究的首选。 当一束复合光线进入单色仪的入射狭缝,首先由光学准直镜汇聚成平行光,再通过衍射光栅色散为分开的波长(颜色)。利用每个波长离开光栅的角度不同,由聚焦反射镜再成像出射狭缝。通过电脑控制可精确地改变出射波长。 光栅基础 光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。为更好协助各位使用者选择,在此做一简要介绍。 光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。 如何选择光栅 选择光栅主要考虑如下因素: 1、闪耀波长,闪耀波长为光栅最大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实验需要波长附近。如实验为可见光范围,可选择闪耀波长为500nm。 2、光栅刻线,光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择。 3、光栅效率,光栅效率是衍射到给定级次的单色光与入射单色光的比值。光栅效率愈高,信号损失愈小。为提高此效率,除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。 光栅方程 反射式衍射光栅是在衬底上周期地刻划很多微细的刻槽,一系列平行刻槽的间隔与波长相当,光栅表面涂上一层高反射率金属膜。光栅沟槽表面反射的辐射相互作用产生衍射和干涉。对某波长,在大多数方向消失,只在一定的有限方向出现,这些方向确定了衍射级次。如图1所示,光栅刻槽垂直辐射入射平面,辐射与光栅法线入射角为α,衍射角为β,衍射级次为m,d为刻槽间距,在下述条件下得到干涉的极大值:Mλ=d(sinα+sinβ) 定义φ为入射光线与衍射光线夹角的一半,即φ=(α-β)/2;θ为相对于零级光谱位置的光栅角,即 θ=(α+β)/2,得到更方便的光栅方程: mλ=2dcosφsinθ 从该光栅方程可看出: 对一给定方向β,可以有几个波长与级次m相对应λ满足光栅方程。比如600nm的一级辐射和300nm的二级辐射、200nm的三级辐射有相同的衍射角,这就是为什么要加消二级光谱滤光片轮的意义。 衍射级次m可正可负。 对相同级次的多波长在不同的β分布开。 含多波长的辐射方向固定,旋转光栅,改变α,则在α+β不变的方向得到不同的波长。 光栅单色仪重要参数: 分辨率 光栅单色仪的分辨率R是分开两条临近谱线能力的度量,根据罗兰判据为: R=λ/Δλ

光谱仪的使用方法解析

光度计使用方法 发布者:南京群发分析仪器有限公司发布时间:2008年6月17日 Audo look6.0下载光度计使用方法 使用方法:开机步骤 1 开光谱仪电源 2 开计算机电源 3 在文件管理器中用鼠标指按UV WinLab图标,此时出现UV WinLab的应用窗口,仪器已准备好,可选用适 当方法进行分析操作。 2 方法:在分析中必须对分光光度计设定一些必要的参数,这些参数的组合就形成一个“方法”。Lambda系列UV WinLab软件预设四类常用方法。 1)扫描(SCAN),用以进行光谱扫描。 2)时间驱动(TIME DRIVER),用以观察一定时间内某种特定波长处纵坐标值的变化,如酶动力学。 3)波长编程(WP)用以在多个波长下测定样品在一定时间内的纵坐标值变化,并可以计算这些纵坐标值的差或比值。 4)浓度(CONC)用以建立标准曲线并测定浓度。 2.1 进入所需方法,在方法窗口中选择所需方法的文件名。 2.2 方法的设定 2.2.1 扫描、波长编程及时间驱动 各项方法可根据显示的参数表,逐项按需要选用或填入,并可参考提示。 2.2.2 浓度 浓度方法窗口下方标签较多,说明做浓度测定时需要参数较多。用鼠标指按每一标签,可翻出下页,其上有一些需要测定的参数。必须逐页设定。 3 工具条 3.1 SETUP 当所需的各项参数都已在参数中设好后,必须用鼠标指按SETUP,才能将仪器调整到所设状态。

3.2 AUTOZERO 用鼠标指按此键,分光光度计即进行调零(在光谱扫描中则进行基线校正)。 3.3 START 用鼠标指按此键,光度计即开始运行所设定的方法。 4 方法运行 4.1 扫描,时间驱动,波长编程 方法选好后,先放入参比溶液,按AUTOZERO键,进行自自动校零或背景校正结束后再放入样品,按START,分光光度计即开始进行,同时屏幕上出现图形窗口,将结果显示出来。 4.2 浓度 4.2.1制订标准曲线 1 方法选好后,确认各项数据正确,特别是REFS页中第一行要选中右上角的“edit mode”。再放入参比溶液,按AUTOZERO键自动校零或背景校正。 2 按setup,待该图标消失后,再按“start”,按提示依次放入标准色列的各管溶液,每次都按提示进行操作。 3 标准色列测定完毕后,屏幕上出现calibgraphwindow,显示拟合的标准线,并标出各项标准管的位置,屏幕下方还有一条Concentration mode的对话框,可以用来修改拟合的曲线类型(按 change calbration),或修改标准溶液的任何一管(replace),或取消某一管(delete),或增加标准溶液管数(add)。如过已经满意,则按analyse sample键,进入样品测定窗口。 4 标准曲线有关的各项数据,均在calibresultwindow中,可用鼠标将其调出观察。其中包括每个标准溶液的具体数据,标准曲线的回程方程式,相关系数,残差。 4.2.2样品浓度测定 4.2.2.1刚制定好的标准曲线接着进行样品浓度测定时 1 只需在concentration mode对话框按analyse sample键,进入样品测定窗口。 2 按设定的样品顺序放入各样品管,每次按提示进行操作。 3 屏幕上出现结果窗口,结果数据将依次显示在样品表中的相应位置。 4.2.2.2利用原有的标准曲线接着进行样品浓度测定时 4.2.2.2.1 调出所测定样品的浓度方法文件,首先调出refs页,将原设edit mode选项取消,改设左上角的using exiting calibration。重新将方法存盘,则今后再调用时即不需再作修改。

相关主题
文本预览
相关文档 最新文档