当前位置:文档之家› 第四章 曲面的第二基本形式与曲面上的曲率

第四章 曲面的第二基本形式与曲面上的曲率

第四章 曲面的第二基本形式与曲面上的曲率
第四章 曲面的第二基本形式与曲面上的曲率

第四章 曲面的第二基本形式与曲面上的曲率

§5 曲面上的曲率概念

利用上一节所作的准备,围绕曲面弯曲状况的刻画,本节将引入曲面上的基本的和重要的曲率概念,并简要讨论相关的几何体.

一.主曲率

定义1 曲面 S 上的点 P 处的法曲率关于切方向的两个最值,分别称为曲面 S 在点 P 处的主曲率;使得法曲率达到最值的两个切方向,分别称为曲面 S 在点 P 处的主方向.

注记1 ① Weingarten 变换的特征值和特征方向,分别是曲面的主曲率和主方向.

② 当两个主曲率 κ1(P ) ≠ κ2(P ) 时,曲面在点 P 处有且仅有正交的两组主方向,每一组的单位化向量分别就是Weingarten 变换的单位正交特征向量.而当两个主曲率 κ1(P ) = κ2(P ) 时,曲面在点 P 处的任何非零切向都是主方向,Weingarten 矩阵 ω(P ) = κ1(P )I 2 ,即 Ω(P ) = κ1(P )g (P ) .

主曲率和主方向的计算,自然归结为Weingarten 变换的特征值和特征方向的计算,也就是Weingarten 矩阵的特征值和特征方向的计算.即: ① 对于主曲率的算法,当易知Weingarten 矩阵 ω 之时,方程为 (4.3) 式,或直接写为

(5.1) |ω - λI 2 | = 0 ;

等价地,当易知系数矩阵 Ω 和 g 之时,其方程可变形为

(5.2) |Ω - λg | = 0 .

② 对于主方向的算法,各种等价算式为

a = a i r i ≠ 0 为主方向,即非零切方向 a 1:a 2 为主方向

? ?λ , ?(a 1, a 2)ω = λ(a 1, a 2) , (a 1, a 2) ≠ (0, 0)

? ?λ , ?(a 1, a 2)Ω = λ(a 1, a 2)g , (a 1, a 2) ≠ (0, 0)

? det. ????(a 1, a 2

)Ω (a 1, a 2)g = 0

?(a2)2-a1a2 (a1)2

g11g12g22

Ω11Ω12Ω22

= 0 .

主方向所对应的微分方程通常写为

(5.3)

(d u2)2-d u1d u2 (d u1)2

g11g12g22

Ω11Ω12Ω22

= 0 .

定义2若曲面S在点P处的两个主曲率相等,则称点P为曲面S上

的一个脐点.若曲面S处处为脐点,则称曲面S为全脐曲面.若脐点处的主曲率为零,则称之为平点;若脐点处的主曲率不为零,则称之为圆点.

注记2全脐曲面S的法曲率只与点有关而不依赖于切向选取,故只有平面和球面两类;平面上各点为平点,球面上各点为圆点.全脐曲面主方向所对应的微分方程是蜕化的恒等式.

二.Gauss曲率和平均曲率

定义3对于正则曲面S,其在点P处的两个主曲率的乘积K,称为其在点P处的Gauss曲率或总曲率;其在点P处的两个主曲率的算术平均值H,称为其在点P处的平均曲率.

注记3①注意到(4.4)-(4.5) 式,Gauss曲率和平均曲率分别具有用Weingarten矩阵或两个基本形式系数的表达式,分别列为

(5.4)K=|ω|=|Ω|

|g|

=

LN-M2

EG-F2

,

(5.5) H= tr.ω

2

=

LG- 2MF+NE

2(EG-F2)

②主曲率方程 (4.3) 式现可改写为

(5.6)λ2- 2Hλ+K= 0 ;

其中H 2-K= (κ1-κ2)2

4≥

0 .

③Gauss曲率在容许参数变换下不变;平均曲率在保向参数变换下不变,在反向参数变换下变号.

④当曲面三阶连续可微时,Gauss曲率和平均曲率分别是连续可微函数;此时,两个主曲率函数

(5.7)κi=H±H2-K , i= 1, 2

处处连续,并且在非脐点处连续可微.

⑤ 平均曲率等于法曲率按切方向的积分平均值(留作习题). ⑥ 平均曲率不是等距不变量.反例如圆柱面和平面.

例1 证明可展曲面的Gauss 曲率 K ≡ 0 .

证明 对可展曲面 S 的直纹面参数化 r (u , v ) = a (u ) + v l (u ) ,由可展定义得知 n v ≡ 0 ,故其第二基本形式系数满足

M = - r u ?n v ≡ 0 , N = - r v ?n v ≡ 0 ,

于是

K = LN - M 2 EG - F 2

≡ 0 . □ 在上例中,若取准线使 a '?l ≡ 0 且 |l | ≡ 1 ,则可展曲面 S 的第一和第二基本形式系数矩阵同时对角化,Weingarten 矩阵则为特征值对角阵,而且

(5.8) κ1 = L E

, κ2 ≡ 0 . 三.Gauss 映射和第三基本形式

Gauss 在考察曲面的弯

曲程度刻画时,注意到曲面

的单位法向在单位球面上的

行为对于曲面弯曲状况的反

映,并进一步明确了两者的

依赖程度,进而在曲面论中

做出了卓有成效的工作.观

察熟知的一些曲面,比如平

面、圆柱面、圆锥面、椭球

面、双叶双曲面、双曲抛物面等等,可以直观感受到单位法向不同的行为和曲面不同的弯曲状况之间有着密切联系.

定义4 对于 C 3 正则曲面 S : r (u 1, u 2) 及其单位法向量场 n (u 1, u 2) ,曲面 S 到以原点为心的单位球面 S 2(1) 上的映射

(5.9) G : S →S 2(1) r (u 1, u 2)→G (r (u 1, u 2)) = n (u 1, u 2)

称为曲面 S 的Gauss 映射.二次微分形式

(5.10) Ⅲ = d n ?d n

图4-5

称为曲面S的第三基本形式.性质①n1?n2=K r1?r2.

②|K(P)|=lim

U收缩至P A(G(U))

A(U)

,其中P∈U?S, U为单连通区域,

A(G(U)) 是G(U)?S2(1) 的面积,A(U) 是U?S的面积.

③Ⅲ- 2HⅡ+KⅠ= 0 .

证明①由Weingarten公式得

n1?n2= [-(ω11r1+ω12r2)]?[-(ω21r1+ω22r2)]

=|ω|r1?r2=K r1?r2.

②A(U) =??

r-1(U)

| r1?r2| d u1d u2 ,

A(G(U)) =??

r-1(U) | n1?n2| d u1d u2=??

r-1(U)

|K|| r1?r2| d u1d u2.

而由积分中值定理,?P*∈U使

??r-1(U) |K|| r1?r2| d u1d u2=|K (P*)|??

r-1(U)

| r1?r2| d u1d u2.

故而

lim U收缩至P A(G(U))

A(U)

= lim

P*→P

|K (P*)|=|K (P)|.

③结论用系数矩阵等价表示为

(Ω g-1)g(Ω g-1)T- 2HΩ+K g≡ 0

?Ω g-1Ω- 2HΩ+K g≡ 0

?Ω g-1Ω g-1- 2HΩ g-1+K I2≡ 0

?ωω- (tr.ω)ω+|ω|I2≡ 0 .

而最后的等式对于二阶方阵总成立(用特征值理论则知是显然的),用元素计算可直接验证为

ωi kωk j- (tr.ω)ωi j+|ω|δi j

=ωi1ω1j+ωi2ω2j- (ω11+ω22)ωi j+ (ω11ω22-ω12ω21)δi j≡ 0 .□

习题

⒈对于螺面r= (u cos v , u sin v , u+v) ,试求:

①主曲率κ1和κ2;

②Gauss曲率和平均曲率.

⒉试求球面的Gauss曲率和平均曲率与球面半径的关系.

⒊试证:平均曲率等于法曲率按切方向的积分平均值,即 2πH(P) =?2π

κ(P, θ) dθ.

⒋试证:直纹面的Gauss曲率处处非正.

⒌设正则曲面S: r(u1, u2) 当常数μ足够小时 1 - 2μH+μ2K> 0 .按参数相同作对应曲

面S*: r*(u1, u2) =r(u1, u2) +μn(u1, u2) ,其中n为曲面S的单位法向量场.试证:

①S和S* 在对应点具有相同的单位法向和法线;

②S和S* 在对应点的Weingarten矩阵具有关系式ω* =ω (I2-μω )-1;

③S和S* 在对应点的Gauss曲率和平均曲率具有关系式

K* =

K

1 - 2μH+μ2K

,H* =

H-μK

1 - 2μH+μ2K

④S的曲率线对应于S* 的曲率线.

⒍已知曲面S在一点处沿着一组等分周角的m个切方向的法曲率分别为κn(1), …,

κn(m),m> 2 .试证:S在该点的平均曲率H=κn(1)+…+κn(m)

m

⒎试证:曲面S的第三基本形式恒为零的充要条件为S是平面.

proe教程(曲面曲率)

曲面曲率 一、新建qumianqulv文件 1、打开proe; 2、设置工作目录。文件/设置工作目录,在弹出的对话框中右键单击,选择“新建文件夹”,取名为“3位学号+姓名”,单击“确定”。 3、在选择“新建”; 4、在名称中输入“qumianqulv”; 5、取消前的勾。缺省模板可以理解为默认的尺寸单位空间,proe 默认的单位是英寸磅秒(inlbs),而中国用的是公制单位毫米牛秒(mmns); 6、选择“确定”按钮; 7、在弹出的“新文件选项”对话框中,选择mmns_part_solid。表示以mmns为单位的实体零件文件。 8、选择“确定”,新建文件完成。 二、绘制过程 1、选择“top”视图; 2、选择“”,保持默认的草绘设置,选择“草绘”按钮; 3、选择“样条曲线”工具,捕捉参照绘制如图曲线;(标注角度尺寸要依次选择角的两边和顶点)以鼠标中键结束。

4、修改尺寸。此时所有尺寸为灰色,表示是“弱尺寸”。双击长度尺寸,修改为25。双击高度尺寸,修改为70。曲线的两端均为90度。修改后,尺寸颜色变为亮色,表示是强尺寸。 5、在“菜单栏”选择“插入”,选择“扫描”-“曲面”,在下拉“菜单管理器”中选择“选取轨迹”按鼠标中建选择默认设置。 6、进入截面绘制阶段,选择工具栏命令绘制如图直线,并将角度修改为88 度,高度修改为8 7、选择工具栏结束截面绘制,按鼠标中键确定。

8、选择工具栏“基准平面”工具,选择top平面,输入平移距离 为12,选择确定 9、选择工具栏工具,选择DTM1平面,进入草绘绘制,选择 命令,绘制如图曲线,尺寸修改方法同上。

曲面曲率计算方法的比较与分析

研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号:201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空 间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量和曲

率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1、K2,那么平均曲率则为:H= (K1 +K 2 ) / 2。 K 表示曲面的高斯曲率, 两个主曲率的乘积即为高斯曲率,又称

proe常用曲面分析功能详解讲解

proe常用曲面分析功能详解 现在是针对曲面分析单独做的教程 曲面分析应该贯穿在这个曲面外型的设计过程中.而不该最后完成阶段做分析 由于时间关系我单独做个分析简单的教程,将来的教程中我将逐步体现造型过程中贯穿分析的教程 本文重点在简单的阐述下曲面分析的运用,并不过多的阐述曲面的做法,PRT实物来源于SONJ.无嗔等版大,为求对比好坏,我会将质量好的PRT.修改约束成差点的来深入的阐述曲面分析的作用和看法.在这里先谢谢这些版大无私分享,也求得他们的原谅,未经过允许就转载他们的PRT还乱改.我先道歉… 现在这个拉手大家都看见了,这一步是VSS直接扫出来的.现在显示的呢是网格曲面.这个网格曲面和多人认为用处不大.但我想说几点看法,第一看这个面是不是整面,很明显这个面的UV先是连接在一起的,他是个整面.第2看他的UC线的走向,是不是规则在某一方向上,有没有乱,有没有波动。这些是我们 肉眼能看见的,是一个初步的分析,也能帮助大家理解曲面的走向趋势是怎么个事情。至于曲线的分析其他教程中以有很多阐述我就不在追述,至于什么叫曲面G1和G2相信大家也看到很多类似的教程 这个图你就能看见多个曲面的网格在一起时候的显示,说明不是整面。

网格曲面另一个重要作用呢就是观察收敛退化,也就是大家长说的3角面。 收敛退化是我们最不想看到的,但收敛点在那里呢,根据经验呢,比如说我这个,在做边界混合时候 2条直线是一组,曲线是另一组,也就是退化点在2条直线相交的地方,但新手一般看见教程是跟着裁减那里的角,至于为什么是在哪个位置可能不是很清楚,就看下网格曲面吧 剖面分析来说呢相对的要求比较高,原理呢很简单就是所选择的曲面面组和基准面相交的曲线的

微分几何答案(第二章)

第二章 曲面论 §1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ????? ?a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有 一个切平面 。

proe曲面造型的基本思路

proe曲面造型的基本思路 本文来自: 辅助论坛Proe教程作者: admin日期: 2010-7-4 23:34 阅读: 321 人打印收藏 曲面造型的基本思路,思路决定出路思路决定出路,思路乃成败之关键.世界知名的管理大师德鲁克 说 人不能改变环境,但可以改变思路;人不能改变别人,但可以改变自己;多一个思路,多一个出路; 思路决定出路,观念决定前途 ProE实体化建模思路实例视频详解 更多思路:https://www.doczj.com/doc/5417761226.html,/search.php? 原帖地址:https://www.doczj.com/doc/5417761226.html,/thread-172-1-1.html 1 前言 利用CAD/CAM软件进行三维造型是现代产品设计的重要实现手段,而曲面造型则是三维造型中的难点。我们在从事CAD/CAM培训的过程中发现,尽管现有的CAD/CAM软件提供了十分强大的曲面造型功能,但初学者面对众多的造型功能普遍感到无所适从,往往是软件功能似乎已经学会了,但面对实际产品时又感到无从下手。即使是一些有经验的造型人员,由于其学习过程中的问题,也常常在造型思路或功能使用上存在一些误区,使产品造型的正确性和可靠性打了折扣。 针对上述情况,本文从整体上讨论了曲面造型的一般学习方法,并举例介绍了曲面造型的一般步骤。 2 曲面造型的学习方法 面对CAD/CAM软件所提供的众多曲面造型功能,要想在较短的时间内达到学会实用造型的目标,掌握 正确的学习方法是十分必要的。 要想在最短的时间内掌握实用造型技术,应注意以下几点: (1)应学习必要的基础知识,包括自由曲线(曲面)的构造原理。这对正确地理解软件功能和造型思路是十分重要的,所谓“磨刀不误砍柴功”。不能正确理解也就不能正确使用曲面造型功能,必然给日后的造型工作留下隐患,使学习过程出现反复。其实,曲面造型所需要的基础知识并没有人们所想象的那么难,只要掌握了正确的讲授方法,具有高中文化水平的学员就能理解。(2)要针对性地学习软件功能。这包括两方面意思:一是学习功能切忌贪多,一个CAD/CAM 软件中的各种功能复杂多样,初学者往往陷入其中不能自拔。其实在实际工作中能用得上的只占其中很小一部分,完全没有必要求全。对于一些难得一用的功能,即使学了也容易忘记,徒然浪费时间;另一方面,对于必要的、常用的功能应重点学习,真正领会其基本原理和应用方法,做到融会贯通。(3)重点学习造型基本思路。造型技术的核心是造型的思路,而不在于软件功能本身。大多数CAD/CAM软件的基本功能大同小异,要在短时间内学会这些功能的操作并不难,但面对实际产品时却又感到无从下手,这是许多自学者常常遇到的问题。这就好比学射击,其核心技术其实并不在于

第四章曲面的第二基本形式与曲面上的曲率

第四章 曲面的第二基本形式与曲面上的曲率 §5 曲面上的曲率概念 利用上一节所作的准备,围绕曲面弯曲状况的刻画,本节将引入曲面上的基本的和重要的曲率概念,并简要讨论相关的几何体. 一.主曲率 定义1 曲面 S 上的点 P 处的法曲率关于切方向的两个最值,分别称为曲面 S 在点 P 处的主曲率;使得法曲率达到最值的两个切方向,分别称为曲面 S 在点 P 处的主方向. 注记1 ① Weingarten 变换的特征值和特征方向,分别是曲面的主曲率和主方向. ② 当两个主曲率 κ1(P ) ≠ κ2(P ) 时,曲面在点 P 处有且仅有正交的两组主方向,每一组的单位化向量分别就是Weingarten 变换的单位正交特征向量.而当两个主曲率 κ1(P ) = κ2(P ) 时,曲面在点 P 处的任何非零切向都是主方向,Weingarten 矩阵 ω(P ) = κ1(P )I 2 ,即 Ω(P ) = κ1(P )g (P ) . 主曲率和主方向的计算,自然归结为Weingarten 变换的特征值和特征方向的计算,也就是Weingarten 矩阵的特征值和特征方向的计算.即: ① 对于主曲率的算法,当易知Weingarten 矩阵 ω 之时,方程为 (4.3) 式,或直接写为 (5.1) |ω - λI 2 | = 0 ; 等价地,当易知系数矩阵 Ω 和 g 之时,其方程可变形为 (5.2) |Ω - λg | = 0 . ② 对于主方向的算法,各种等价算式为 a = a i r i ≠ 0 为主方向,即非零切方向 a 1:a 2 为主方向 ? ?λ , ?(a 1, a 2)ω = λ(a 1, a 2) , (a 1, a 2) ≠ (0, 0) ? ?λ , ?(a 1, a 2)Ω = λ(a 1, a 2)g , (a 1, a 2) ≠ (0, 0) ? det. ????(a 1, a 2 )Ω (a 1, a 2)g = 0

proe 曲面曲率

分析曲面曲率 模块概述 使用曲面特征设计产品时,曲面间的过渡扮演着重要的角色。曲面边的曲率连续性条件确定这些过渡的平滑程度。 在本模块中,您将学习如何分析曲面的曲率以及如何使用基于双向曲率的图形和着色曲率图形来确定曲面是否具有曲率连续性。此外,您将学习曲率连续曲面的创建方法。 目标 成功完成此模块后,您即可知道如何: ?分析曲面理论。 ?定义曲率和曲率连续性。 ?分析曲线的曲率。 ?分析曲面的曲率。 ?使用截面分析曲率。 ?使用法线分析曲率。 ?使用曲面的着色曲率。 ?使用着色截面曲率。 ?创建曲率连续曲面。

曲面分析理论 您可使用专用工具分析曲面模型,例如连续性、扭曲以及视觉特性。 ?其目标是为了创建高质量的曲面。 ?分析曲面的原因: o预期的平滑度和连续性 o预期的曲率 o无扭曲或扭结 o适合于制造过程 ?常用分析选项: o快速 o已保存 o特征 查看着色曲率

“保存的分析”对话框 剖面分析 曲面分析理论 Pro/ENGINEER 提供了许多不同的工具,以满足不同的建模要求。您可根据自己的目标使用特定工具分析曲面模型,例如连续性、扭曲以及视觉特性。

分析曲面的原因 创建曲面时,目标是创建具有高质量的曲面。请考虑以下分析曲面的原因: ?创建具有预期平滑度和连续性的曲面。可使用分析工具检验相切和曲率连续性。 ?创建具有预期曲率的曲面。可检查是否存在不需要的高曲率区域,这些区域表示曲面有问题。例如,曲面中的扭结会使曲率显示为突然增大,借助Pro/ENGINEER 的分析工具可轻松找出此类扭结。 ?创建无扭曲的曲面。扭结或小曲面片是曲面模型中常见的问题。在创建实体零件或创建制造序列时,它们可能在添加厚度时引起一些问题。 ?创建适合于制造过程的曲面。许多操作(例如创建加工序列) 都会将曲面侧考虑在内。曲面模型中的面组应具有相应的正法向侧。 常用分析选项 使用Pro/ENGINEER 的模型分析工具时有三个选项可用: ?快速(Quick) - 允许计算测量而不保存分析或在模型树中创建特征。关闭对话框后此分析消失。 ?已保存(Saved) - 允许保存测量以备今后使用。关闭对话框后此分析保留。可以为分析指定一个唯一名称,以使以后它对您有意义。 可通过单击“分析”(Analysis) > “保存的分析”(Saved Analysis)来启用、禁用或编辑保存的分析的显示。已保存分析更新为模型几何更改。“保存的分析”对话框如左下图所示。 ?特征(Feature) - 允许将分析作为一种特征保存在模型树中。该分析更新为模型几何更改。 定义曲率 曲面的曲率定义为与1/R 成正比,其中R 为曲面在指定位置的半径。

(八)曲面的主曲率、高斯曲率、平均曲率

3.6 曲面的主曲率、高斯曲率、平均曲率 一 主曲率 定义曲面上一点处主方向上的法曲率称为曲面在该点的主曲率。 因曲面在一点处的主方向是过此点的曲率线的方向,故主曲率即曲面在一点处沿曲率线方向的法曲率。 二 欧拉公式 结论:取曲面上的曲率线网为曲纹坐标网,设沿u-线的主曲率为 1κ,沿v-线的主曲率为2κ,曲面上任意方向(d)=du:dv 与曲线的夹角 为θ,则沿(d )的法曲率n κ满足2212cos sin n κκθκθ=+ . 这个公式叫做欧拉公式。 证明 因为曲纹坐标网是曲率线网,所以F= M =0,所以对曲面上 任意方向(d)=du:dv ,与其对应的法曲率22 22 n Ldu Ndv Edu Gdv κII +== I + . 沿u-线(0v δ=)的法曲率为主曲率1L E κ=,沿v-线(0u δ=)的法曲率为主曲率2N G κ= . 因为(d)=du:dv 与u-线的夹角是θ,所以 cos θ=, 所以2 2 22 cos Edu Edu Gdv θ= +, 2 2 22sin Gdv Edu Gdv θ=+,所以 2222 2212222222 cos sin n Ldu Ndv L Edu N Gdv Edu Gdv E Edu Gdv G Edu Gdv κκθκθ+==+=++++ 三 主曲率的性质 命题6 曲面上(非脐点)的主曲率是曲面在这点所有方向的法曲率中的最大值和最小值。

证明 设12κκ< (如果12κκ>,可以交换坐标u 和v)由欧拉公式知: 22212212cos sin ()cos n κκθκθκκκθ=+=+-,于是2221()cos 0n κκκκθ-=-≥, 所以2n κκ≥,同样可得2121()sin n κκκκθ-=-,所以1n κκ≤,故12n κκκ≤≤, 这就是说,曲率21,κκ分别是法曲率n κ 中的最大值和最小值。 四 主曲率的计算公式 结论 设(d)=du:dv 为曲面S: (,)r r u v = 在 P 点处的主方向,沿主方向的主曲率为N k ,则N k 的计算公式是 0N N N N L E M F M F N G κκκκ--=-- 即22 2()(2)()0N N EG F LG MF NE LN M κκ---++-=。 注:要求主曲率,只需求出两类基本量,然后由这个二次方程解出主曲率N k 即可。 证明 由Rodrigues 定理,N k 为主曲率dn dr λ?= ,即 ()()()N u v N u v N Ldu Mdv Edu Fdv n du n dv r du r dv Mdu Ndv Fdu Gdv κκκ--=-+?+=-+??--=-+? 即()()0 ()()0N N N N L E du M F dv M F du N G dv κκκκ-+-=??-+-=? 有非零解du:dv 0N N N N L E M F M F N G κκκκ--? =-- 即22 2()(2)()0N N EG F LG MF NE LN M κκ---++-= 五 高斯曲率、平均曲率 定义 设12,κκ为曲面上一点的两个主曲率,则它们的乘积12κκ 叫做曲面在这一点的高斯曲率,记为K, 即12K κκ=; 它们的平均数称为曲面在这一点的平均曲率,记为 H ,即121 ()2 H κκ=+。 由主曲率的计算公式和韦达定理可知高斯曲率、平均曲率的计算 公式是:高斯曲率2 2 LN M K EG F -=-,平均曲率222()LG MF NE H EG F -+=-。

曲面造型的心得

家电产品的三维造型设计方法的研究 随着社会的进步,人们生活水平的不断提高,追求完善已成为时尚.人们对消费产品的要求已不仅仅满足于基本功能的完备,同时更注重外观的美感.家电产品在不断提高和完善其功能的同时,在外观造型上要求越来越高,多以复杂方式自由地变化的曲线曲面即所谓自由型曲线曲面组成.而这一类形状单纯用画法几何与机械制图是不能表达的.这就给家电产品的设计及制造带来了挑战.计算机技术和计算机图形学的不断发展,为人们提供了强有力的工具,三维CAD/CAM/CAE集成化软件被广泛应用于制造业.然而,要快速高质量地完成一个家电产品的造型设计,必须根据家电产品的特点,总结出一套建模方法和技巧.这样才能大大缩短设计周期,提高设计效率,满足客户对产品的各种特殊需求. 1掌握三维CAD造型的原理,充分了解应用软件中的造型方法 CAD的三维模型有三种,即线框、曲面和实体。早期的CAD系统往往分别对待以上三种造型。而当前的高级三维软件,例如UGII,PRO/E,EUCLID等则是将三者有机结合起来,形成一个整体,在建立产品几何模型时兼用线、面、体三种设计手段[1]。其所有的几何造型享有公共的数据库,造型方法间可互相替换,而不需要进行数据交换。此在进行产品造型时,必须首先充分了解应用软件中的各种造型方法,总结出造型方法的特点、相关参数及应用技巧,减少造型时的盲目性,便能快捷有效地获得满意结果。 1.1线框造型 线框造型可以生成、修改、处理二维和三维线框几何体。可以生成点、直线、圆、二次曲线、样条曲线等,又可以对这些基本线框元素进行修剪、延伸、分段、连接等处理,生成更复杂的曲线,线框造型的另一种方法是通过三维曲面的处理来进行,即利用曲面与曲面的求交,曲面的等参数线,曲面边界线,曲线在曲面上的投影,曲面在某一方向的分模线等方法来生成复杂曲线。实际上,线框功能是进一步构造曲面和实体模型的基础工具。在复杂的产品设计中,往往是先用线条勾划出基本轮廓,即所谓“控制线”,然后逐步细化,在此基础上构造出曲面和实体模型。 1.2曲面造型 曲面造型分两种方法,一是由曲线构造曲面;二是由曲面派生曲面。 (1)由曲线构造曲面 1)旋转曲面:一轮廓曲线绕某一轴线旋转某一角度而生成的曲面。 2)线性拉伸面:一曲线沿某一矢量方向拉伸一段距离而得到的曲面。 3)直纹面:在两曲线间,把其参数值相同的点用直线段连接而成的曲面。4)扫描面:截面发生曲线沿一条、二条或三条方向控制曲线运动,变化而生成的曲面。可根据各发生曲线与脊骨曲线的运动关系,把扫描面分为平行扫描曲面、法向扫描曲面和放射状扫描曲面。 5)网格曲面:由一系列曲线构成的曲面。根据构造曲面的曲线的分布规律,网格曲面可分为单方向网格曲面和双方向网格曲面。单方向网格曲面由一组平行或近似平行的曲线构成;而双方向网格曲面由 一组横向曲线和另一组与之相交的纵向曲线构成。 6)拟合曲面:由一系列有序点拟合而成的曲面。 7)平面轮廓面:由一条封闭的平面曲线所构成的曲面。 8)二次曲面:椭圆面q_抛物面,双曲面等。

曲面的三个基本形式的系数矩阵之间关系的证明

曲面的三个基本形式的系数矩阵之间关系的证明 邢家省,王拥军 (北京航空航天大学数学与系统科学学院, 数学、信息与行为教育部重点实验室,北京100191) 摘 要: 给出3 R 中曲面的3 个基本形式的系数矩阵之间关系的一个直接 证明, 并由此得到曲面的3 个基本形式之间的关系表示及其一些 应用. 关键词: 第三基本形式; 法曲率的最值; 测地挠率 中图分类号: O186. 11 文献标识码: A 曲面的第三基本形式可以用第一和第二基本形式来表示是一个重要结论[19]-,对其证明引起了人们的极大兴趣.我们在已有方法的基础上,经过综合分析和领会,发现了一套自然合理的推导转换的过程,给出了直接简单自然的证明过程. 1曲面的第三基本形式用第一和第二基本形式表示的证明 设曲面 :(,)r r u v ∑= 是2C 类的正则曲面.曲面∑上一点(,)P u v 处的单位法向量为n .我们采用文献[1-3]中的记号. 收稿日期: 基金项目:国家自然科学基金资助项目(11171013), 北京航空航天大学教改项目基金资助 作者简介:邢家省(1964--)男,河南泌阳人,博士,副教授,从事数学教学和科研工作. Email:xjsh@https://www.doczj.com/doc/5417761226.html, .

令,,u u u v v v e n n f n n g n n =?=?=? , ,,e f g 称为曲面 ∑的第三类基本量.用III 表示曲面∑的第三基本形 式[13]-: 22()2()e du fdudv g dv III =++ . 曲面的第三基本形式可以用第一和第二基本形式来表示,在文献[1-3]中是在曲面上选取了曲率线网作为坐标曲线网后,给予证明的.我们在曲面上选取正交曲线族为坐标曲线网下,给出证明. 选取曲面∑上的正交曲线族为坐标曲线网. 设曲面 :(,)r r u v ∑= 上的坐标曲线网是正交网. 则有0u v F r r =?= , 曲面的第一基本形式2 2 ()()E du G dv I =+, 曲面的第二基本形式22()2()L du Mdudv N dv II =++, 高斯曲率2LN M K EG -=,平均曲率2LG NE H EG +=. 因为1,n n ?= 所以0,0u v n n n n ?=?= , 从而,,u u v n r r 共面,,,v u v n r r 共面, 设12u u v n a r a r =+ ,则有12,L M a a E G =- =-; 设12v u v n b r b r =+ ,则有12,M N b b E G =-=- . 于是 2212u u u u v v e n n a r r a r r =?=?+? 22222L G M E L G LNE LNE M E HL KE EG EG ++-+===-, 1122u v u u v v f n n a b r r a b r r =?=?+? 2LGM NEM HM EG += =, 2212v v u u v v g n n b r r b r r =?=?+?

曲面造型的基本思路

1.前言 利用CAD/CAM软件进行三维造型是现代产品设计的重要实现手段,而曲面造型则是三维造型中的难点。尽管CAD/CAM软件提供了强大的曲面造型功能,然而初学者面对众多的造型功能依然感到无所适从,往往是软件功能已学会,但面对实际产品时仍感到无从下手。即使是有经验的造型工程师,也常常在造型思路或功能使用上存在误区,从而致使产品造型的正确性和可靠性不尽如人意。2 `. x& Y# q4 P& b 针对上述问题,笔者与大家一起探讨曲面造型的一般学习方法和基本思路。 2. 曲面造型的学习方法 面对CAD/CAM软件所提供的众多曲面造型功能,要想在较短的时间内达到学会实用造型的目标,掌握正确的学习方法是十分必要的。 学习过程中应注意下面几点: (1)学习必要的基础知识,包括自由曲线(曲面)的构造原理,这对正确理解软件功能和造型思路是十分重要的。所谓“磨刀不误砍柴功”,不能正确理解也就不能正确使用曲面造型功能,必然给日后的造型工作留下隐患。曲面造型所需要的基础知识并不难以掌握,只要掌握了正确的学习方法,普通文化水平的初学者都能理解并掌握。 (2)有针对性地学习软件功能。这包括两方面意思:一是学习功能切忌贪多,CAD/CAM 软件功能复杂多样,初学者往往陷入其中不能自拔,其实实际工作中能用得上的只占其中很小一部分,无需求全;对于一些难得一用的功能,即使学了也容易忘记,徒然浪费时间。另一方面,对于必要的常用的功能应重点学习,真正领会其基本原理和应用方法,做到融会贯通。 (3)重点学习造型基本思路。造型技术的核心是造型思路,而不在于软件功能本身。CAD/CAM软件的基本功能大多大同小异,要在短时间内学会这些功能的操作并不难,然而面对实际产品时却又感到无从下手,这是许多初学者遇到的问题。就好比学射击,其核心技术其实并不在于对某一型号枪械的操作一样,只要真正掌握造型的思路和技巧,无论使用何种CAD/CAM软件都能游刃有余。' L8 H* J8 Y0 L3 L* i6 [% D4 H (4)培养严谨的工作作风,切忌在造型学习和工作中“跟着感觉走”。造型的每一步骤都应有充分依据,不能凭感觉和猜测进行,否则后患无穷。& ~4 p% P9 q$ ^# O4 L 3. 曲面造型的基本思路( G' s/ n6 K! Y5 G/ {; T 曲面造型有三种应用类型:一是原创产品设计,由草图建立曲面模型;二是根据二维图纸进行曲面造型,即所谓图纸造型;三是逆向工程,即点测绘造型。这里介绍第二种类型实现步骤的两个阶段:, x# q# G3 j0 ^" j: D! ? 第一阶段是造型分析,确定正确的造型思路和方法。. Q! t( |1 W( e5 ^; E (1)在正确识图的基础上将产品分解成单个曲面或面组;0 ^& y8 Q8 r$ a# M& V) S (2)确定每个曲面的类型和生成方法,如直纹面、拔模面或扫略面等; (3)确定各曲面之间的联接关系(如倒角、裁剪等)和联接次序。以图1的产品图为例(为清晰起见,图纸仅给出了部分标注),可将其分解为图中所示的9个面或面组。其中面1为平面(由图纸标注确定);面2、面3分别是两个半径为100和150的倒圆角面;面4、5是两个面组,即由俯视图部分轮廓线(A→B→C和D→E→F)生成的两度拔模面;面6是直线段GH生成的零度拔模面;面7是一个变截面的扫略面;产品顶部的凸台由一个扫略面(顶面8)和一个拔模面组(面9)组成。各面和面组之间由倒圆角联接,其中面7与面1、2、3之间的倒圆半径为15,而面4、5与顶面1、2、3之间的倒圆半径为10,因此在其间拐角处(I到A,J到F)有变半径(从15到10)倒角过渡。

微积分第四版答案(二)曲面的概念+曲面的第一基本形式

§1曲面的概念 1.求正螺面={ u ,u , bv }的坐标曲线. 解u-曲线为={u ,u ,bv }={0,0,bv}+u {, ,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线. 2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。 证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2 }表示过点{ a, b,0}以{a,b,2}为方向向量的直线; v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。 3.求球面=上任意点的切平面和法线方程。 解=,= 任意点的切平面方程为 即 xcos cos + ycos sin + zsin - a = 0 ; 法线方程为。 4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,

此曲面只有一个切平面。 解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为: ,即x bcos + y asin- a b = 0 此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。 5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为: 是常数。 §2曲面的第一基本形式 1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式. 解 ,

微分几何第四版答案(三)曲面的第二基本形式

§3曲面的第二基本形式 1. 计算悬链面r r ={coshucosv,coshusinv,u}的第一基本形式,第二基本形式. 解 u r ={sinhucosv,sinhusinv,1},v r ={-coshusinv,coshucosv,0} uu r ={coshucosv,coshusinv,0},uv r ={-sinhusinv,sinhucosv,0}, vv r ={-coshucosv,-coshusinv,0},2u r E = cosh 2u,v u r r F =0,2v r G =cosh 2u. 所以错误!未找到引用源。 = cosh 2u 2du + cosh 2u 2dv . n = 2 F E G r r v u = }sin sinh ,sin cosh ,cos cosh {cosh 1 2 v u v u v u u , L=11 sinh cosh 2 u , M=0, N= 1 sinh cosh 2 u =1 . 所以错误!未找到引用源。 = -2du +2dv 。 2. 计算抛物面在原点的2 2212132452x x x x x 第一基本形式,第二基本形式. 解 曲面的向量表示为}22 5,,{22212121x x x x x x r , }0,0,1{}25,0,1{)0,0(211 x x r x ,}0,1,0{}22,1,0{)0,0(212 x x r x ,}5,0,0{11 x x r , }2,0,0{21 x x r ,}2,0,0{22 x x r , E = 1, F = 0 , G = 1 ,L = 5 , M = 2 , N =2 , 错误!未找到引用源。=2221dx dx , 错误!未找到引用源。=2 22121245dx dx dx dx . 3. 证明对于正螺面r r ={u v cos ,u v sin ,bv},-∞

A级曲面设计规范

XXXXX有限公司 A级曲面设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 20发布 20--实施 XXXXX有限公司发布

一、A级曲面光顺原则 1.所有特征都必须具有可扩展性和可编辑性。 2.所有特征都必须分解成单凸或单凹特征。 3.所有特征面的光顺保证2阶导数以上连续。 4.所有特征线(面)函数必须小于6阶。 5.所有特征间的连接要2阶导数以上连续(曲率连续) 6.所有特征间的连接偏差小于0.0001。 7.一块大面上多特征拼接的,建模默认误差小于0.0001,角度误差小于0.01度。 8.单一特征面的建模默认误差小于0.00001,角度误差小于0.001度 9.造型决定的不同特征形状可不要求曲率连续或相切连续。 10.在不能保证大特征面如上质量情况下,宁可牺牲边界线或缝线或特征连接,特征的连续保证相切连续(角度误差小于0.1度)。 11.不明显的局部特征过渡区(如A柱下端与翼子板过渡区),允许曲率不连续,但要保证相切连续。 12.外观特征筋线倒角R2~R5 仪表板边界相交倒角 R5~R10 13.顶盖、发动机盖、行李箱盖,与侧围做大面相交,然后以交线为中心,依据点云特征,进行曲率或相切连续。 14.大于R10的倒角,要考虑搭桥,保证曲率连续。 15.为获得A级曲面、允许与点云误差±5mm。 16.零件边界线必须光顺。 17.一块大面如果在两头曲率变化太大(相差2倍以上)必须分开特征,然后与主曲面拼接,拼接精度偏差小于0.0001,角度偏差小于0.01度)。 18.不可以用多个特征断面,用扫面(sweep)的方法,但可用单特征面(曲率变化不超过2倍)多个断面扫面。 19.不可用多个边界约束的小面拼接零件。

曲面造型的基本思路

曲面造型的基本思路 单岩谢龙汉 1 前言 利用CAD/CAM软件进行三维造型是现代产品设计的重要实现手段,而曲面造型则是三维造型中的难点。我们在从事CAD/CAM培训的过程中发现,尽管现有的CAD/CAM软件提供了十分强大的曲面造型功能,但初学者面对众多的造型功能普遍感到无所适从,往往是软件功能似乎已经学会了,但面对实际产品时又感到无从下手。即使是一些有经验的造型人员,由于其学习过程中的问题,也常常在造型思路或功能使用上存在一些误区,使产品造型的正确性和可靠性打了折扣。 针对上述情况,本文从整体上讨论了曲面造型的一般学习方法,并举例介绍了曲面造型的一般步骤。 2 曲面造型的学习方法 面对CAD/CAM软件所提供的众多曲面造型功能,要想在较短的时间内达到学会实用造型的目标,掌握正确的学习方法是十分必要的。 要想在最短的时间内掌握实用造型技术,应注意以下几点: (1)应学习必要的基础知识,包括自由曲线(曲面)的构造原理。这对正确地理解软件功能和造型思路是十分重要的,所谓“磨刀不误砍 柴功”。不能正确理解也就不能正确使用曲面造型功能,必然给日 后的造型工作留下隐患,使学习过程出现反复。其实,曲面造型所 需要的基础知识并没有人们所想象的那么难,只要掌握了正确的讲 授方法,具有高中文化水平的学员就能理解。 (2)要针对性地学习软件功能。这包括两方面意思:一是学习功能切忌贪多,一个CAD/CAM软件中的各种功能复杂多样,初学者往往陷 入其中不能自拔。其实在实际工作中能用得上的只占其中很小一部 分,完全没有必要求全。对于一些难得一用的功能,即使学了也容 易忘记,徒然浪费时间;另一方面,对于必要的、常用的功能应重 点学习,真正领会其基本原理和应用方法,做到融会贯通。 (3)重点学习造型基本思路。造型技术的核心是造型的思路,而不在于软件功能本身。大多数CAD/CAM软件的基本功能大同小异,要在 短时间内学会这些功能的操作并不难,但面对实际产品时却又感到 无从下手,这是许多自学者常常遇到的问题。这就好比学射击,其 核心技术其实并不在于对某一型号的枪械的操作一样。只要真正掌 握了造型的思路和技巧,无论使用何种CAD/CAM软件都能成为造 型高手。 (4)应培养严谨的工作作风,切忌在造型学习和工作中“跟着感觉走”,

第二基本形式

3.曲面的第二基本形式 3.1曲面的第二基本形式 在2中所研究的对象都是属于曲面的内蕴几何,即所研究的只是曲面本身的内蕴性质,而不依赖于曲面在空间中如何弯曲。为了研究曲面在空间中的弯曲性,我们有必要引进du 和dv 的另一个二次微分形式,就是我们在这里要介绍的第二基本形式。 设2C 类曲面S 的方程为 ),(v u r r =, 即),(v u r 有连续的二阶导函数vv uv uu r r r ,,. 现在固定曲面S 上一点),(v u P ,并设π为曲面在P 点的切平面。 曲线)(C : [])(),()(,)(s v s u r r s v v s u u ===或 是S 上过P 点的一曲线,其中s 是自然参数。设P '是曲线)(C 上在P 点邻近的一点,P 和P '点的自然参数的值分别为s 与s s ?+,即P 点的向径为)(s r ,P '点的向径为)(s s r ?+.利用泰勒公式得 2))((2 1)()(s r s r s r s s r P P ?++?=-?+='ε , 其中0lim 0 =→?εs . 设n 为曲面在P 点的单位法向量,由P '作切平面π的垂线,垂足为Q ,则 ,n P Q δ='其中δ为从平面π到曲面S 的有向距离(如图2-11) 。 由于 ,00=?=?r n n QP , 所以有

[].))((2 1)()()(2s n r n n s r s s r n P P n P P QP n P Q ??+?=?-?+=?'=?'+=?'=εδ 因此当0≠?r n 时,无穷小距离δ的主要部分是 ,2 1)(2122ds r n s r n ?=?? 由于 ,v r u r r v u += v r u r v r v u r u r r v u vv uv uu ++++=222, 又因为 ,0=?=?v u r n r n 所以 .2222dv r n dudv r n du r n ds r n vv uv uu ?+?=?=? 引进符号: ,,,n r N n r M n r L vv uv uu ?=?=?= (2.27) 于是前式为 ,2222Ndv Mdudv Ldu r d n ++=?=∏ (2.28) 它称为曲面的第二基本形式,它的系数L 、M 、N 称为曲面的第二类基本量。 上式表明第二基本形式近似地等于曲面与切平面的有向距离的两倍,因而它刻画了曲面离开切平面的弯曲程度,即刻画了曲面在空间中的弯曲性。 根据上述讨论,我们可以看出第二基本形式不一定是正定的,当曲面在给定点向n 的正侧弯曲时为正,向n 的反侧弯曲时为负。 现在把曲面的单位法向量 2F EG r r r r r r n v u v u v u -?=??= 代入(2.27)中,就有 ,) ,,(2F EG r r r n r L v u uu uu -=?= ,) ,,(2F EG r r r n r M v u uu uv -=?=

CATIA中曲面外形分析

曲面外形分析 CATIA 提供了丰富的曲面外形分析功能对曲面进行分析,包括反射线,高亮分析、面上曲率分析、斑马线分析等功能。本文将对上述各项分析功能进行介绍。 1 反射线 反射线(Reflection Line),通过建立一组平行的直线,用这组直线模拟霓虹灯,将光线照射到曲面上,形成一系列的反射线,由此分析曲面的形状。 首先需要选择要进行分析的曲面。接着在【Shape Analysis(外形分析)】工具栏中选择【反射线】功能,弹出【Reflection Lines】对话框。在对话框中,Neons栏目可以设置反射线的密度及数量。在输入栏中设定反射线的数量, 在输入栏中设定反射线的间距。单击对话框中的按钮,可以将指南针移动到曲面上方。如图1所示。 图1 在Eye栏目中列出了反射线的入射角度。屏幕视角,以屏幕垂直的方向将光线投射到曲面上,旋转曲面,可以观察到反射线的变化,如图2所示是两个不同视角的反射线。

图2 指南针方向,以指南针的方向作为入射光线的方向,调整指南针的方向,可以改变反射线,如图3所示。 图3 在反射直线上单击右键,弹出如图4所示的菜单,选择Keep this reflection line 可以将当前所选择的直线在曲面上的所有反射线保留成为曲线,如图5所示。选择Keep all reflection lines可以将所有反射线保留。

图4 图5 2 拐点曲线 拐点曲线(Inflection line),可以江曲面上曲率为0的点连接成曲线。拐点曲线两侧的曲率方向相反。在【Shape modification(外形修改)】工具栏中选择 拐点曲线功能,弹出如图6所示的对话框。首先需要选择要进行分析的曲面,曲面显示的拐点曲线,如图6所示。

proe曲面设计造型心得

============================== 家电产品的三维造型设计方法的研究 随着社会的进步,人们生活水平的不断提高,追求完善已成为时尚.人们对消费产品的要求已不仅仅满足于基本功能的完备,同时更注重外观的美感.家电产品在不断提高和完善其功能的同时,在外观造型上要求越来越高,多以复杂方式自由地变化的曲线曲面即所谓自由型曲线曲面组成.而这一类形状单纯用画法几何与机械制图是不能表达的.这就给家电产品的设计及制造带来了挑战.计算机技术和计算机图形学的不断发展,为人们提供了强有力的工具,三维CAD/CAM/CAE集成化软件被广泛应用于制造业.然而,要快速高质量地完成一个家电产品的造型设计,必须根据家电产品的特点,总结出一套建模方法和技巧.这样才能大大缩短设计周期,提高设计效率,满足客户对产品的各种特殊需求.

1掌握三维CAD造型的原理,充分了解应用软件中的造型方法CAD的三维模型有三种,即线框、曲面和实体。早期的CAD系统往往分别对待以上三种造型。而当前的高级三维软件,例如UGII,PRO/E,EUCLID等则是将三者有机结合起来,形成一个整体,在建立产品几何模型时兼用线、面、体三种设计手段[1]。其所有的几何造型享有公共的数据库,造型方法间可互相替换,而不需要进行数据交换。此在进行产品造型时,必须首先充分了解应用软件中的各种造型方法,总结出造型方法的特点、相关参数及应用技巧,减少造型时的盲目性,便能快捷有效地获得满意结果。 1.1线框造型 线框造型可以生成、修改、处理二维和三维线框几何体。可以生成 点、直线、圆、二次曲线、样条曲线等,又可以对这些基本线框元素

相关主题
文本预览
相关文档 最新文档