当前位置:文档之家› 耐火材料在陶瓷中的应用

耐火材料在陶瓷中的应用

耐火材料在陶瓷中的应用
耐火材料在陶瓷中的应用

耐火材料在陶瓷中的应用

摘要:耐火材料是窑炉和冶金行业中重要的一部分。耐火材料是为高温技术服务的基础材料。耐火材料的种类很多,比如氧化硅耐火材料、硅酸铝质耐火材料、碱性及尖晶石质耐火材料、含碳质耐火材料、含锆质耐火材料、不定型耐火材料、绝热材料、特种耐火材料等。

关键字:耐火材料、窑炉

Abstract:refractory furnace and metallurgical industry is an important part. Technical services for the high-temperature refractory base material. Many different types of refractories, refractory materials such as silicon oxide, aluminum silicate refractories, alkaline and spinel refractories, carbon refractories containing zirconia refractories, unshaped refractories, insulation materials, special refractories.

Keywords: refractory materials, furnace

耐火材料是耐火度不低于1580°C的材料。一般是指主要由无机非金属材料构成的材料和制品。耐火材料是为高温技术服务的基础材料。他与高温技术尤其是高温冶炼工业的发展有着密切关系,相互依存,互为促进,共同发展。在一定条件下,耐火材料的质量品种对高温技术的发展起着关键的作用。

我国耐火原料资源丰富,品种多,储量大,品位高。高铝矾土和菱镁矿蕴藏量大,品质优良,世界著名;耐火粘土、硅石、白云石和

石墨等储量多,分布广,品质好;叶腊石、硅线石、橄榄石和锆英石等储量也多;隔热耐火材料的各种原料,各地都有储藏。

下面主要介绍几种耐火材料的优缺点和用途。

氧化硅质耐火材料:

氧化硅质耐火材料是指以二氧化硅SiO2为主成分的耐火材料。主要制品有硅砖。硅砖系指二氧化硅含量在93%以上,用SiO2为主要成分的硅石做原料,加少量矿化剂,经高温烧成的。

氧化硅质耐火材料为典型的酸性耐火材料。其矿物组成为:主晶相为鳞石英和方石英,基质为石英玻璃相。氧化硅质耐火材料抵抗酸性炉渣侵蚀能力强,荷重软化温度高,耐磨、导热性好,在600°C 以上使用时耐热震性较好,而在600°C以下使用时耐热震性很差。硅砖主要用于焦炉、玻璃熔窑、酸性炼钢炉以及其他热工设备。

为了适应焦炉大型化和强化生产的需要,氧化硅质耐火材料主要发展方向是研制生产高硅高密度硅砖和SiO2雨其他原料结合的硅质耐火制品。

硅酸铝质耐火材料:

硅酸铝质耐火材料是以Al2O3和SiO2为基本化学组成的耐火材料。根据制品中Al2O3和SiO2的含量,硅酸铝质耐火材料划分为三类:半硅质耐火材料(Al2O3含量为15~30%)、粘土质耐火材料(Al2O3含量为30~46%)、高铝质耐火材料(Al2O3含量大于46%)。

硅酸铝质耐火材料的原料广,生产过程简单,成本低,价格便宜,高温适应性强。冶金、机械、化工、动力及硅酸盐等工业部门的炉窑,

均广泛应用硅酸铝质耐火材料作为主要的筑炉材料。其中用量最多的为冶金工业,钢铁冶金工业的高炉、热风炉、混铁炉、加热炉、均热炉,以及有色金属工业的回转窑、沸腾炉、鼓风炉、反射炉、熔铝炉和有色金属加热炉等热工设备,大量使用粘土砖、高铝砖、莫来石制品及刚玉质制品作为筑炉材料。

碱性及尖晶石质耐火材料:

碱性耐火材料是化学性质呈碱性的耐火材料,一般指以氧化镁、氧化镁与氧化钙或氧化钙为主要化学成分的耐火材料。目前,常用的碱性耐火材料的主要品种有镁质耐火材料、白云石质耐火材料和石灰质耐火材料。通常,这类耐火材料的耐火度都很高,抵抗碱性渣的能力很强,是炼钢碱性转炉、电炉、混铁炉、许多有色金属火法冶炼炉中使用最广泛而最重要的一类耐火材料,也是玻璃窑蓄热室、水泥窑等高温带最常用的耐火材料。

尖晶石质耐火材料是指以镁铝尖晶石、镁铬尖晶石及复合尖晶石为主晶相的耐火材料,属中性。但是,这类材料的矿物组成、结构和许多性质同镁质耐火材料中的一些品种相近。

含碳质耐火材料:

含碳质耐火材料是指由碳或碳化物为主要组成的耐火材料。其中,由无定形碳为主要组成的称炭素耐火材料;由结晶型石墨为主要组成的称石墨耐火材料;由SiC为主要组成的称碳化硅耐火材料。

这种耐火材料多用含碳材料作原料,加结合剂,经混炼、成型,在隔绝空气条件下高温热处理制成。

含碳质耐火材料是一种优质耐高温的材料。它具有耐热震性能好,高温强度很高,抗渣性强和密度较小等特性。

含锆质耐火材料:

含锆质耐火材料是指含有氧化锆(ZrO2)或锆英石(ZrO2·SiO2)的耐火材料。

纯锆英石制品的性质:耐火度很高,制品的体积稳定性较高,耐热震性较差,有良好的耐熔渣、金属液和玻璃液侵蚀的性能。制品的应用:锆英石制品可用作连续铸钢用盛钢桶中的内衬以及其他受熔渣侵蚀及严重的部位,也可用作铜、铝冶炼炉的铸口等。另外,还可用于玻璃熔窑与玻璃液直接接触之处和上部结构以及用作电熔锆刚玉砖与硅砖之间的隔离砖。

熔铸锆刚玉制品的性质:耐高温,耐侵蚀,稳定性很高,致密性远比普通烧结制品高,力学性能和耐磨性良好。制品的应用:这种制品是用于直接与金属液和熔渣接触处抵抗侵蚀的良好材料。是玻璃熔窑受侵蚀最严重的关键部位不可缺少的材料。用于金属冶炼炉和容器中受渣蚀严重之处效果也佳。

不定型耐火材料:

浇注料的性质:浇注料的常温强度实际上取决于结合剂硬化体的强度,有良好的耐火性。浇注料的应用:主要用于构筑各种加热炉内衬等整体构筑物。某些由优质粒状和粉状料组成的品种也可用于冶炼炉。磷酸盐浇注料根据耐火粉粒料的性质既可广泛用于加热金属的均热炉和加热炉中,也可用于出铁槽、出钢槽以及炼焦炉、水泥窑中直

接同熔融金属和高温热处理物料接触的部位。

绝热材料:

轻质硅砖的性质:体积密度较轻,耐压强度较低,导热性较低,耐热震较高。

耐火纤维的特点:耐高温,导热能力低,体积密度小,化学稳定性好,耐热震性好,热容量低,柔软、易加工。工业上应用耐火纤维的形式为纤维镶贴炉衬结构和全纤维炉衬。

特种耐火材料:

特种耐火材料一般包括高熔点氧化物、难熔化合物及其衍生的其他化合物。它具有较高的化学纯度、高的熔点、大的高温结构强度、良好的化学稳定性和热稳定性等特点。

特种耐火材料的生产特点是原料纯度高,熔点高,难烧结;成型工艺很多;胚体要在1600~2000°C或更高的温度下烧成;制品种类很多。

特种耐火材料是许多工业部门不可缺少的耐火材料。有色金属、稀有金属、难容金属、贵金属的提取和提纯所需的特殊难炼坩埚、电炉炉胆、发热元件、钢铁冶金中连续铸钢的铸口、快速测氧测头级高温热电偶保护套等都采用特种耐火材料制作。应用特种耐火材料课制造火箭头部保护罩、燃烧室内衬、尾吹管衬套和航天飞机贴面材料及涂层料。原子反应堆核燃料、控制棒、中子减速剂、反射壁及评比防护体都由特种耐火材料构成,此外,特种耐火材料还可用作刀具、磨具、模具、电极材料、人体关节和人造牙齿等。

然而耐火材料在窑炉中的应用也是非常重要的。比如在梭式窑中

的应用,梭式窑用的耐火材料有两种,一种是全纤维的,另一种是砖和纤维的。梭式窑的窑墙,它是用耐温度急变性较好的轻质耐火砖或轻质浇注料砌筑,外部用硅酸铝纤维制品、硅酸钙板、岩棉等隔热,内面还粘贴50mm左右的高温耐火纤维,为提高窑炉强度和气密性,窑炉外常包以3mm左右厚的钢板。

梭式窑的窑顶按其结构形式可分为拱顶和吊顶两种。拱顶是用楔形转砌成,拱顶的拱角一般为60°~180°,60°的拱顶采用得较多。拱顶的材料常用强度大的轻质高铝砖,拱顶上面采用硅酸铝纤维、岩棉等轻质材料。在拱顶砖的内面可以贴上50mm左右的耐高温耐火材料,以减少蓄热、散热,并可延长轻质砖拱顶的使用寿命。断面较宽的现代梭式窑常采用平吊顶。平吊顶是由异性砖构成的,异型砖用吊杆单独或者成组地吊在窑炉的钢梁上。吊顶砖的材料常用轻质耐火砖,吊顶砖外面常用硅酸铝纤维等轻质耐火材料覆盖。

至于耐火材料在工业窑炉中的应用也是至关重要的。工业窑炉的窑墙一般由耐高温的内衬层、隔热的中间层和其支撑作用的外层组成。对于一般的陶瓷工业隧道窑,内衬层材料多为粘土砖、高铝砖、莫来石砖等,中间层的隔热材料有各种轻质砖和陶瓷纤维,外层多用钢板。

小结:

我国耐火材料的发展应依靠科学技术的进步和整体工业水平的提高,加强生产技术的管理,以材料的质量和品质为中心,继续提高原料质量,发展合成原料,改进生产装备,全面提高产品质量和改善

性能,积极开发优质新品种,合理利用和提高耐火材料服役寿命,进一步降低消耗,保证和促进高温技术工业和热能工程以及国民经济的发展。

参考文献:

[1]耐火材料,冶金工业出版社,2008年2月。

[2]陶瓷工业窑炉,武汉理工大学出版社,2010年8月。

纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域: 飞机发动机、燃气轮机零部件: 热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200o C的使用温度,但现在军用发动机的使用温度已经超过1200o C,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200o C的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ 热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。 军舰船舶零部件: 纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。 表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层 零部件船上系统基体材料使用环境 水泵轴储水槽NiCu合金盐水 阀杆主柱塞阀不锈钢蒸汽 轴主加速器碳钢盐水 涡轮转子辅助蒸汽碳钢油 端轴主推进发动机青铜盐水 阀杆主馈泵控制不锈钢蒸汽 膨胀接头弹射蒸汽装置CuNi合金蒸汽 支杆潜艇舱门不锈钢盐水 流量泵燃料油碳钢燃料油 柴油机、工程机械零部件: 高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧

关于耐火材料硅砖的介绍

关于耐火材料硅砖的介绍 暑假期间应学校教务处关于社会实践的要求,我和同寝室的高振东、魏珊珊同学一起在山西省阳泉市平定县社会高新福利耐火材料厂进行了为期十天的社会实践。该厂是以生产耐火材料硅砖为主的乡镇企业,我们的实践是以参观硅砖生产工艺流程为主展开的。经过十天的实践,我对耐火材料硅砖有了一个初步的认识,以下就是对耐火材料硅砖的介绍: 硅砖主要是由鳞石英、方石英以及少量残余石英和玻璃相组成的酸性耐火材料。其二氧化硅含量94%以上,真密度2. 35g/cm3,具有抗酸性渣侵蚀性能,较高的高温强度,荷重软化开始温度1620~1670℃,在高温下长期使用不变形,热震稳定性低(水中热交换1~4次)。以天然硅石为原料,外加适量矿化剂,以促进胚体中的石英转化为鳞石英,在还原气氛下经1350~1430℃缓慢烧成,加热到1450℃时约有1.5~2.2%的总体积膨胀,这种残余膨胀会使切缝密合,保证砌筑体有良好的气密性和结构强度。硅砖的矿相组成主要为鳞石英和方石英,还有少量石英和玻璃质。鳞石英、方石英和残存石英在低温下因晶型变化,体积有较大变化,因此硅砖在低温下的热稳定性很差。使用过程中,在800℃以下要缓慢加热和冷却,以免产生裂纹。所以不宜在 800℃以下有温度急变的窑炉上使用。 硅砖的性质和工艺过程同SiO2的晶型转化有密切关系,因此,真比重是硅砖的一个重要质量指标。一般要求在 2.38以下,优质硅砖应在 2.35以下。真比重小,反映砖中鳞石英和方石英数量多,残余石英量小,因而残余线膨胀小,使用中强度下降也少。二氧化硅有七个结晶型变体和一个非晶体变体。这些变体可分为两大类:第一类变体是石英、鳞石英和方石英,它们的晶型结构极不相同,彼此间转化很慢;第二类变体是上述变体的亚种──αβ和γ型,它们的结构相似,相互间转化较快。制造硅砖的原料为硅石。硅石原料的SiO2含量越高,耐火度也越高。最有害的杂质是Al2O3、K2O、Na2O等,它们严重地降低耐火制品的耐火度。硅砖以SiO2含量不小于96%的硅石为原料,加入矿化剂(如铁鳞、石灰乳)和结合剂(如糖蜜、亚硫酸纸浆废液),经混练、成型、干燥、烧成等工序制得。 硅砖主要用于炼焦炉的炭化室和燃烧室的隔墙、炼钢平炉的蓄热室和沉渣室、均热炉、玻璃熔窑的耐火材料和陶瓷的烧成窑等窑炉的拱顶和其他承重部位,也用于热风炉的高温承重部位和酸性平炉炉顶。 硅砖生产过程中产生的硅粉对人体的危害很大。粉尘对人体的危害程度取决于人体吸入的粉尘量、粉尘侵入途径、粉尘沉着部位和粉尘的物理、化学性质等因素,粉尘侵入呼吸系统后,会引发尘肺、肺粉尘沉着症、有机粉尘所致的肺部病变、呼吸系统肿瘤和局部刺激作用等病症,其中含游离二氧化硅的粉尘可引起矽肺病,对人体危害特别大。

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

表面改性技术在陶瓷材料中的应用

表面改性技术在陶瓷材料中的应用 引言: 材料表面处理是材料表面改性和新材料制备的重要手段,材料表面改性是目前材料科学最活跃的领域之一。传统的表面改性技术,方法有渗氮、阳极氧化、化学气相沉积、物理气相沉积、离子束溅射沉积等。随着人们对材料表面重要性认识的提高,在传统的表面改性技术和方法的基础上,研究了许多用于改善材料表面性能的技术,主要包括两个方面:利用激光束或离子束的高能量在短时间内加热和熔化表面区域,从而形成一些异常的亚稳表面;离子注入或离子束混合技术把原子直接引进表面层中。陶瓷材料多具有离子键和共价键结构,键能高,原子间结合力强,表面自由能低,原子间距小,堆积致密,无自由电子运动。这些特性赋予了陶瓷材料高熔点、高硬度、高刚度、高化学稳定性、高绝缘绝热性能、热导率低、热膨胀系数小、摩擦系数小、无延展性等鲜明的特性。但陶瓷材料同样具有一些致命的弱点,如:塑性变形差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感、质脆以及在高温环境中其强度、抗氧化性能等明显降低等。 正文: 一、陶瓷材料表面改性技术的应用 1.不同添加剂对陶瓷材料性能的影响。 由于陶瓷材料的耐高温特性经常被应用到高温环境中,特别是高温结构 陶瓷,其高温抗氧化性受到人们的关注。Si 3N 4 是一种强共价结合陶瓷,具有高 硬度、高强度、耐磨和耐腐蚀性好的性能。但是没有添加剂的Si 3N 4 几乎不 能烧结,陶瓷材料的高温强度强烈地受材料组成和显微结构的影响,而材料的显微结构特别是晶界相组成是受添加剂影响的,晶界相的组成对高温力学性能的影响极其敏感。对致密氮化硅而言,坯体中的物质传递对材料的氧化起着决定性作用,一般认为,在测试条件下,具有抛物线规律的氮化硅材料,其决定氧化的主要因素取决于晶界的添加剂离子和杂质离子的扩散速率,不同的添加剂对氮化硅陶瓷的氧化行为影响有所不同[1,2,3]。 2.离子注入技术。 离子注入就是用离子化粒子,经过加速和分离的高能量离子束作用于材料表面,使之产生一定厚度的注入层而改变其表面特性。可根据需要选择要注入的元素,并根据工艺条件控制注入元素的浓度分布和注入深度,形成所需要的过饱和固溶体、亚稳相和各种平衡相,以及一般冶金方法无法得到的合金相或金属间化合物,可直接获得马氏体硬化表面,得到所需要的表面结构和性能由于形成的改性表面不受热力学条件的限制(相平衡、固溶度),所以具有独特的优点。离子注入表面处理技术有:金属蒸汽真空弧离子源离子注入,等离子源注入等。在相同的条件下,重离子比轻离子有更强烈的辐射硬化,因此其对抗弯强度的增加更显著;由于单晶的表面缺陷少所以增加效果 更好]7,6[。

陶瓷耐火材料复习要点

陶瓷部分 1、陶瓷的概念与分类,常用陶瓷的分类方法及类别 2、了解陶瓷的发展史 3、我国陶瓷发展史上的三次重大突破以及由此产生的陶瓷技术三次飞跃发展。 4、一般陶瓷制品的生产工艺流程。 5、生产陶瓷常用的三种主要原料有哪些? 6、粘土的分类(一次粘土、原生粘土、、残留粘土、耐火粘土,二次粘土、次生粘土、沉积粘土、结合粘土)及其特点,粘土的主要化学矿物组成,各种粘土矿物的工艺性能比较。 7、粘土的工艺性质及其影响因素。(化学组成、粒度组成)。 8、普通陶瓷配料的两大原则。(工艺性能和化学组成)。 9、依据粘土的化学组成可以初步判断粘土的矿物组成和工艺性能。(粘土化学组成的意义) 10、粘土的工艺性质及其影响因素。(液限和塑限、可塑性指数和可塑性指标,提高可塑性的方法和降低可塑性的方法,粘土的结合性及其表征方法,粘土的离子交换性及表示方法,粘土的触变性,粘土的干燥收缩和烧结收缩,粘土的烧结温度和烧结温度范围,粘土的耐火度)。 构成“可塑性”完整概念的三要素:泥料可被塑造成任意形状、外力撤除后仍能保持该形状、干燥后具有一定强度。 注意:液限、塑限、可塑性指数等值的高低大小对生产的影响。 开始烧结温度T1;完全烧结温度(烧结温度)T2;软化温度T3;烧结温度范围△T。 在此基础上选择陶瓷制品的烧成温度

11、粘土的可塑性、结合性与陶瓷的干燥收缩和烧结收缩等的关系。 12、粘土的化学组成与陶瓷烧结温度和烧结温度范围的影响。 13、石英的七种晶相及其对陶瓷生产的影响。 14、石英在陶瓷生产中的作用。 15、为什么石英在573℃转化时体积膨胀小(仅0.82%)却对陶瓷生产影响很大?而由石英转化为鳞石英时体积膨胀大(约16%)对耐火材料生产的影响小? 16、粘土在陶瓷生产中的作用。 17、长石的分类及其在陶瓷生产中的作用。 18、陶瓷生产对长石熔融性能的要求。 19、硅灰石在陶瓷生产中作用有哪些?主要优点是什么? 20、了解陶瓷工业的其他原料,如:滑石、硅灰石、锂辉石、锂云母、霞石、珍珠岩、镁橄榄石、磷灰石、方解石、白云石等,还有锆英石、高铝矾土、红柱石、蓝晶石、硅线石等。 21、学习陶瓷工艺原理后的感受。 22常用的陶瓷分类方法及其分类。(按成型方法、显气孔率、用途、熔剂成分或主要原料来分类) 23、坯料和釉料的表示方式有哪几种(实验式、化学组成、配料量、示性矿物组成等),几种表示方法之间的换算(即坯料计算) 24、坯料的基本质量要求:(1)坯料的化学组成符合配方要求;2)各种原料成分混合均匀;(3)坯料中各组分的细度符合工艺要求;(4)坯料中空气含量尽量的少。 对各种成型方法的坯料具体要求:对注浆坯料的要求是,a. 流动性好。便于输送,以及浇注时容易充满模具的各个角落;b. 稳定性好。便于输送,以及使得到的坯体厚薄及密度均匀;c. 触变性适当;d. 渗滤性好,浇注时成型速度快;e. 在保证流动性良好的前提下,泥浆含水率尽可能小,以缩短模型吸浆时间和提高坯体强度。 对塑性成型坯料的要求:a.具有良好的可塑性,能完全满足成型要求,并保证坯体有足够的强度,不致产生变形;b. 在保证可塑性的前提下,坯料含水量尽可能少,以缩短干燥时间,减小干燥收缩;c. 泥料中固体颗粒排列的有序程度低,即不形成定向排列。以免在成型坯体中形成各向异性结构,引起干燥变形甚至开裂。 对压制成型坯料的要求:a流动性好。能迅速充满模具的各个角落,以保证坯体的密度均匀一致;b堆积密度大,压缩比小。即粉料中空气含量小;c含水率适当且水分分布均匀。 粉料含水率直接影响成型操作及坯料的密度和强度,一般地,成型压力大时要求坯料的含水率较低些,反之依然。但无论如何均要求水分分布应均匀一致。 25、典型的陶瓷生产工艺流程

新型陶瓷原料介绍

新型陶瓷原料介绍 1、氧化物原料 a、氧化铝:它是新型陶瓷制品中使用最为广泛的原料之一,具有一系列优良性能。此外,它也是高温耐火材料、磨料、磨具、激光材料及氧化铝宝石等的重要原料。 b、氧化锆:它是高温结构陶瓷、电子陶瓷和耐火材料的重要原料。 c、二氧化钛:它是制造电容器陶瓷、热敏陶瓷和压电陶瓷等制品的重要原料。 d、氧化铍:它是高导热性新型陶瓷的重要原料。 e、三氧化二铁:它是强磁性材料的重要原料。 f、二氧化锡:广泛用于电子陶瓷中。 g、氧化锌:它可以使陶瓷材料的机械和电性能得到改善。 h、氧化镍:应用于热敏陶瓷中。 i、氧化铅:在新型陶瓷中主要用作合成PbTiO3、Pb(Zr、Ti)O3以及Pb(Mg1/3、Nb2/3)O3的主要原料。 j、五氧化二铌:在电子陶瓷工业中它用途很广,如用作制造铌镁酸铅低温烧结独石电容器,铌酸锂单晶等的主要原料,同时还可作为改性添加剂。 k、锰的氧化物:如制作湿度传感器、过热保护器等。 l、氧化铬:用作气敏元件、气体警报器的配料中。 m、氧化钴:应用于聚光材料等方面。 2、复合氧化物原料 a、钛酸盐:主要有BaTiO3、SrTiO3、CaTiO3、MgTiO3和PbTiO3等。BaTiO3是压电、铁电陶瓷的重要原料。 b、锆酸盐:主要有BaZrO3和SrZrO3等。应用于磁芯、振荡器等。 c、锡酸盐:主要有BaSnO3、CaSnO3、InSnO3、CaSnO3、NiSnO3和PbSnO3,如CaSnO3用作于电容器中。 d、铌酸盐:主要有LiNbO3和KnbO3。 e、锑酸盐:主要有BaSb2O6、PbSb2O6和MgSb2O6等。 f、铝酸盐:主要有MgAl2O4。 g、铝硅酸盐:主要有3Al2O3o2SiO2。 3、稀土氧化物原料,如:Yb2O3、Tu2O3、Nd2O3、Ce2O3、La2O3等。

陶瓷涂层

陶瓷涂层 一、金属基陶瓷涂层简介 金属基陶瓷涂层是指涂在金属表面上的耐热无机保护层或表面膜的总称。他能改变金属底材料外表面的形貌、结构及化学组成,并赋予底材料新的性能。涂层的种类很多;按其组成可分为硅酸盐系涂层、氧化物涂层、非氧化物涂层及复合陶瓷涂层等,按工艺方法可分为熔烧涂层、喷涂涂层、气相沉积及扩散涂层、低温烘烤涂层、电化学工艺涂层、溶胶-凝胶涂层及原位原位反应涂层等;按其性能与用途可分为温控涂层(包括温控、隔热、红外辐射涂层等)、耐热涂层(包括抗高温氧化、抗腐蚀、热处理保护涂层等)、摩擦涂层(包括减磨、耐磨润滑涂层)、电性能涂层(包括导电、绝缘涂层等)、特种性能涂层(包括电磁波吸收、防原子辐射涂层等)及工艺性能涂层等。 二、金属基陶瓷涂层制备技术 1.喷涂法(等离子喷涂法) 2.化学气相沉积法(CVD):在相当高的温度下,混合气体与基体的表面相互作用,使混合气体的某些成分分解,并在基体表面形成一种金属或化合物的固态薄膜镀层。 3.物理气相沉积法(PVD):离子镀法、溅射法、蒸镀法、离子注入等,离子化使镀层更致密。目前CVD和PVD的界限已不明显,两者相互渗透,CVD技术引入等离子活化等物理过程,出现了PACVD技术,PVD技术也引入反应气体产生化学过程。 4.复合镀层 5.溶胶-凝胶法 6.原位反应法 三、应用 航天航空工业:航天飞机机身外皮发动机涡轮叶片燃烧室内壁齿轮箱传送装置 电力电子工业:增加介电常数 汽车工业:为了减轻重量而开发新一代汽车发动机,欧洲、日本的汽车制造厂已经采用了合金上电解沉积Ni-SiC复合镀层,这种镀层还能大大提高耐膜性能、润滑性能和耐高温氧化性能。将氧化锆陶瓷粉末喷涂在内燃机的燃烧室内壁,可提高内燃机的工作温度、节省燃料和简化结构。 切削刀具上的应用:硬度高、耐热粘结性强、化学稳定性高、切削韧性好、切削性能优良等特点。单双三层刀具,陶瓷镀层刀具寿命是原来的1-2倍,多镀层刀具是陶瓷镀层刀具寿命的0.5-1倍, 冶金和机械工业:金属的冶炼热加工和热处理都要在高温下进行,防止金属的高温氧化、渗氮、渗氧,往往在金属表面涂热处理保护涂层。 生物医学的应用:改善人体与金属的生物相容性。 石油化工:防腐 陶瓷、玻璃生产:增加强度和寿命 食品包装:耐热、高阻隔、透明度

世界耐火材料企业20强

世界耐火材料企业20强 世界销售额在1亿美元以上的耐火材料企业(集团),排名如下: 1、Radex-Heraklith工业股份有限公司(RHI AG)(奥地利.维恩) 主营:耐火材料、高温材料、隔热材料、主要服务于钢铁、水泥、石英、玻璃等工业部门。2000年耐火材料销售额占全国总销售额21亿美元的76%(15.96亿美元),隔热材料和高温工程占17%(3.57亿美元),其他占7%(1.47亿美元)。 2、圣戈班公司(法国.巴黎) 世界上最大的100家集团之一,在40多个国家设有分公司,2000年总销售额为271亿美元。其中高级陶瓷材料、耐火材料、磨料等占17%(46.07亿美元),玻璃占39%(105.7亿美元),房建材料占44%(119.24亿美元)。 3、维苏威集团(Vesyrius Group)(比利时) 该集团为Cookson Group PLC(英国.伦敦)下属之公司,主要产品为陶瓷和耐火材料,用于钢铁、玻璃及其他工业部门,2000年销售额为12亿美元。 4、Ferro公司(美国,俄亥俄州,克利夫兰市) 2000年陶瓷、釉料、涂料、窑具、磨料等销售额为8.785亿美元。 5、旭硝子公司,(日本东京) 2000年公司总销售额121亿美元,其中陶瓷和耐火材料销售额为8.23亿美元。 6、黑崎播磨集团(日本,Kita-Kyushu) 主要产品为耐火材料、窑炉及相关设备,2001年总销售额为5.8亿美元。 7、Morgan坩锅公司(英国) 主要产品为隔热砖、坩锅、不定形耐火材料及其它耐火制品,主要用于炼铝、钢铁、陶瓷、石化、水泥、玻璃等工业部门,2000年销售量为4.8亿美元。该公司还生产陶瓷等其他产品,公司总销售额2000年为16亿美元。 8、品川耐火材料公司(日本,东京) 是日本最大的钢铁工业用耐火材料生产企业之一,此外还生产精细陶瓷,2000年度比1999年度销售收入下降6%,1999年公司总销售收入为3.65亿美元,其中耐火材料为2.3738亿美元 9、Lydall公司(英国曼彻斯特) 主要产品为特种工程材料、隔热/隔层材料、过滤/分离用材料。2000年总销售额为2.611亿美元。 10、Magnesita S.A.(巴西) 主要产品为耐火制品、骨料、不定形耐火材料和特种制品(包括死烧镁砂),1999年销售额为2.30亿美元 11、东芝陶瓷公司(日本,东京) 主要产品有电子元件、陶瓷膜过滤器、耐火材料、生物陶瓷等,2000年总销售收入7.35亿美元,其中耐火材料和精细陶瓷产品销售额为2.205亿美元。 12、Baker耐火材料公司(美国,约克市) 2001年3约与Wulfrath耐火材料公司(德)合并,更名为LWB耐火材料公司(德),属Lhoist 集团,Baker耐火材料公司主要生产钢铁、水泥工业用耐火材料,1999年销售额为1.9亿美元。 13、矿物工艺公司(美国,纽约) 主要生产钢铁工业用耐火材料。2000年耐火材料销售收入占公司总销售额6.709亿美元的27.5%(1846亿美元) 14、Unifrax公司(美国,纽约) 为跨国陶瓷纤维制品生产企业,为冶金企业、加工工业、陶瓷、玻璃、汽车、航天、仪表等

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

2015版耐火陶瓷制品及其他耐火材料制造行业发展研究报告

2015版耐火陶瓷制品及其他耐火材料制造行业发展研究报告

目录 1. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业分析 (1) 1.1.耐火陶瓷制品及其他耐火材料制造行业定义 (1) 1.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业产值占GDP比重 1 1.3.2009-2014年耐火陶瓷制品及其他耐火材料制造行业企业规模分析 (2) 2. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业资产、负债分析 (4) 2.1.2009-2014年耐火陶瓷制品及其他耐火材料制造行业资产分析 (4) 2.1.1. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业流动资产分析5 2.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业负债分析 (6) 3. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业利润分析 (8) 3.1.2009-2014年耐火陶瓷制品及其他耐火材料制造行业利润总额分析 (8) 3.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业主营业务利润分析 (9) 4. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业成本分析 (11) 4.1.2014年耐火陶瓷制品及其他耐火材料制造行业总成本构成情况 (11) 4.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业成本费用分项分析 (12) 4.2.1. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业产品销售成本 分析 (12) 4.2.2. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业产品销售成本 率分析 (13) 4.2.3. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业产品销售费用

新型陶瓷材料在汽车中的应用

湖北汽车工业学院 本科生课程论文 论文题目新型陶瓷材料在汽车中的应用及未来发展学生专业班级材料成型及控制工程(汽车产业)T1233-5 学生姓名(学号)朱宝林(2012030526) 指导教师(职称)王天国 完成时间2014-11-5 2014 年11月05 日

目录 前言 (3) 第一章汽车发动机中的陶瓷材料 (4) 1.1 陶瓷汽车发动机 (4) 1.2 活塞顶用陶瓷结构 (5) 1.3 涡轮增压器陶瓷材料 (6) 第二章陶瓷纤维在发动机零件上的应用 (6) 第三章陶瓷材料在发动机其它部件的应用 (7) 第四章新型陶瓷材料未来的发展及在汽车上的应用·7

前言 关于新型陶瓷材料: 新型陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸 性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。 摘要:随着科学技术飞速发展,现代汽车制造业将更多特种陶瓷、智能陶瓷制品引入,采用到汽车上,并且伴随着更多的新型结构材料的引入,在汽车零部件加工制造技术上也带来了一场新的革命,在此主要介绍一些新型的陶瓷材料在现在及未来的汽车行业的使用情况及以后可能应用的发展前景。 目前应用于汽车上的陶瓷材料主要有:氧化硅陶瓷,碳化硅陶瓷,氮化硅陶瓷,氧化铝陶瓷这几种。 关键词:陶瓷材料、发动机、汽车、应用

第一章汽车发动机中的陶瓷材料 1·1 陶瓷汽车发动机 新型陶瓷是碳化硅和氮化硅等无机非金属烧结而成。与以往使用的氧化铝陶瓷相比,强度是其三倍以上,能耐1000摄氏度以上高温,新材料推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说新型陶瓷是不可缺少的材料。现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。 同时,由于新型陶瓷的使用,柴油机瞬间快速起动将变得可能。采用新型陶瓷的涡轮增压器,它比当今超耐热合金具有更优越的耐热性,而比重却只有金属涡轮的约三分之一。因此,新型陶瓷涡轮可以补偿金属涡轮动态响应低的缺点。其他正在进行研究的有:采用新型陶瓷的活塞销和活塞环等运动部件。由于重量的减轻,发动机效率可望得到提高。 由于陶瓷材料具有优良的耐热性、耐磨性、隔热性及重量轻优点,故使用陶瓷材料替代金属制备热机部件的技术受到了世界各国的高度重视。目前,发动机的主要零部件,如活塞、气缸盖、气门、排气管、涡轮烟压器、氧传感器及火花塞等都用先进的陶瓷材料来制造,并研制出了无水冷的绝热陶瓷发动机。另外为了防止汽车废气对大气环境的影响,各国都采用了的措施,制订了严格的排放标准,这些都促进了汽车工业用新技术的开发以及新材料的研多,特别是在发动机用先进陶瓷瓷材料方面取大了软大的进展,并在近年来的技术创新中发挥着更重的作用。 陶瓷发动机的优越性为: ·可以提高发动机的工作温度,从而大大提高效率。例如,目前作为发动机制造材料的镍基耐热合金,工作温度在1000℃左右。而采用陶瓷材料,则可以将工作温度提高到1300℃,使发动机效率提高30%左右。 ·工作温度高,可使燃料燃烧充分,所排废气中的有害成分大为降低,这不仅降低了能源消耗,而且减少了环境污染。

陶瓷纤维绝热耐火材料现状及前景浅析.

陶瓷纤维绝热耐火材料现状及前景浅析 陶瓷纤维绝热耐火材料广泛应用于各类热工窑炉的绝热耐高温材料,由于其容重大大低于其他耐火材料, 因而蓄热很小,隔热效果明显,作为炉衬材料可大大降低热工窑炉的能源损耗,在节能方面为热工窑炉带来了一场革命。另一方面它的应用技术和方法对热工窑炉的砌筑同样带来了一场革命。 一、陶瓷纤维绝热耐火材料使用现状 陶瓷纤维最早出现在 1941年,美国巴布、维尔考克斯公司用天然高岭土,用电弧炉熔融喷吹成纤维。 20世纪 40年代后期,美国两家公司生产硅酸铝系列纤维,并首次应用于航空工业 ;20世纪 60年代,美国研制出多种陶瓷纤维制品,并用于工业窑炉壁衬。 20世纪 70年代,陶瓷纤维在我国开始生产使用,其应用技术在 20世纪 80年代得到迅速推广,但主要适用温度范围在 1000℃以下,应用技术相对简单落后。 进入 20世纪 90年代以后, 随着含锆纤维和多晶氧化铝纤维的推广应用, 使用温度提高到 1000℃~1400℃, 但由于产品质量缺陷和应用技术的落后,应用领域和应用方式都受到局限。如多晶氧化铝纤维不能制做成纤维毯,产品规格单一,以散棉、纤维块为主,虽然是用温度有所提高,但是强度很差,限制了使用范围, 也缩短了使用寿命。 含锆纤维是用熔融法生产的一种用途广泛、成本较低的硅酸铝纤维,可大量用作砌筑各种热工窑炉的热面全纤维炉衬,目前国内产品在这方面的质量和应用开发还相对落后,现在国外出现了含铬纤维,使用温度比含锆纤维更高,国内还没有这方面的报道。 二、陶瓷纤维绝热耐火材料的弊端及前景分析 陶瓷纤维虽然为高温工业领域的绝热耐火起着重要作用,但也存在很大的生产弊端,尤其是它具有可吸入性,对环境及人体有一定的危害,国外一些企业加强了对非晶质陶瓷纤维的限制使用。目前,一种生物溶解性非晶质陶瓷纤维在绝热耐火材料市场出现,这种超级纤维 (siO2-CaO-MgO系陶瓷纤维属无污染的环境友好型材

陶瓷耐火材料项目可行性研究报告

陶瓷耐火材料项目 可 行 性 研 究 报 告

中国陶瓷耐火材料项目可行性研究报告 【报告说明】 可行性研究报告,简称可研,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。 项目可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性公正性、可靠性、科学性的特点。 可行性研究报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 可行性研究报告大纲(具体可根据客户要求进行调整) 【核心构成】 陶瓷耐火材料项目投资环境分析 陶瓷耐火材料项目背景和发展概况 陶瓷耐火材料项目建设的必要性 陶瓷耐火材料行业竞争格局分析 陶瓷耐火材料行业财务指标分析参考 陶瓷耐火材料行业市场分析与建设规模 陶瓷耐火材料项目建设条件与选址方案 陶瓷耐火材料项目不确定性及风险分析 陶瓷耐火材料行业发展趋势分析 【关键词】陶瓷耐火材料项目投资可行性研究报告 【收费标准】:根据项目复杂程度等方面进行核定,请致电详细沟通 【交付时间】:2-3个工作日 【报告格式】:WORD版+PDF格式+精美装订印刷版 【交付方式】:Email发送、EMS特快专递

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

耐火材料在陶瓷中的应用

耐火材料在陶瓷中的应用 摘要:耐火材料是窑炉和冶金行业中重要的一部分。耐火材料是为高温技术服务的基础材料。耐火材料的种类很多,比如氧化硅耐火材料、硅酸铝质耐火材料、碱性及尖晶石质耐火材料、含碳质耐火材料、含锆质耐火材料、不定型耐火材料、绝热材料、特种耐火材料等。 关键字:耐火材料、窑炉 Abstract:refractory furnace and metallurgical industry is an important part. Technical services for the high-temperature refractory base material. Many different types of refractories, refractory materials such as silicon oxide, aluminum silicate refractories, alkaline and spinel refractories, carbon refractories containing zirconia refractories, unshaped refractories, insulation materials, special refractories. Keywords: refractory materials, furnace 耐火材料是耐火度不低于1580°C的材料。一般是指主要由无机非金属材料构成的材料和制品。耐火材料是为高温技术服务的基础材料。他与高温技术尤其是高温冶炼工业的发展有着密切关系,相互依存,互为促进,共同发展。在一定条件下,耐火材料的质量品种对高温技术的发展起着关键的作用。 我国耐火原料资源丰富,品种多,储量大,品位高。高铝矾土和菱镁矿蕴藏量大,品质优良,世界著名;耐火粘土、硅石、白云石和

耐火砖种类及详细资料

常用耐火砖产品说明 耐火砖是服务于高温技术的基础材料,与各种工业窑炉有着极为密切的关系。玻璃窑等各种工业窑炉因用途和使用条件不同,对构成其主体的基本材料——耐火砖的要求也就不同。而不同种类的耐火砖也由于化学矿物组成、显微结构的差异和生产工艺的不同,表现出不同的基本特性。所以,在了解和研究工业窑炉筑炉材料的过程中,有必要对耐火砖的种类加以叙述介绍。 首先介绍硅铝系耐火砖,据悉,其是以AL2O3—SiO2二元系统相图为基本理论,主要包括以下几种。 (一)硅砖,是指含SiO293%以上的耐火砖,是酸性耐火砖的主要品种。它主要用于砌筑焦炉,也用于各种玻璃、陶瓷、炭素煅烧炉、耐火砖的热工窑炉的拱顶和其他承重部位,在热风炉的高温承重部位也用,但是不宜在600℃以下且温度波动大的热工设备中使用。 (二)粘土砖,粘土砖主要由莫来石(25%~50%)、玻璃相(25%~60%)和方石英及石英(最高可达30%)所组成。通常以硬质粘土为原料,预先煅烧成熟料,然后配以软质粘土,以半干法或可塑法成型,温度在1300~1400 C烧成粘土砖制品。也可以加少量的水玻璃、水泥等结合剂制成不烧制品和不定形材料。它是高炉、热风炉、加热炉、动力锅炉、石灰窑、回转窑、玻璃窑、陶瓷和耐火砖烧成窑中常用的耐火砖。 (三)高铝砖,高铝砖的矿物组成为刚玉、莫来石和玻璃相,其含量取决于AL2O3/ SiO2比以及杂质的种类和数量,可按AL2O3含量进行耐火砖的等级划分。原料为高铝矾土和硅线石类天然矿石,也有掺加电熔刚玉、烧结氧化铝、合成莫来石的,以及用氧化铝与粘土按不同比例煅烧的熟料。它多用烧结法生产。但产品还有熔铸砖、熔粒砖、不烧砖和不定形耐火砖。高铝砖广泛用于钢铁工业、有色金属工业和其他工业。 (四)刚玉砖,刚玉砖是指AL2O3含量不小于90%,以刚玉为主要物相的的一种耐火砖,可分为烧结型刚玉砖和电熔型刚玉砖。 耐火砖字母编号规则 耐火砖编号规则: 据【金石耐材公司】介绍,通用耐火砖的砖号由于“T”字开头,即“通”字汉语拼音的第二个字母,通用砖的砖号是: T-1,T-2,T-3……..T-105。T字后的Z、C、S、K及J分别为直形砖,侧楔形砖,宽楔形砖及拱脚砖的"直","侧","竖","宽"及"脚"字汉语拼音的第一个小写字母.短横线后来顺序号. 代号中Z、C、S、K及J分别为直形砖、侧楔形砖及拱脚形砖的"直","竖","宽"及"脚"字的汉语拼音的第一个大写字母.直形砖之了母后为砖长a的百位及十位数字,接着为砖厚C的十位数字.楔形砖字母后为大小头之间距离b的百位及十位数字.接着为砖厚C的十位数字.楔形砖字母后为大小头之间距离b的百位及十位数字,接着为大头尺寸a及小头尺寸a1的十位以上的数字.数字末的K为错缝宽砖"宽"字汉语拼音的第一个小写字母.拱脚砖字母后为斜面长L的百位及十位数字.接着为倾斜角a的十位数字. 通用砖由于其通用性,所以它包括的内容面比较广,大致有以下两个方面. 1、包括标准砖、普型制品 T-3,T-6,T-19,T-22,T-38,T-41为标准砖。除标准以外的砖号,分别划为普型制品、异型制品、特型制品。 2、包括不同材质的制品 同一种砖号包括有粘土砖,半硅砖,硅砖,轻质粘土砖(LZ)-65, (LZ)-55, (LZ)-48等几种不同材质。需要说明的是:并非所有的砖号都有这几种材质,有一些砖号没有轻质粘土砖。

相关主题
文本预览
相关文档 最新文档