当前位置:文档之家› 断裂力学结课论文2

断裂力学结课论文2

断裂力学结课论文2
断裂力学结课论文2

断裂力学结课论文

断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。本课程中主要介绍了断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J 积分以及断裂问题的有限元方法等内容。 一、

断裂的基本概念

1. 断裂力学的产生和发展

断裂是构件破坏的重要形式之一,影响材料断裂的因素很多,如构件的形状及尺寸,载荷的特征与分布,构件材料本身的状态及应用的环境如温度、腐蚀介质等,当然更重要的还有材料本身的强度水平。为了防止构件的断裂或变形失效,传统的安全设计思想主要立足于外加载荷与使用材料的强度级别的选用,根据常规的强度理论,只要构件服役应力与材料的强度满足

1max

2

b s n n σσ

σ???=???? (6- 1)

则认为使用是安全的。其中σmax 为构建所承受的最大应力;σb ,σs 分别为材料的强度极限和屈服强度,1n 1与2n 分别为按强度极限与按屈服强度取用的安全系数。安全系数是一个大于1的数,其含义为扣除了材料中对强度有影响的诸因素对强度可能造成的损

害作用,应当说这种考虑问题的出发点是合理的,也应当是行之有效的,因而多年来这种设计思想在工程设计中发挥了重要作用,而且还会继续发挥其重要作用。

断裂力学的理论最早由Griffith 与20年代提出。Griffith 在断裂物理方面有相当大的贡献,其中最大的贡献要算提出了能量释放(energy release)的观点,以及根据这个观点而建立的断裂判据。根据Griffith 观点而发展起来的弹性能释放理论在现代断裂力学中仍占有相当重要的地位 。

根据Griffith 能量释放观点,在裂纹扩展的过程中,能量在裂端区释放出来,此释放出来的能量将用来形成新的裂纹面积。定义裂纹尖端的能量释放率(energy release rate)如下∶能量释放率是指裂纹由某一端点向前扩展一个单位长度时,平板每单位厚度所释放出来的能量。用字母G 来代表能量释放率。由定义可知,G 具有能量的概念。其国际制单位(SI 单位制)一般用“百万牛顿/米”(MN/m)。材料本身是具有抵抗裂纹扩展的能力的,因此只有当拉伸应力足够大时,裂纹才有可能扩展。此抵抗裂纹扩展的能力可以用表面自由能(surface free energy)来度量。一般用γs 表示。表面自由能定义为:材料每形成单位裂纹面积所需的能量,其量纲与能量释放率相同。

若只考虑脆性断裂,而裂端区的塑性变形可以忽略不计。则在准静态的情形下,裂纹扩展时,裂端区所释放出来的能量全部用来形成新的裂纹面积。换句话说,根据能量守恒定律,裂纹发生扩展的必要条件是裂端区要释放的能量等于形成裂纹面积所需的能量。设每个裂端裂纹扩展量为a ?,则由能量守恒定律有:()(2)s G B a B a γ?=?

即:2s G γ=

这就是著名的Griffith 断裂判据 。

Griffith 假定s γ为一材料常数,剩下的问题就是如何计算带裂纹物体裂端的能量释放率G 。若此G 值大于或等于2s γs ,就会发生断裂;若小于2s γs ,则不发生断裂,此时

G 值仅代表裂纹是否会发生扩展的一种倾向能力,裂端并没有真的释放出能量。 在Griffith 弹性能释放理论的基础上,Irwin 和Orowan 从热力学的观点重新考虑了断裂问题,提出了能量平衡理论。按照热力学的能量守恒定律,在单位时间内,外界对于系统所做功的改变量,应等于系统储存应变能的改变量,加上动能的改变量,再加上不可恢复消耗能的改变量。其提出的公式为:

()

0p t

d W U dA γ--= 其中W 为外界对系统所做的功,U 为系统储存的应变能, t A 为裂纹总面积,p γ为表面能。

该公式虽然有所进步,但仍未超出经典的Griffith 公式的范围,而且同表面能一样,形变功U 也是难以测量的,因而该式仍难以实现工程上的的应用。

断裂力学理论的重大突破应归功于Irwin 应力场强度因子概念的提出,以及以后断裂韧性概念的形成。1957年,Irwin 应用了H.M.Westergaard 在1939年提出的解平面问题的一个应力函数,求解了带穿透性裂纹的空间大平板两相拉伸的应力问题,并引入了应力强度因子K 的概念,随后又在此基础上形成了断裂韧性的概念,从而奠定了线弹性断裂力学的基础。 2. 裂纹及类型

断裂力学的一大特点是,假定物体已经带有裂纹。现代断裂力学能对此带裂纹物体的裂纹端点区进行应力应变分析,从而得到表征裂端区应力应变场强度的参量。

按裂纹存在的几何特性,可把裂纹分为穿透裂纹、表面裂纹和深埋裂纹。 在断裂力学中,裂纹常按其受力及裂纹扩展途径分为三种类型,即Ⅰ、Ⅱ、Ⅲ型。 Ⅰ型裂纹即为张开型裂纹,如图1-1(a)所示,拉应力垂直于裂纹扩展面,裂纹上下表面沿作用力的方向张开,裂纹沿裂纹面向前扩展。工程中属于这类裂纹的如板中有一穿透裂纹,其方向与板所受拉应力方向垂直,或一压力容器中的纵向裂纹(如图1-1(b ))等。

图1- 1 张开型(Ⅰ型)裂纹

Ⅱ型裂纹即为滑开型裂纹。其特征为裂纹的扩展受切应力控制,切应力平行作用于裂纹面而且垂

图1- 2 滑开型(Ⅱ型)裂纹 图1- 3 撕开型(Ⅲ型)裂纹

直于裂纹线,裂纹沿裂纹面平行滑开扩展(如图1-2(a ))。属于这类裂纹的如齿轮或长键根部沿切线方向的裂纹引起的开裂;受扭转的薄壁圆管上贯串管壁的环向裂纹在扭转力的作用下引起的开裂(如图1-2(b ))等,均属于Ⅱ型裂纹。 Ⅲ型裂纹即为撕开型裂纹。在平行于裂纹面而与裂纹前沿线方向平行的剪应力的作用下,裂纹面产生沿裂纹面的撕开扩展(如图1-3)。 在这三种裂纹中,以Ⅰ型裂纹最为常见,也是最为危险的一种裂纹,所以在研究裂纹体的断裂问题时,这种裂纹是研究最多的。 二、

应力强度因子

断裂发生时在裂纹端点要释放出多余的能量,因此,裂端区的应力场和应变场必然与此裂端的能量释放率有关。若裂端应力应变场的强度(intensity )足够大,断裂即可发生,反之则不发生。因此,得到裂端区应力应变场的解析解是个关键。 1. 裂端的应力场和位移场

下面考虑二维的I 型裂纹问题。图给出一个以裂纹端点为原点的坐标系,此坐标系x 方向是裂纹正前方,y 方向是裂纹面的法线方向,z 方向则是离开纸面的方向。考虑一个离裂端很近,位置在极坐标()r,θ的单元,其应力状态可以用x σ、y σ和xy τ三个应力分量来表示。

2.Ⅰ型裂纹的应力应变场

由弹性力学(椭圆孔口问题)的解析解,得裂端的应力场恒为

3

1sin sin

222

3

1sin sin

222

3

cos cos

222

x

y

xy

θθθ

σ

θθθ

σ

θθθ

τ

??

=-+

??

??

??

=++

??

??

=+

高次项

高次项

高次项

在裂端区,即r足够小的情形下,式中r的高次项比首项小得多,因而可以忽略。

从上式可见,裂端区应力场的形式恒定,其强度完全由K

I

值的大小来决定,因此就

I

K为I型裂纹的应力强度因子。裂端区的应变场可以由弹性力学公式求得为:

(),,,

ij ij

f i j x y

εθ

==

通过应变一位移关系,经过复杂的计算,可以得到裂端区的位移场为:

1/2

2

1/2

2

2(1)2sin cos

222

2(1)2cos sin

222

I

I

r

u K

r

v K

θθ

μκ

π

θθ

μκ

π

????

=-+

???

????

????

=+-

???

????

这里u和v分别为x和y方向的位移分量,μ是剪切模量,κ与泊松比ν的关系为:34

3

1

ν

κν

ν

-

?

?

=?-

?+

?

平面应力

平面应变

II型裂纹的应力场和位移场

3

2cos cos

222

3

cos cos

222

3

1sin sin

222

x

y

xy

θθθ

σ

θθθ

σ

θθθ

τ

??

=+

??

??

=

??

=-

??

??

1/2

21/2

22(1)2cos sin 2222(1)2sin cos 222II II r u K r v K θθμκπθθμκπ????=++ ???????????=--+ ??????

?

III 型裂纹的应力场和位移场

22xz zy θ

τθτ==

1/2

2sin 22

III K r w θ

μπ??= ?

?? 3. 应力奇异性和应力强度因子

三种基本裂纹型的裂端区应力场给出的裂端区应力场有一个共同的特点,即r →0时,

即在裂纹端点,应力分量均趋于无限大。这种特性称为应力奇异性(stress singularity )。 图示带有圆孔、椭圆孔和裂纹的无限大平板。它们分别受到无穷远处y 方向的均匀拉应力的作用。对于圆孔,此时A 和B 两点有应力集中现象,其应力集中系数(stress concentration factor)已广为人知。对于椭圆孔,应力集中仍发生A 点和B 点,其应力集中系数为:

1t K =+a 为椭圆的长半轴,ρ为椭圆长轴端点的曲率半径。

由于a 大于ρ,所以t K 恒大于3,即椭圆应力集中的程度比圆孔问题严重。若是短轴长趋于零,则ρ也将趋于零,此时应力集中系数t K 将趋于无限大。在没有特别说明的

情况下,断裂力学所指的裂纹,其裂端的曲率半径是为零的;在不受力的情况下,上下

两个裂纹面是互相接触的。因此,裂纹即裂端曲率半径趋于零时的椭圆孔,其裂端有无限大应力。

应力是看不见的,它是个抽象的概念,然而位移过程是可以看到的。物体上个别点(无限远处除外)具有无限大的应力并不会使该点的位移趋于无限。因此,裂端具有无限大应力是允许的。同时可以证明,这并不影响裂端区应变能的有界。 4. 叠加原理

线弹性力学的本构关系是线性的,因此,裂纹问题的应力强度因子可以利用叠加原理来求得。 三、

线弹性断裂力学

1. 应力强度因子概念和能量释放观点的统一

假设不考虑塑性变形能、热能和动能等其它能量的损耗,则能量转换表现为所有能量在裂端释放以形成新的裂纹面积。下面以带有穿透板厚的I 型裂纹的平板为例,来建立应力强度因子和能量释放率间的关系。 裂纹长度(或裂纹半长度)为a 的裂纹端点正前方r 处有使裂纹面撑开的拉伸应力:

(,0)2I

y r r

σπ=

3cos 1sin sin 2222I y r

θθθσπ??

=-????

在初始应力如上式给出的情形下,设裂纹可以延长a 长度,即把裂端前方撑开成长

度为a+s 的裂纹。此时在原坐标系的x=r 处或离新裂纹端点s-r 处,新裂纹上表面的位移v(s-r,π):

1/2

22(1)2cos sin 222I r v K θθμκπ????=+- ??????

? 1(,)[]22I a s s r

v s r K κπμπ

++--=

裂纹形成时外力做功,当裂纹表面张开至上式

给出的位移值时,裂纹表面才真正形成,此时裂纹表面已无应力作用。由于作用力与位移同向,当裂纹长度延长s 时,作用力对裂纹上表面所做的功为:

(,0)(,)

2

s

y r v s r Bdr σπ-?

,其中B 为平板的厚度

按照Griffith 能量释放的观点,裂纹长度延长s 时,此裂纹端所释放的能量将等于裂纹上下表面所做的功。因此,按照I 型裂纹能量释放率G I 的定义 :

00

(,0)(,)

2lim

2

s y I s r v s r G Bdr Bs σπ→-=? 当s→0时,有[K I ]a+s → K I ,经过积分得:

2

18I I G K κμ??+= ???

简化后有:

2

1

I I K G E = 这就是著名的能量释放率与应力强度因子的关系式。 其它裂纹情况也有类似结论。

应注意的是,实验结果指出,除I 型裂纹可以沿原方向扩展外,其余裂纹型往往不沿原方向扩展。因此总能量释放率只是近似估计式。如果要考虑裂纹真正的扩展方向来计算,这已不是解析的方法所能做到,必须要用数值解法,同时还要一套断裂理论指出裂纹开裂的方向。 2. 柔度法

柔度法是通过柔度随裂纹长度而改变这个性质,用测量的方法来得到G ,然后再利用G 与K 的关系来得到K 值。由于I 型裂纹的G 与K 的关系式是精确的,并且I 型裂纹容易施加载荷,所以柔度法一般只用在I 型裂纹。

恒载荷时G 的表达式:

p

dU G dA ??= ???

恒位移时G 的表达式:

dU G dA δ

??=- ???

柔度法一般限制在二维问题,尤其是I 型裂纹,柔度法通常用来做应力强度因子的标定。 3. 断裂判据

断裂总是始于裂端的极小区域,当其损伤达到临界程度时才发生的。在此小区域中材料的微结构起决定影响,也是宏观力学不适用的地方。这个小区域就叫做断裂过程区FPZ (fracture process zone)。

在第二部分中,给出各型裂纹的裂端应力场时,已忽略掉高次项,因此也仅适合裂纹尖端的小区域内,此区域称为K 场区。K 场区内的应力应变强度可用应力强度因子来度量;场区外则须加上高次项。

如果K 场区尺寸小于断裂进行区尺寸,则计算应力强度因子已失掉意义,此时宏观力学在裂端区是不实用的。反过来,若K 场区尺寸比断裂进行区尺寸大几倍以上,则断裂进行区是否会发生断裂,受其外部的K 场区强度所制约,因此,断裂判据可建立在K 场区强度是否达到临界条件这个基础上。由于无限大应力实际上不存在,裂端总有个塑性区,而塑性区内的应力是有界的。因此,应力强度因子断裂判据成立的条件是,塑性区尺寸比K 场区小几倍,也要比裂纹长度小几倍以上。 4. 阻力曲线

能量释放率可做为裂纹是否扩展的倾向能力的度量,又称为裂纹扩展力。裂纹扩展力必须大于裂纹扩展阻力,裂纹才有可能扩展。对平面应变的脆性断裂来说,裂纹扩展阻力由K IC 确定,是个常数值,不随裂纹增长而变。但对不同厚度的平板,尤其是厚度小于平面应变所要求的厚度时,裂纹扩展阻力不再是常数。为了说明裂纹扩展阻力的观念,现在以平面应变无限大平板I 型中心裂纹为例, 1) 脆性断裂阻力曲线 当拉伸应力保持定值时,裂纹扩展力G 随a 增加而线性上升。在σ1时,裂纹半长度为a 1就达到裂纹扩展阻力值G IC 。超过a 1 ,就发生失稳断裂;低于a 1 ,则裂纹不扩展。以小于σ1的拉伸应力σ2作用时,必须超过较长的a 2才会发生断裂。图中带箭头的直线

代表裂纹扩展力,只有当裂纹扩展力大于常数值的阻力R=K IC ,才会发生失稳断裂。如果将x 轴改为代表裂纹扩展增量Δa ,则可以改画成下图。 Δa >0部分才是真正扩展。 Δa <0部分即表示不扩展,而以负方向离原点的距离表示裂纹半长度的大小。 2) 韧性断裂阻力曲线

在板厚较薄而不合乎平面应变条件时,裂纹扩展阻力R 随Δa 增加而增加。图(4-9)的例子仍是Griffith 裂纹,此时裂纹扩展阻力是一曲线。此曲线叫做阻力曲线或R 曲线。阻力曲线的测定一般是针对裂纹扩展阻力不为常数值时才实施。脆性材料平面应变的恒载荷试验时,试件一启裂就立即失稳扩展。但对阻力随裂纹扩展增量而变的情形,达到启裂点后不一定会发生扩展,即使扩展也不一定是失稳扩展。当扩展力稍稍超过启裂点时,往往有一段稳定扩展(也叫做亚临界裂纹扩展)。当达到失稳断裂时,这时的Δa 量已达到

不可忽略了,对于有稳定扩展阶段的断裂韧度测试中,若监测启裂点不容易时,可以用阻力曲线的测量,然后用外推法得出启裂点。例如在韧性断裂时,裂纹扩展阻力往往是呈曲线的。一旦达到并稍为超过裂纹开始扩展的条件时,若外力仍维持不变,则较长的裂纹(例如图中的裂长a 2受到σ2作用时)有可能稍为扩展,然后很快地停止下来。只有当外力较大时,才有可能引起失稳扩展。 3) 应变能密度因子

考虑二维的裂纹问题,受到I 、II 、III 型三种载荷中的任一种或两种以上载荷的作用。裂纹前缘是平直的,即整个前缘各点的应力强度因子值都相同,如图所示,裂纹端点区附近的一点P 处有体积元,其应力场为三种裂纹应力场的叠加 :

222222

11()()()22x y z x y y z z x xy yz zx dU dV E E νσσσσσσσσστττμ

=++-+++++ 于是,平面应变时在P 点的应变能密度为 :

22

211112122223331[2]dU a k a k k a k a k dV r

=+++ 式中:

111222331

(34cos )(1cos )161(2sin )[cos (12)]

161[4(1)(1cos )(1cos )(3cos 1)]

1614a a a a νθθμθθνμνθθθμμ=

--+=--=--++-=

设裂端有个以裂端为原点、半径为r 0的圆形损伤核(或叫断裂进行区)。设r 0值远小于K 场区尺寸,如此,在脆性断裂时,断裂是否会发生要由K 场区应力应变强度来决定。 对于复合型裂纹,应变能密度可综合度量K 场区应力应变的强度;更重要的是,应变能密度是个单参数,它代替两个以上的应力强度因子(多参数)。因此,根据应变能密度的概念而建立的断裂判据,显然要比多参数判据简单。 四、

弹塑性断裂力学的基本概念

1. Irwin 对裂端塑性区的估计

线弹性力学的分析指出裂纹尖端区的应力场随r -1/2而变化。当r->0时,即趋近于裂纹端点,应力无限大。事实上,不论强度多么高的材料,无限大的应力是不可能存在的。尤其是断裂力学主要应用于金属材料,金属材料总有一定的塑性,塑性流动的发生使这种无限大应力的结果并不符实。当含裂纹的弹塑性体受到外载荷作用时,裂纹端点附近有个塑性区(plastic zone),塑性区内的应力是有界的,其大小与外载荷、裂纹长短和材料的屈服强度有关。

对非常脆性的材料,塑性区很小,与裂纹长度和零构件尺寸相比可忽略不计。此时,线弹性断裂力学的理论和应力强度因子的概念完全适用。当塑性区尺寸不合忽略时,则必须给一定的修正,才能应用线弹性断裂力学结果。

若是塑性区已大到超过裂纹长度或构件的尺寸,则此时线弹性力学的理论已不再适用,亦即用应力强度因子来衡量裂端应力场的强度这个观念已不可靠,必须用弹塑性力学的计算和寻找表征裂端应力应变场强度的新力学参量。这属于塑性断裂力学的内容。 Irwin 首先对裂纹尖端塑性区的尺寸给予初步的估计。假设裂纹是I 型,裂端前r 等于r *p 处y 方向的拉伸应力刚好达到屈服应力σys ,则r *p 就是塑性区的尺寸。用公式表示如下:

*0*2p

y ys r r p

r

θσσπ===

=

所以塑性区尺寸为:2*22p

ys

K r πσ

=

2. Dugdale 模型

Dugdale 发现薄壁容器或管道有穿透壁厚的裂纹时,其裂端的塑性区是狭长块状,如图。由此他仿照Irwin 有效裂纹长度的概念,认为裂纹的有效半长度是a+ρ。这里ρ是塑性区尺寸。由于在a 到a+ρ间的有效裂纹表面受到屈服应力引起的压缩,所以这一段没有开裂。因此他假设:塑性区尺寸ρ的大小,刚好使有效裂纹端点消失了应力奇异性。

对于无限大平板I 型中心裂纹,设此裂纹受到无穷远处均匀拉伸应力σ作用,此时有效应力强度因子为:()K a σσπρ=+

()()()()()()()

dx a x a x dK a x

a x a a x a σσρρρρπρρ??

-+++-=

+??+-+++??<<+ 上式中括号内的第一项来自y 轴右边的集中力,第二项来自左边的集中力。对上式

从a 积分到a+ρ,则可得作用在塑性区上的应力强度因子K ρ:

12cos ys

a a K a ρρ

σπ

ρ-??+=- ?+??

Dugdale 模型假设在有效裂纹裂端的应力奇异性消失,即有:

0K K σρ+=

整理得确定塑性区尺寸的条件为 :

cos 2ys

a

a πσρσ??

=

? ?+??

以Griffith 裂纹为例,在小范围屈服时:2

222

88ys s a K πσπρσσ??

== ???

与Irwin 第二步估计比较,上式给出的塑性区尺寸要比Irwin 估计稍大。 Dugdale 模型比较简单,有时还可得到解析表达式,因此作为大范围屈服的塑性

区初步估计在工程上还是可行的。 3. 裂端塑性区形状

Dugdale 模型是基于狭长块的裂端塑性区而得以建立的,是简化的模型,没有考虑应

力的空间状态。对适用于线弹性力学的高强度材料,比较正确的形状可由Von Misses 屈服准则和Tresca 屈服准则得到。

裂端到塑性区周界的距离r p 是θ的函数,其形式为 :

平面应变:2

223()1cos sin 42p s K r θθθπσ?

?=

++???? 平面应力:2

222

3()(12)(1cos )sin 42p s K r θνθθπσ??=

-++????

I 型裂纹塑性区形状(a )Von Mises 和(b)Tresca 屈服准则 4. 裂纹尖端张开位移CTOD

裂纹张开位移是指一个理想裂纹受载荷时,其裂纹表面间的距离。裂纹张开位移简

写为COD (crack opening displacement)。

对I 型裂纹来说:

1/2

22(1)2cos sin 222I r v K θθμκπ????=+- ??????

? 当θπ=±时,即在裂纹面时:

12COD v κμ?+== ? 习惯上称在裂端的COD 为CTOD(crack tip opening displacement) 线弹性时CTOD=0。(实际上是一个点,当然没有位移。)若用Irwin 塑性区修正,真正裂纹长度被有效裂纹长度所取代,以K eff 代替K ,以r p *代替r ,则真正裂纹端点的CTOD 为

:

*

12eff p

K r CTOD κμπ??+= ?

??

因为:

111

8E κμ

-+= 小范围屈服时:2

14ys

K CTOD E πσ=

CTOD 是英国人WeIIs 首先提出的。因为实验发现中低强度、高韧性钢的平板若带有穿透板厚的裂纹,在失稳断裂前,裂端有相当大的塑性区,裂纹张开位移也相当大(肉眼可看出)。裂端由不加载时的尖锐形状变成加载时的钝化形状,因此,CTOD 是个宏观的、力学的表征参量,在工程中得到应用,用于简单判断裂纹是否将发生扩展。

考虑到在裂纹启裂或进一步引起失稳断裂之前,有CTOD 随加载增大而增加的现象,因此,工程上采用CTOD 的启裂判据或断裂判据如下∶

CTOD ≥某临界值

CTOD 断裂判据使用的局限性:工程结构绝大多数是中低强度、高韧性材料,在启裂前已有相当大的裂端塑性区,而不再是属于小范围的屈服情形。然而,计算大范围屈服时的CTOD 通常是很不容易的。因此,工程上常用的CTOD 表达试通常是经过实验检验过的半理论半经验的表达式。 5. J 积分简介

要想得到裂纹端点区的弹塑性应力场的封闭解是相当困难的。Rice 避开了直接求解裂端塑性应力场的困难,而提出综合度量裂端应力应变场强度的J 积分概念,是对断裂力学的重大贡献。J 积分定义如下:

1i i c u J W dy T ds x ??

?=- ???

??

这里C 是由裂纹下表面某点到裂纹上表面某点的简单的积分

线路。W 1是弹性应变能密度,T i 和u i 分别为线路上作用于ds 积分单元上i 方向的面力分量和位移分量。

可以证明J 积分与积分线路的选取无关。因此,可选取应力应变场较易求解的线路来得到J 积分值,而此值与线路非常靠近裂端的结果是相同的。换句话说,裂端应力应变场的综合强度可用J 积分值来表示。 可以证明,在小范围屈服时,J=G ,CTOD 和J 积分的关系为:

ys

J

CTOD σ=

这里σys 是裂端前的屈服应力。所以,延性断裂判据自然而然地就可以建立在J 积分理论基础上。

严格地说,J 积分的线路无关性是建立在裂纹尾迹不发生卸载的情形下。然而,延性断裂通常有启裂、稳定扩展和失稳扩展三个阶段,而裂纹扩展时裂纹尾迹免不了要发生局部卸载,因此, J 积分判据用作启裂判据是完全正确的,但用来预测失稳扩展则尚须加一些限制(这涉及到应力释放、R 阻力增大等难题)。

对I 型裂纹,J 积分的启裂判据为:

IC J J ≥

这里J IC 是I 型裂纹在启裂时平面应变断裂韧度 。 五、

断裂力学应用实例

在设计和分析中,应力强度因子给出了材料裂纹尖端可以承受的应力强度的临界值(称为端裂韧性,记作Ic K ),一旦超过此值,裂纹将迅速扩展。于是临界应力强度因子就是材料韧性的度量。而破坏应力f σ与裂纹长度a 和断裂韧性Ic K 之间的关系为

f σ=

对作用的应力σ、材料的韧性Ic K 和裂纹长度a 这三个量,上式提供的三者之间的关系式可用于设计。一旦这些参数中的任何两个已知,则可算得第三个。为了说明这一过程的应用,请看下例:

有一铝制压力容器的直径为0.25m ,壁厚为5mm ,试确定该容器工作时的安全压强。 先假定当周向应力达到屈服应力(330MPa )时将屈服失效,取安全因素为0.75,算出容器能承受的最大压强为 :

60.750.7533010p 9.90.25/2

t MPa r σ??===

为了防止因裂纹迅速扩展而引起的断裂,现计算在工作应力下容许的最大裂纹长度,

取韧性值41Ic K =

()

()

2

622

2

641100.010.7533010Ic K

a m πσ

π?=

=

=??

这里,假定为1α=的边缘裂纹。为保障容器使用安全,我们必须作定期检查,以确保裂纹未达到这一长度。 六、

结束语

断裂力学的产生和发展,其动力来源于生产的需要。它的发展解决了许多工程中灾难性的低应力脆断问题,已成为失效分析的重要研究方法之一,弥补了常规设计方法的不足。掌握断裂力学的分析方法对解决工程实际中的遇到的问题将提供极大的帮助。

损伤与断裂力学论文

损伤力学研究的是材料内部缺陷的产生和发展引起的宏观力学效应以及缺陷最终导致材料破坏的过程和规律。1958年Kachanov在研究蠕变断裂时引入了损伤力学的概念,提出了“连续性因子”和有效应力。1963年Rabotonov在Kachanov基础上引入了“损伤变量”的概念,奠定了损伤力学的基础。在其后的二三十年中,各国学者对损伤力学的基本概念、研究方法、损伤变量的定义等做了大量的开创性工作,极大推动了损伤力学理论的进展。1976年Dougill将损伤力学从金属材料中引入到岩石材料,之后岩石损伤力学迅速发展,已成为当今岩石研究领域的热门课题之一。 岩石损伤力学的研究关键是定义材料的损伤变量及正确地给出演变规律的本构方程。能否得到合理的损伤演变方程和含损伤的本构方程关键是对损伤变量的定义是否合理,建立一个损伤模型的基本要求是能在实验中直接或间接确定与损伤演变规律有关的材料参数。 对损伤变量的定义,从损伤力学提出就开始进行广泛的研究,可从微观和宏观这两个方面选择。微观方面,可以选择裂纹数目、长度、面积和体积等;宏观方面,可以选择弹性模量、屈服应力、拉伸强度、密度等。 国内学者唐春安从岩体材料内部所含裂纹缺陷分布的随机性出发,利用岩石微元强度服从正态分布或Weibull分布的特征,用发生破坏的微元数在微元总数中所占的比例来定义损伤变量。 谢和平等将分形几何理论应用于岩石损伤研究中,将岩石损伤程度的增加看作是分形维数的增加,从损伤与断裂之间的联系方面定量的描述了损伤,从而创建了分形几何与岩石力学理论体系,提出了分形损伤力学理论。 从微观角度出发对损伤变量进行定义,不仅物理意义明确,而且能够比较真实地反映材料性能逐渐劣化,但是从微观角度定义的损伤变量难以量测。 Lamaitre基于弹性模量变化用无损杨氏模量和损伤杨氏模量定义损伤变量,谢和平和鞠杨等讨论了该损伤变量定义的适用条件,进行了修正。使基于宏观弹性模量定义的损伤变量在实际应用中比较方便,但这种定义方法需要事先知道材料的初始弹性模量,而且在实际的工程中很多材料都有具有初始损伤的。 谢和平、鞠杨等认为单元强度丧失实则为其粘聚力的丧失,即单元在经历一定的能量耗散后,其内部的损伤达到了最大值,与此同时微结构中的粘聚力完全丧失。国内外学者进行了大量通过能量分析的方法来描述岩体的破坏行为的研究。 另外还有学者使用CT技术在岩石损伤检测中的应用,并给出了一种基于

项目名称混凝土结构裂缝控制的膨胀增韧技术及其工程应用

项目名称:混凝土结构裂缝控制的膨胀增韧技术及其工程应用 推荐单位:教育部 项目简介: 本项目属土木建筑领域。混凝土是一种典型的准脆性材料,极易开裂,裂缝可导致混凝土结构耐久性降低并引发重大安全事故,迫切需要解决国内外长期难以攻克的混凝土结构裂缝控制中的核心问题---混凝土结构控裂和增韧防裂技术,探究混凝土裂缝扩展过程的力学特性和能量耗散机理,研发出具有高韧性的混凝土材料和有效抵抗裂缝扩展的新型结构形式进而提高结构的使用寿命。 为满足我国各类基础设施的大量修建和对大型结构长期服役条件下裂缝控制要求已经大幅提高的新需求,本项目组自1996年通过18年的协同攻关,对混凝土结构的裂缝形成与扩展机理、能量耗散机制与定量分布规律、新型控裂材料及其结构应用新技术等进行了一系列深入的理论和试验研究。发明了能满足不同控裂要求的增韧新材料及其工程应用技术,形成了具有我国自主知识产权的混凝土结构全寿命裂缝控制核心技术体系,并得到规模化推广应用。主要技术内容有: 1、发明了极限拉伸应变稳定地达到3%以上的超高韧性水泥基复合材料(UHTCC ),抗压强度可达80MPa ,断裂能达到5370N/m 。其极限拉伸应变为普通混凝土的300倍以上,高性能纤维混凝土的100倍以上。在国际上建立了首条UHTCC 全自动生产线,为重大工程的裂缝控制技术提供了关键材料保障。 2、发明了具有双膨胀源型的高效混凝土膨胀剂(HCSA )和适应于大规模工程应用的掺膨胀剂补偿收缩混凝土,在国内外首次实现了回转窑工业化制备CaO-CaSO 4-S A C 34体系高性能混凝土膨胀剂。 3、发明了制备有效控制裂缝发生与扩展的UHTCC 新型复合结构和采用纤维编织网作为定向增韧材料的新施工工艺,在国际上首创了碳/玻混编,乱向短纤维/定向连续纤维编织网混杂增强的新型混凝土结构,发明了采用纤维编织网混凝土对既有结构进行加固修复的新技术。 4、发明了水泥基材料快速干燥收缩测量方法及配套的专用测量装置,制定了我国首个膨胀剂产品国家标准和国内外首个补偿收缩混凝土应用技术标准,均达到国际先进水平,为不同工程使用补偿收缩混凝土提供了技术保障。 5、进一步发展和创新了混凝土结构裂缝扩展分析的断裂力学理论。系统研究了混凝土裂缝形成与发展的机理,定量揭示了裂缝扩展过程能量耗散规律,提出了测定裂缝起裂断裂能新技术。将以应力强度因子为参量的双K 断裂理论,发展到单位裂缝面积所消耗的能量为参量的双G 断裂模型,并结合所发明的高韧性材料将该理论拓展到以单位体积所耗散的能量率为参量的双J 断裂模型。首次定量测定了UHTCC 宏观主裂缝断裂能,建立了定量测试UHTCC 纤维桥联断裂能的新方法。 本项目主要技术发明为国内外领先。已授权国家发明专利8项,软件著作权3项,制定了国家、行业和地方标准3部,工法1部。发表论文135篇,其中SCI 收录30篇,EI 收录85篇。出版专著3部,论著他引989次。本项目成果经教育部、国家自然基金委工程与材料学部、国务院南水北调办公室组织同行专家鉴定和评审,认为混凝土裂缝分析理论总体达到国际领先水平;超高韧性水泥基复

关于损伤力学的建议与看法

关于损伤力学的建议与看法 在别的论坛看到关于损伤力学的讨论,想起来几年前毕业的一位师兄在其论文中对损伤力学的讨论,现在发出来大家探讨一下 原文如下: 1.3 材料疲劳分析的损伤力学方法 目前,对汽轮机转子破坏过程的研究,基本采用的是线弹性断裂力学方法,其研究的是转子结构中具有明确几何边界的宏观裂纹问题。它从整体出发,对裂纹前沿的应力、应变、位移和能量场的分析,以确定控制裂纹行为的力学参数,来实现对裂纹扩展和转子安全性进行预测。而对裂纹萌生的宏观位置往往根据经验进行人为的假定。 事实上,实际转子服役过程中裂纹的萌生寿命往往很长,有的占总寿命的80%~90%。在这个阶段,材料内部微细观结构逐渐劣化,并逐步发展成为宏观裂纹[25,26,27],况且有些损伤现象并不导致断裂力学所描述的临界开裂,而且崩溃、失稳等。因此,对上述转子损伤现象进行定量的数学描述,对于转子结构的裂纹萌生及寿命预估是非常重要的。也是断裂力学无法解决的。目前,对于无裂纹转子虽能大致估计其致裂寿命,但不能定量描述裂纹的形成发展过程及确切位置和形貌,而且由于往往采用线性损伤累积理论,不能正确地反映转子材料的实际损伤发展情况,因此,其分析结果往往与实际偏差较大。 近三十年发展起来的连续介质损伤力学[28],它采用唯象学方法,引入表征损伤的内部状态变量,将损伤纳入热力学框架,重点研究微观缺陷对材料宏观整体平均力学特性的影响,因此,用损伤力学理论导得的结果,既能反映材料微观结构的变化,又能说明材料宏观力学性能的实际变化情况。可用于分析微裂纹的演化,宏观裂纹形成直至构件的完全破坏的整个过程,弥补了微观研究和断裂力学研究的不足。因此,损伤力学对于研究汽轮机转子结构在各种载荷环境条件下的灾变事故的产生和发展,进而对其进行复现与防治,有着极其重要的意义。 1.3.1 损伤力学发展概况 损伤力学的发端被公认为是1958年Kachanov 在研究金属蠕变时所做的工作,他在当时提出了连续性因子与有效应力的概念,并利用后者给出了前者的演化方程。1963年Rabotnov又定义了损伤因子的概念。在其后的一二十年当中,以Lemaitre,Chaboche,Hult,Lechie,Krajcinovic,Rousselier等为代表的一批学者,针对损伤力学的基本概念、方法等做了大量开创性的工作,这不仅使其框架渐渐明晰充实,而且还把它的适用领域从最初的蠕变分析,推广到对于弹性、塑性、粘塑性、脆性及疲劳等损伤现象的分析[29,30,31];而其所描述的材料,也从金属扩展到复合材料、陶瓷、混凝土等非(纯)金属材料。由于损伤力学已表现出可观的理论价值与应用前景,这使其逐步上升为固体力学的一个新兴分支,并已成为目前国内外力学界所关注的一个十分活跃的研究领域。 然而,从损伤力学发展的现状来看,其相当一部分工作是关于基本理论的,而关于损伤力学算法的研究则显得相对薄弱。目前,关于构件损伤分析的算例,一部分是针对简单受力情形的(如控制应力或控制应变的一维拉伸或纯剪),而对于复杂的问题则采用的是损伤耦合的有限元法。对含裂纹体的损伤力学分析也是该领域中特别引人注目的一个专题。已有的一些工作表明:无论是对于蠕变、塑性、脆性,还是对于疲劳,计及损伤的裂纹性质都显著有别于经典断裂力学中的理想情形。 这些工作虽然已将损伤力学从理论研究向实际应用朝前推进了一大步,但已有的进展还显得不够充分,尚有待于人们进一步的努力。 1.3.2损伤力学研究方法 用损伤力学方法对材料的力学特性进行研究,首先要对材料变形过程进行宏观和微观的实验观察,根据材料损伤演变的微观现象及其宏观表现,采用唯象方法,选择适当的损伤参数,作为本构关系中的内变量建立方程。如何建立能够正确反映材料的损伤本质的损伤演化方程,是未来工作的核心。 ----------------------------------------------------------------------------------- 请问损伤力学如何学习? 前面有热力学的东西,头都大了! 张量也很令人费解! 有没有大侠指一条明路,谢谢!

断裂力学读书报告

断裂力学读书报告 1、读论文有感 我所读的论文是《灰色模型在不确定性疲劳寿命预测中的研究》。之所以选择这样一篇论文来读,主要有两个方面在吸引着我,一个是灰色模型,另一个则是不确定性疲劳寿命。 对于不确定性系统的研究主要有三张方法,即概率统计、模糊数学和灰色模型。首先,需要来讲一下文章中主要提到的灰色模型。 灰色模型是由华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的。控制论中,信息多少常以颜色深浅来表示。信息充足、确定(已知)的为白色,信息缺乏、不确定(未知)的为黑色,部分确定与部分不确定的为灰色。那些既有已知参数又有未知参数的系统,如:人体就是既有白色参数(已知的外型参数)又有黑色参数(未知的人体穴位功能)的灰色系统。白色系统是全开放性的、黑色系统是全封闭性的。灰色系统则介于两者之间,是半开放半封闭性的。如果一个系统具有层次、结构关系的模糊性,动态变化的随机性,指标数据的不完备或不确定性,则称这些特性为灰色性。具有灰色性的系统称为灰色系统。 从灰色系统中抽象出来的模型。灰色系统是既含有已知信息,又含有未知信息或非确知信息的系统,这样的系统普遍存在。研究灰色系统的重要内容之一是如何从一个不甚明确的、整体信息不足的系统中抽象并建立起一个模型,该模型能使灰色系统的因素由不明确到明确,由知之甚少发展到知之较多提供研究基础。灰色系统理论是控制论的观点和方法延伸到社会、经济领域的产物,也是自动控制科学与运筹学数学方法相结合的结果。 其次就是不确定性。不确定性指的是测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。而疲劳寿命问题就是一个发展变化的受众多因素影响的复杂过程。

断裂力学作业

研究生课程考试答题册 学号056060343 姓名徐红炉 考试课目断裂力学 考试日期2006.9 西北工业大学研究生院

1. 分析1型裂纹尖端附近的应力应变场。 考虑在无限远处受双向拉伸应力作用的Ⅰ型裂纹问题。其Westergaard 应力函数的形式 选为:)(~ )(~~z Z yI z Z R I m I e I +=φ,该函数满足双协调方程,其相应的应力分量为 )()(2 2z Z yI z Z R y I m I e I x '-=??=φσ (1a ) )()(22z Z yI z Z R x I m I e I y '+=??=φσ (1b ) )(2z Z yR y x I e I xy '-=???=φτ (1c ) 相应的应变分量)]()1()()1[(1)(1z Z I y z Z R E E I m I e y x x ' '+-'-' ='-'= ννσνσε (2a ) )]()1()()1[(1 )(1z Z I y z Z R E E I m I e x y y ''++'-' ='-'=ννσνσε (2b ) G z Z yR G I e xy xy ) (' -==τγ (2c ) 先确定一个解析函数)(1z Z ,使得到的应力分量应满足问题的全部边界条件。将x 坐标轴取在裂纹面上,坐标原点取在裂纹中心,则边界条件为: (1) y=0,x ∞→,σσσ==y x (2) y=0,a x <,的裂纹自由面上,0=y σ,0=xy τ;而当a x >,随着a x →, ∞→σ。 因此选择函数2 2 2 ) /(1)(a x x x a x Z I -= -= σσ ,用z=x+iy 代替上式中的x ,从而有 2 2 )(a z z z Z I -= σ (3) 满足上述边界条件。 为计算方便,将原点坐标从裂纹中心移至裂纹的右端点处,采用新坐标ξ,a z a iy x iy a x -=-+=+-=)()(ξ,或写成a z +=ξ。 (7)式用新坐标可写成 ) 2() ()() ()(2 2a a a a a Z I ++= -++= ξξξσξξσξ (4) 令a a f I 2) ()(++= ξξσξ (5)

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。b5E2RGbCAP 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C的区别与联系?p1EanqFDPw 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。

16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德

断裂力学结课论文2

断裂力学结课论文 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。本课程中主要介绍了断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J 积分以及断裂问题的有限元方法等内容。 一、 断裂的基本概念 1. 断裂力学的产生和发展 断裂是构件破坏的重要形式之一,影响材料断裂的因素很多,如构件的形状及尺寸,载荷的特征与分布,构件材料本身的状态及应用的环境如温度、腐蚀介质等,当然更重要的还有材料本身的强度水平。为了防止构件的断裂或变形失效,传统的安全设计思想主要立足于外加载荷与使用材料的强度级别的选用,根据常规的强度理论,只要构件服役应力与材料的强度满足 1max 2 b s n n σσ σ???=???? (6- 1) 则认为使用是安全的。其中σmax 为构建所承受的最大应力;σb ,σs 分别为材料的强度极限和屈服强度,1n 1与2n 分别为按强度极限与按屈服强度取用的安全系数。安全系数是一个大于1的数,其含义为扣除了材料中对强度有影响的诸因素对强度可能造成的损 害作用,应当说这种考虑问题的出发点是合理的,也应当是行之有效的,因而多年来这种设计思想在工程设计中发挥了重要作用,而且还会继续发挥其重要作用。 断裂力学的理论最早由Griffith 与20年代提出。Griffith 在断裂物理方面有相当大的贡献,其中最大的贡献要算提出了能量释放(energy release)的观点,以及根据这个观点而建立的断裂判据。根据Griffith 观点而发展起来的弹性能释放理论在现代断裂力学中仍占有相当重要的地位 。 根据Griffith 能量释放观点,在裂纹扩展的过程中,能量在裂端区释放出来,此释放出来的能量将用来形成新的裂纹面积。定义裂纹尖端的能量释放率(energy release rate)如下∶能量释放率是指裂纹由某一端点向前扩展一个单位长度时,平板每单位厚度所释放出来的能量。用字母G 来代表能量释放率。由定义可知,G 具有能量的概念。其国际制单位(SI 单位制)一般用“百万牛顿/米”(MN/m)。材料本身是具有抵抗裂纹扩展的能力的,因此只有当拉伸应力足够大时,裂纹才有可能扩展。此抵抗裂纹扩展的能力可以用表面自由能(surface free energy)来度量。一般用γs 表示。表面自由能定义为:材料每形成单位裂纹面积所需的能量,其量纲与能量释放率相同。 若只考虑脆性断裂,而裂端区的塑性变形可以忽略不计。则在准静态的情形下,裂纹扩展时,裂端区所释放出来的能量全部用来形成新的裂纹面积。换句话说,根据能量守恒定律,裂纹发生扩展的必要条件是裂端区要释放的能量等于形成裂纹面积所需的能量。设每个裂端裂纹扩展量为a ?,则由能量守恒定律有:()(2)s G B a B a γ?=?

断裂力学与增韧作业

氧化锆相变增韧 摘要:本文综述了氧化锆增韧陶瓷(ZTC)的增韧机理,以及影响氧化锆相变的因素,并介绍了ZrO2陶瓷的类型和性能以及在陶瓷和其它工业领域的应用前景。 关键词:ZrO2;相稳定;相变增韧 1 引言 陶瓷材料具有高硬度、耐高温、耐腐蚀和耐磨损等金属材料难以相比的优点,在航天、航空及机械工业中将会有广泛的应用,如火箭、航天飞机、发动机耐磨部件及超硬刀具等材料都已越来越多地采用陶瓷材料。但陶瓷的脆性大大地限制了它的用途。近年来发展出的一些新型陶瓷材料,如增韧氧化锆,氧化铝、碳化硅和氮化硅等,使其韧性有较大改善,为开发极限工况下使用材料提供了诱人的前景。 ZrO2属于新型陶瓷,由于它具有十分优异的物理和化学性能,不仅在科研领域已经成为研究热点,而且在工业生产中也得到了广泛的应用,它是陶瓷材料、高温材料和功能材料的重要原料,在各种金属氧化物陶瓷材料中,ZrO2的高温热稳定性和隔热性能最好,适宜做陶瓷涂层和高温零部件。ZrO2的热导率在常见的陶瓷材料中最低,而热膨胀系数又与金属材料较为接近,是重要的结构陶瓷材料;ZrO2特殊的晶体结构,使之成为重要的电子材料;良好的机械性能和热物理性能,使它能够作为材料中性能优异的增强相。目前在各种金属氧化物陶瓷中,ZrO2的作用仅次于Al2O3。 相变增韧ZrO2陶瓷是一种极有发展前途的新型结构陶瓷,其主要是利用ZrO2相变特性来提高陶瓷材料的断裂韧性和抗弯强度,使其具有优良的力学性能,低的导热系数和良好的抗热震性。它还可以用来显著提高脆性材料的韧性和强度,是复合材料和复合陶瓷中重要的增韧剂。近十年来,具有各种性能的ZrO2陶瓷和以ZrO2为相变增韧物质的复合陶瓷迅速发展,在工业和科学技术的许多领域获得了日益广泛的应用。与此同时,有关ZrO2相变的研究也受到了学术界的普遍重视,在固态相变研究领域中占据了仅次于金属的重要地位。 2 ZrO2在陶瓷材料中的增韧补强机理 陶瓷材料具有优异的耐磨性、耐蚀性和高温性能,但是由于陶瓷固有的脆性,限制了其实际应用范围,因此,改善陶瓷材料的脆性,增大强度和提高其在实际应用中的可靠性,成为其能否广泛应用的关键。围绕改善陶瓷材料的脆性和提高

断裂力学复习题(实际)解答(课件)

断裂力学复习题 1.裂纹按几何特征可分为三类,分别是(穿透裂 纹)、(表面裂纹)和(深埋裂纹)。按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。 2.应力强度因子是与(外载性质)、(裂纹)及 (裂纹弹性体几何形状)等因素有关的一个量。材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。 3.确定应力强度因子的方法有:(解析法),(数 值法),(实测法)。 4.受二向均匀拉应力作用的“无限大”平板, 具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。 【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,σσσ==y x ; ② 在y = 0,a x <的裂纹自由面上, 0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。

可以验证,完全满足该问题的全部边界条件的解 析函数为 22Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: )2() ()(I a a Z ++=ζζζσζ 于是有: a a a a a K πσζζσπζζζσπζζζ=++?=++?= →→)2()(2lim )2() (2lim 00Ⅰ 5.对图示“无限大”平板Ⅱ型裂纹问题,求应 力强度因子ⅡK 的表达式。

【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,ττσσ===xy y x ,0; ② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→xy τ。 可以验证,完全满足该问题的全部边界条件的解 析函数为 2 2Ⅱ )(a z z z Z -=τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: ) 2()()(Ⅱa a Z ++=ζζζτζ 于是有: a a a a a K πτζζτπζζζτπζζζ=++?=++?=→→) 2()(2lim )2()(2lim 00Ⅱ 6.对图示“无限大”平板Ⅲ型裂纹问题,求应 力强度因子ⅢK 的表达式。

断裂力学论文

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

纤维对混凝土材料的增强增韧机理分析

纤维对混凝土材料的增强增韧机理分析 字数:3125 来源:城市建设理论研究2012年29期字体:大中小打印当页正文摘要:钢纤维、聚丙烯纤维等加入混凝土可显著提高混凝土的抗折强度,韧性,疲劳性能,抗冲击性能;目前对其材料的实验研究较多,鲜有文献对其增强,增韧机理进行深入讨论;本文综合目前国内外相关研究提出了纤维对混凝土增强、增韧的相关理论。 关键词:纤维;混凝土;复合材料模型;断裂力学模型;界面特性 Abstract: steel fibers, polypropylene fibers, such as adding concrete can significantly improve the flexural strength of the concrete, toughness, fatigue performance, impact resistance; experimental study of its material more little literature enhanced toughening mechanism in-depth discussion; This article integrated research at home and abroad fiber concrete reinforcing, toughening the theory.Keywords: fiber; concrete; composite model; fracture mechanics model; interface characteristics 中图分类号: TU375 文献标识码:A 文章编号:2095-2104(2012) 纤维作为混凝土的增强相,可以使其强度和韧性都大幅提高,短纤维相对来说具有压模好,便于自动化生产,利用分散等特点,而且在工程中可以根据不同的工程需要方便的选取不同配合比,达到最为适宜的细观结构和材料性能,因此在工程中具有广泛的应用。随着纤维增强复合材料的发展和广泛应用,人们愈来愈迫切地要求建立更为合理和完善的理论来预测复合材料的强度、断裂韧性等破坏性能,这种预测由于包括基体开裂、界面脱黏、纤维的拉断或者拔出等众多的非线性过程,所以复合材料的损伤和破坏取决于更为复杂的演化机理。 1.纤维混凝土的复合材料模型 这种模型的思路是根据单纤维-基体的拉拔实验得到纤维内部承载力的分布,对其均值进行统计,继而采用混合率等方法计算得到短纤维复合材料的整体承载效果。复合材料理论的经典强度公式可表示为:(2-1) 其中表示基体的弹性模量,表示纤维的弹性模量,表示纤维的体积率,表示基体的体积率,表示基体的应变,表示纤维的方向、长度、界面粘结特征综合作

先进制造技术大作业

先进制造技术大作业 机械研1101 闫子彬 21104011 2012.1.5 大连理工大学机械工程学院

国内外研究现状综述: 1.CFRP材料的应用现状: 碳纤维增强树脂基复合材料(以下简称CFRP)以其比强度高、比刚度大,具有吸音、隔热、防震、透微波、抗腐蚀、抗疲劳性能好和可设计性等诸多优点,近几十年来,在航空、航天、交通运输工具、船舶、建筑、机械等众多工程领域得到愈来愈广泛应用,特别是在各类飞机、舰船和运载工具上的使用率正以惊人的速度不断地增长。在航空航天领域中,CFRP 的应用得到了普及式的推广。目前已大量应用于军事和民用飞机,甚至于航天运载火箭和卫星等领域。复合材料的用量已成为航空航天结构先进性的标志之一。[1] 图1 CFRP在工业各方面的应用 复合材料构件的二次机械加工是其制造过程中的重要工序之一,其加工精度和表面质量对复合材料的力学性能和使用寿命具有重要的影响。近几年来,随着复合材料在航空航天部门的广泛应用,有关其机械加工的研究显得日益重要。 2.CFRP制孔过程中的分层缺陷问题 目前,纤维增强复合材料在航空航天等工程结构上多以层合板(壳)形式出现,如飞机机身、机翼的蒙皮,火箭圆柱壳体等,其制造过程是将单层板按照一定的纤维方向和铺放次序叠层,通过粘合剂,加热固化处理而成。为了满足装配连接、开窗等需要,复合材料结构部件在固化成型后通常还要进行二次机械加工,其中钻削制孔是二次机械加工中的重要工序之一,几乎可占总加工量的一半以上,如F-35复合材料前机身要钻1500个孔(如图1所示),而一副F-22战斗机机翼要钻14000个孔。但是由于复合材料的力学性能呈现各向异性、沿厚度方向的成层

ABAQUS中的断裂力学及裂纹分析总结

ABAQUS中的断裂力学及裂纹分析总结(转自simwe) (1) 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 (2) 另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数. 裂尖及奇异性定义: 在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。 这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况. 网格划分: 裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上

断裂力学复习题(实际)解答(课件)

断裂力学复习题 1.裂纹按几何特征可分为三类,分别是(穿透裂纹)、(表面裂纹)和(深埋裂纹)。按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。 2.应力强度因子是与(外载性质)、(裂纹)及(裂纹弹性体几何形状)等因素有关的一个量。材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。 3.确定应力强度因子的方法有:(解析法),(数值法),(实测法)。 4.受二向均匀拉应力作用的“无限大”平板,具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。 【解】将x 坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,σσσ==y x ; ② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。 可以验证,完全满足该问题的全部边界条件的解析函数为 2 2Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ或ζ= z -a , 代入(1),可得: ) 2() ()(I a a Z ++=ζζζσζ 于是有:

a a a a a K π σ ζ ζ σ π ζ ζ ζ σ πζ ζ ζ = + + ? = + + ? = → → ) 2 ( ) ( 2 lim ) 2 ( ) ( 2 lim Ⅰ 5.对图示“无限大”平板Ⅱ型裂纹问题,求应力强度因子Ⅱ K的表达式。 【解】将x坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为: ①当y = 0,x→∞时,τ τ σ σ= = = xy y x , 0; ②在y= 0,a x<的裂纹自由面上,0 ,0= = xy y τ σ;而在a x>时,随a x→,∞ → xy τ。 可以验证,完全满足该问题的全部边界条件的解析函数为 2 2 Ⅱ ) ( a z z z Z - = τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ或ζ= z-a, 代入(1),可得: ) 2 ( ) ( ) (Ⅱ a a Z + + = ζ ζ ζ τ ζ

钢结构工程检测与加固结课论文

钢结构工程检测与加固结课论文

钢结构工程事故的分析与处理 摘要:本文从疲劳、失稳、锈蚀在钢结构工程设计、加工制作、安装施工、正常使用、老化阶段中会导致结构的损伤与破坏,从而造成事故。并对事故的类型、原因进行了解剖,以及对事故的处理。 关键词:钢结构;疲劳、失稳、锈蚀、事故、分析、处理 1.事故的一般原因分析 设计阶段存在的问题:结构选型及设计方案不合理;计算简图不当,计算结果错误;荷载取值与受力情况不符;材料选用不妥,不能满足工程要求;结点构造不合理,造成致命缺陷;对施工阶段的特点和使用阶段的特殊要求欠考虑。 制作阶段存在的问题:不按图纸要求制作,任意修改施工图;制作尺寸偏差过大;制作工艺不良,设备落后;缺少熟练的技术工人和高素质的管理人员不能严格遵守施工及验收规范;不按照有关标准规范检查验收;存在偷工减料行为。安装阶段存在的问题:安装顺序及工艺不当;吊装、定位、校正的方法不正确;临时支撑刚度不足,安装中的稳定性差;现场焊接及螺栓施工质量达不到设计要求防火及防腐做法不达标;存在偷工减料行为。 正常使用阶段的事故原因:使用不当引发过大地基下沉;超载使用;任意开洞、局部改造削弱了构件截面和结构整体性;生产条件改变,但未进行必要的鉴定与加固;生产操作不当,造成构件或结构损坏但未及时修复;使用条件恶劣,又不认真执行结构定期检查维修规定;不可抗力。如战争、火灾、水灾、地震等。[1]. 2.钢结构的疲劳破坏事故 在反复交变荷载的作用下,在应力水平远低于钢材的极限抗拉强度甚至屈服点的情况下发生的钢结构或构件的破坏现象,称为疲劳破坏。疲劳破坏与钢材的静力强度和最大静力荷载并无明显关系,而主要与应力幅、应力循环次数和构造细节有关。因此,必须从构造细节出发,尽可能地减小应力集中,从而改善结构构件的疲劳性能。在设计过程中,应选用优质钢材,减少材质缺陷;采取合理的构造做法,避免焊缝集中,减少截面突变;在制作、安装过程中,应使缺陷、残余应力的影响减小到最低程度,尽量避免产生附加应力集中;对焊缝进行修补,以缓解因缺陷产生的应力集中。 疲劳砸坏的影晌因素分析。疲劳是一个十分复杂的过程,从微观到宏观,搜劳破坏受到众多因素的影响,尤其是对材料和构件静力强度影响很小的因素,对疲劳影响却非常显著,例如构件的表面缺陆、应力集中等。影响钢结构疲劳破坏的主要因素是应力帽、构造细节和循环次数,而与钢材的静力强度和最大应力无明显关系。应力集中对钢结构的疲劳性能影响显著,而构造细节是应力集中产生的根源。构造细节常见的不利因素如下:钢材的内部缺陆,如偏析、夹渣、分层、裂纹等;制作过程中剪切、冲孔、切割;焊接结构中产生的残余应力;焊接缺陷的存在,如气孔、夹渣、咬肉、未焊透等;非焊接结构的孔洞、刻槽等;构件的截面突变;结构由于安装、温度应力、不均匀沉降等产生的附加应力集中。 如1965年日本为美国建造的Sedeo型半潜式平台在交货途中破损没,1980年Alexan-derkeyland号半潜式平台在北海沉没[3].除了在航空领域,海洋领域多发生疲劳事故外,疲劳失效也频繁发生在铁路公路桥梁和发电站管道上,由于一个鱼眼杆的应力腐蚀裂纹的作用,1967年美国西弗吉尼亚州普莱曾特

ABAQUS中的断裂力学及裂纹分析总结

也许要暂别simwe一段时间了,在论坛获益良多,作为回报把自己这段时间在ABAQUS断裂方面的一些断断续续的心得整理如下,希望对打算研究断裂的新手有一点帮助,大牛请直接跳过。本贴所有内容均为原创,转贴请注明,谢谢。 引言:我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力学(LEFM)的层次。后来由於发现在裂纹尖端进入塑性区后用LEF仍然无法解决stress singularity的问题。1960年由Barenblatt 和Dugdale率先提出了nonlinear/plastic fracture mechnics的概念,在裂纹前端引入了plastic zone,这也就是我们现在用的cohesive fracture mechnics的前身。当时这个概念还没引起学术界的轰动。直到1966年Rice发现J-integral及随后发现在LEFM中J-integral是等于energy release rate的关系。随后在工程中发现了越来越多的LEFM无法解释的问题。cohesive fracture mechnics开始引起更多的关注。在研究以混凝土为代表的quassi-brittle material时,cohesive fracture mechnics提供了非常好的结果,所以在70年代到90年代,cohesive fracture mechnics被大量应用于混凝土研究中。目前比较常用的方法主要是fictitious crack approach和effective-elastic crack approach或是称为equivalent-elastic crack approach. 其中fictitious crack approach只考虑了Dugdale-Barenblatt energy mechanism而effective-elastic crack approach只考虑了基於LEFM的Griffith-Irwin energy dissipation mechanism,但作了一些修正。 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 例子如图 [本帖最后由 yaooay 于 2008-10-31 00:48 编辑] debond example.png(157.24 KB, 下载次数: 488)

PP_PC共混材料的力学性能和断裂力学_郭红革

第23卷第2期高分子材料科学与工程V o l.23,No.2 2007年3月PO LYM ER M ATERIALS SCIENC E AN D EN GIN EERING M ar.2007 PP/PC共混材料的力学性能和断裂力学 郭红革1,盛 京2 (1.青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛266042; 2.天津大学材料科学与工程学院,天津300072) 摘要:采用双螺杆挤出机制备了以PP-g-M A H和P P-g-GM A为增容剂、P F为增容助剂的一系列配方的PP/PC共混物,由注射机制样,通过力学性能对比了不同增容体系的增容效果。用J积分的方法表征了PP/PC共混物的断裂韧性。结果表明,PP-g-GM A增容效果优于P P-g-M A H,且PP/PP-g-GM A/PC/PF (70/10/20/1)共混物具有较好的综合力学性能。 关键词:聚丙烯;聚碳酸酯;共混;力学性能;断裂韧性;J积分 中图分类号:O631.2+1 文献标识码:A 文章编号:1000-7555(2007)02-0174-05 聚丙烯的工程塑料化是高分子研究领域的重要课题,工程材料必须有高的韧性和刚性。用工程塑料PC与PP共混,相容性是关键。虽然控制PP与PC之间的黏度比可得到分散良好的共混材料,但它们的配比因受到加工条件等限制,通常会发生相分离,出现明显的相界面,界面处的粘接性变差,影响力学性能。添加增容剂可改善相容性,所起的作用是在熔融加工过程中防止分散相粒子的自凝聚,强化相界面相互作用,促使体系形成稳定的微相结构,而这些作用主要源于增容剂与共混组分间形成的链缠结结构[1]。 本文研究了PP/PC共混物的力学性能与增容剂种类和用量的关系。对于材料的韧性表征,冲击强度只是给出了材料在受冲击破坏时所吸收的全部能量值,不能充分反映材料在受破坏过程的韧性参数的变化,本文探索采用J 积分方法研究该共混物的断裂韧性,具有可行性。 1 实验部分 1.1 主要原料 聚丙烯(PP):粉料T30s,MFR=3g/10 min(230℃,负荷2.16kg),天津石油化工公司乙烯厂;聚碳酸酯(PC):lexan121R,MFR= 17.5g/10min(300℃,负荷1.2kg),美国GE 公司;聚丙烯接枝马来酸酐(PP-g-M AH):接枝率0.8%,宁波能之光新材料有限公司;聚丙烯接枝甲基丙烯酸缩水甘油脂(PP-g-GM A):接枝率1.0%,宁波能之光新材料有限公司;线型酚醛树脂(PF):2402,湖北青龙化工厂。 1.2 主要仪器及设备 平行同向双螺杆挤出机:D36,L/D34,南京科亚机械有限公司;塑料注射成型机: 130F2V,螺杆直径h40mm,东华机械有限公司;拉力实验机:M350-20kN,英国Testom etric 公司;冲击实验机:JC-25(简支梁),承德精密实验机有限公司;XC-22(悬臂梁),承德精密实验机有限公司,按GB/T1843-1996标准测试;洛氏硬度计:X HR-150,上海材料试验机厂产品。 1.3 试样制备 原料使用前在真空烘箱中进行干燥。PP在80℃烘干2h,PC在120℃烘干4h,按配比在高速混合机预混,在双螺杆挤出机中混炼造粒。将挤出颗粒在80℃真空干燥4h,用注射机制样,一模四腔,分别为拉伸哑铃形试样、弯曲试 收稿日期:2006-01-10;修订日期:2006-08-12  基金项目:青岛科技大学博士科研启动基金资助  联系人:郭红革,主要从事高分子材料的结构与性能及包装印刷材料的应用研究,E-mail:h gguo@qingdaonew https://www.doczj.com/doc/522762629.html,

相关主题
文本预览
相关文档 最新文档