当前位置:文档之家› 关于停车场数学建模问题

关于停车场数学建模问题

关于停车场数学建模问题
关于停车场数学建模问题

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C中选择一项填写):

我们的参赛报名号为(如果赛区设置报名号的话):

所属学院(请填写完整的全名):

参赛队员(打印并签名) :1.

2.

3.

日期: 2013 年 11 月 2 日

评阅编号(教师评阅时填写):

汽车车库库存的优化方案

摘要

本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。

针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。

针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。最后,我们对这两种模型进行了比较,最终选择交叉排列模型为最佳模型。

针对问题三,我们通过问题二的模型进行了分析,由于条件三的改变,使得模型得到简化。由于车子的前轮可以90度转动,即小车的转弯半径可以忽略不计。再结合消防通道的设计,明确了车从车库开出的具体方向,设计了最优化的调运方案,使得调运方案费时最短。

最后就对本文模型建立的不足之处进行剖析,并阐明了实际建设的停车场与理论设计的停车场的不同之处,需要具体问题具体分析。

关键词:倾斜泊车模型交叉排列模型车库利用率安全性

一问题的立意与背景

1.1 背景资料:

由于生活质量和收入水平的不断提高,越来越多的城市居民有金钱基础和购车欲望。在最近几年我国城市机动车的增长速度平均在15%左右,一个新的私家车消费高潮很快就要到来。随着人们对汽车的需求量的增加,汽车制造商们也加快了汽车制造的步伐。而与此同时一个城市对汽车的需求量较大,故而需要一次性输送一大批汽车。但是这所有的汽车不能在同一时间全部制造完成,汽车制造厂的车库库存问题由此产生,如何解决好车库库存问题,使车库利用率最大化,对于工厂来说有着重要的现实意义。

1.2 需要解决的问题:

如何利用已知的车库大小来停放最多的车辆,即在满足一定要求并符合国家安全条例的条件下,尽可能的提高仓库的利用率。

1.在保证满足安全,道路通畅的条件下,通过车型的有关数据,建立模型,选择最佳的车位形状。提高仓库利用率。

2.在满足车辆无法调出时,可以先将阻碍的车辆开出车库外的情况下,建立模型,使得车库利用率达到最大化。

3.在问题2的解决情况下,假定汽车前轮可以左右转动90度,且车速相同。建立模型,使车库四个角落的汽车全部开出所需时间最小的方案。

二问题的解决思路

根据这个问题的实际背景和现有的汽车参数数据,首先依据所查文献中的汽车的相关技术参数及车库的安全参数对车库的车位形状选择的确定做定量的分析与综合求解;然后依据求解的车位形状,综合所有因素,解出最后的终极方案。

问题1)首先通过查阅相关资料了解到汽车的主要运动原理,从而就转弯半径和轮距,汽车长度的概念及数据,结合所求解得到的相关公式,根据理论分析和实际需求对车库的车位形状进行选择。然后由于是两种车型,故而需要通过分区域来停放。最后联系安全隐患问题最终确定车库的库存设计方案。

问题2)在不用考虑每辆汽车都能单独调出的情况下,可以将所有的除消防车道以外的通车道撤去,增大车库利用率,最后联系安全隐患问题最终确定车库的库存设计方案。

问题3)利用问题二中建立的模型,再根据条件中给出的车辆前轮可以转动90度,结合消防通道的设计,明确四个角落的车辆开出的方向。确定最优化的调运方案。

三基本假设

1)假设每种汽车的大小结构都是相同的,不同种汽车的大小不同,结构相同。

2)假设车子的车宽车长都是固定不变的。

3)假设存放车辆的司机的驾驶能力都是一样的,属于中等水平。

4)假设每辆车都能按规定停车,不超出车位线。

5)假设汽车制造厂制造的大小车型的数量是一样的。

四 符号系统

1C ------汽车最小转弯半径 2C ------汽车转弯时转向中心到内侧转向车轮轨迹 φ------停车位的长边与通道的夹角 R ------通车道的最小宽度 H ------停车位的纵向宽度

I ------小轿车的长度

W ------停车位宽度

W '------小轿车车位宽度

W ''------ 商务车车位宽度 0L ------停车位末端与消防车道之间的距离

L ------停车位长度 1L ------小三角形顶点到虚线的距离2L ------上下两个停车位的斜向距离 L ''------商务车车位长度 x ------除去消防车道后仓库的长度 y ------除去消防车道后仓库的宽度

L '------小轿车车位长度

m ------最顶端可以停放车辆的最大值

N ------一列停车位的最大个数 M ------多余空间总车位数量0S ------最终空余的面积

1S ------多余空间的面积

五 模型的建立与求解

5.1 车库车辆泊位规划模型(有通车道)

5.1.1 单辆车停车位最佳角度

由于考虑到问题一中所有汽车都需要畅通无阻的开出车库,所以汽车从通道进入车位一般得转弯,在这里就应该考虑到汽车的最小转弯半径。汽车转弯半径(RADIUS OF TURNING CIRCLE)就是指当方向盘转到极限位置时,外侧前轮轨迹圆半径.转弯半径在很大程度上代表了汽车能够通过狭窄弯曲地带或绕开不可越过障碍物的能力。我们查阅相关资料发现不同大小的车型的最小转弯半径和长宽并不相等,数据如下:

车子的具体参数(单位:mm )

车型 长/宽

最小转弯半径 小轿车 4833/1810 5700 商务车

4930/1895 6300

可设车子的最小转弯半径为C 1,那么汽车转弯时转向中心到汽车内侧转向

车轮轨迹为012H C C -=,如下图所示:

车辆转弯模拟图

对于通畅考虑需要有一条边是靠近通道的,为了使得该车位的小轿车自由进出。要求出单辆车停车位最佳角度,我们设该矩形停车位的长边与通道的夹角为φ。为了留出通道空间及使得车库利用率最大化。所以,我们需要假设该通道的

所有车位都保持着与该车位相同的角度和距离平行排列,如下图所示:

车辆行驶路径图

车辆沿着箭头方向行驶转弯φ角度驶入车位。具体小轿车的行驶入车位的情形如下图所示:

车辆驶入图

R 为通车道的最小宽度。小轿车从通车道以Φ角度进入停车位,所以通道的最小宽度φCOS C C R 21-=。

在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,每辆车均以角度φ停放,用H 表示小轿车的宽度,用I 表示车辆长度,考虑到消防安全问题,所以根据汽车库设计防火规范(GBJ67-84)中的下表所示:

汽车与汽车之间以及汽车与墙、柱之间的间距

注:当墙、柱外有暖气片等突出物时,汽车与墙、柱的间距应从其凸出部分外缘算起。

所以停车位的宽度应比车辆的宽度要宽,用1H 表示停车位的纵向宽度

5.001+=H H ,用W 表示停车位宽度,用L 表示停车位长度,图中上虚线分割停车位的小三角区域可以提供给上面或下面的停车位使用,L 0表示停车位末端

与消防车道之间的距离,L 1表示小三角形顶点到虚线的距离。如下图所示:

所以可得关于φ的函数,且有:

φ

sin 1H W = φcos 2

111H L = 1sin L I L +=φ

φφcos )cot 2

1(10H I L +=

现在按照上图所示,计算每辆车占据的停车位面积S (φ)。假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积

L

L ?021,因为它们被平均到每个车位上去的公摊面积很小,可以不计。从车辆所占的停车位来看,它占据的面积是L W ?,另外,它所占的通道面积为R H ?。因为一个通车道可以由两排车位使用,所以我们得到

φφφφφφsin 2cos sin 2sin 2cos 21)(21112

11C H C H H I H WR WL S -++=+= 我们先求小轿车占用的停车位的最小面积,将m C 700.51=、m C 890.3810.1700.52=-=、m H 310.2500.0810.11=+=、m I 833.4=代入)(φS ,可得

φ

φφφsin cos 825.1sin 584.6164.11)(-+=S

求导可得

φ

φφ2sin cos 584.6-825.1=')(S 所以当277.0584

.6825.1cos ==φ即?=905.73)2772.0arccos(时,)(φS 达到最小,249.17min )(m S =φ

分析表明,当停车位与通车道夹角?≈'905.73φ时可以使每辆小轿车占据停车位的面积达到最小。同理可得,当停车位与通车道夹角为389.71=''φ时可以使每辆商务车占据停车位的面积达到最小。

5.1.2 仅有一种车型的全局车位排列

本着通道顺畅的原则,我们所设计的通车道是单向的,由上得出与单向通道的夹角为φ,可使单位车辆占据的面积最小,此时宽度为R 的单向通道可提供给两边的停车位使用,通车道两边的停车位角度φ应该相对,如图1所示:

图1

显而易见,停车排数L P 最多只能是通道数R P 的两倍,即:R L P P 2≤,当按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列,此时R L P P 2=。所以,车库的形状应如图2所示:

图2

5.2 车库车辆泊位规划模型(无通车道)

5.2.1 车库设计模型

在车辆无法调出时,可以先将阻碍的车辆开出车库外,在这种情况下,我们将空间的利用率进一步提升,即将除消防车道以外的所有通车道省去。如下图所示:

图3

亦或是如图4所示:

图4

5.2.1 车库设计优化模型比较

考虑到使车库的利用率最大化,所以在这里我们需要比较图3和图4两种车库的车位规划模型,选择出最优化的方案。

先讨论图3的模型,即单向排列模型。用x 表示除去消防车道后仓库的宽度,用y 表示除去消防车道后仓库的长度。可以看出,当x 比较大的时候,停车位末端会与消防通道末端相隔较大的距离,这较大的距离所产生的空间,我们称为多余空间。在这多余空间里,我们还可以设计放一些停车位使得车库利用率最大化。如下图所示:

用2L 表示上下两个停车位的斜向距离,用N 表示一列停车位的最大个数,且N 为正整数,用m 表示最顶端可以停放车辆的最大值,m '表示模型一中最顶端可以停放车辆的最大值减去m ,用),...,2,1(m i n i =表示多余空间中,从下端开始,每增加一列停车位,就经过i 行的停车位数量。用M 表示多余空间总车位数量。可以列出以下式子:

φsin 22L L = 2

sin 2φNL y ≥ 12cos 21=??

????W L n φ 22cos 22=??

????W L n φ ...

m W L n m '=??

????2cos 2φ N n m ≤

)...(21m n n n N m M ++-'=

用0S 表示最终空余的面积,用1S 表示多余空间的面积,得出以下式子:

2cot 21φ

?=y S

最终的空余面积0S 的表达式:

)(10φS M S S ?-=

再讨论图4的模型,即交叉排列模型:

由图可知,因为每相邻两个停车位所朝方向相同,我们不妨将这朝向相同的两列车位设为一组,设其长为a,其中)sin(2φ?=L a ,再分别计算出横向及纵向可

停车总数,设起分别为A,B ,则??????=a y A ,??

????-=W L x B )cos(2φ,但是要注意的是,剩余距离的不同可能会影响结果,下面分不同情况讨论:

1) 2

a aB y ≥-,即纵向剩余距离足够时,则可以再多停一列。 2)如果aB y -<2

a ,即剩余距离不支持多停一列车。 对于一上两种情况我们都需要多讨论纵向剩余距离,不妨设为c ,即

)(21??

????--=W x W x W c 所需要的最小距离,如图所示:

图5

这个距离可以利用横向剩余距离补充,设达到足够停一辆车需要的最小距离为b ,则此时需要的横向距离为)tan(φb ,利用这个算式可以求出多停车辆为?????

?????????????-)tan(φb a y a y ,则用0S 表示最终空余的面积,用1S 表示多余空间的面积,得出以下式子:

对于情况一:

AB WL xy S 212

1-= 对于情况二:

B A WL xy S )1(2

121+-= 所以得出最终剩余面积0S 的表达式为:

?????

?????????????--=)tan(21210φb a y a y WL S S 这里默认是??

????-≤W x W x c 。 如果??

????->W x W x c ,即加上c 这段距离以后总长度超过既定长度x ,则有: AB WL xy S S 2012

1-==

5.3 两种车型的车库规划模型

因为小轿车所占据的面积小于商务车所占面积,故而我们可以先全部规划为小轿车车位,再将多余出来的面积根据上面的模型转化商务车停车位,如图所示这样按比例分配车位,可进一步提高车库的利用率。

设小轿车与商务车的车位长宽分别,,,,W L W L ''''''则横向可将小轿车位改造为商务车的个数为????????????'-''??????''-L L L x L x ,同理,纵向可改造数量为?????

???????'-''??????''-W W W y W y ,在这

里我们取其中最小值???

???????????????????????'-''??????''-?????????

???'-''??????'''-W W W x W x L L L y L y ,min 作为改造的数量,并算出其比例作为最佳模型。同样的,如果有上面模型的情况即??

????''->'-''L x L x L L 或者???

?????''->'-''W y W y W W 时,则不能改造。 5.4 模型的求解

以上讨论的数学建模基本上都是建立在理想情况上的。但是在现实中,停车场的大小并不是没有极限的,而且我们还需要考虑停车场的安全问题,比如:火灾问题。所以需要具体问题具体分析。

某汽车制造厂有一大型车库存放成品汽车车库,车库形状为米300200?的矩形,仓库只有一个门,位于矩形长边的正中央,门宽5米。

根据汽车库设计防火规范(GBJ67-84)第34.4.3.2条所示:消防车道的宽度不应小于4m 。即消防车道的宽度至少需要留出4米。因此停车位实际可以占据的面积应比车库总面积小。我们以300米的长边作为足够长的一边,并以每排车位与300米长边平行来设计小轿车的车位。如下图:

图6

因为设计的停车场为回形停车场,小轿车可由消防车道开出大门,如上图所示。

在这里我们需要结合车辆最小转弯半径来验证最小宽度为4米的消防车道是否可以令车辆通过5米的大门。因此,我们需分析商务车在宽度为4米消防车道上可以行驶通过大门的最小宽度。具体求解如下:

因为φcos 21C C R -=,即21cos C R C -=

φ,所以522.0cos =φ。可求出大门最小宽度:m m H W 5808.2sin 1<==

φ 由上可得商务车可以从4米宽消防通道上通过5米宽的大门。同时由于小轿车的最小宽度比商务车要小,所以我们只需验证商务车是否可以通过5m 宽的大门即可。

5.4.1问题一的求解

由于条件中需要考虑到通车的顺畅问题,所以我们建立了模型一、二来求解。 在理想情况下,根据模型一,可求出小轿车停车位长度为L '和商务车停车位为

L '',

。以及轿车停车位宽度为W '和商务车停车位为W ''。 即:

1sin L I L +=φ

将具体数值代入可得m L 928.9=' ,m L 135.10=''。

同时考虑到商务车和小轿车共用一条通车道,所以只需求出商务车所需要的通车道的最小宽度R 。商务车的通车道的最小宽度为m C C R 895.4cos 21=-=φ 因为R>4m ,故而消防车道应取为R 。而由上面证明可知宽度为R 的消防通道足够使商务车通过5m 的车库门。

以一排停车位,一条通道,一排停车位为一组求出宽度0W :

L R W 20+=

将具体数值代入可得m W 404.2=',m W 492.2=''。

由上可知宽度为200m 的仓库真正可用的宽度需要减去消防通道的宽度4m ,即真正宽度-=200x R 2,同理仓库真正可以用的长度为R y 2300-=。

所以横向可停小轿车的数量为120=??

????'W y ,纵向可停小轿车的数量为242=??

?????+'+R L R x ,因为剩余距离不足以增加小轿车位,故小轿车最终摆放为24行120列。同时我们可求出小轿车车位可改造为商务车车位最大数量为

6,min =???

???????????????????????'-''??????+'+'-????????????'-''??????''-L L R L R x L x W W W y W y ,故我们应该设置为小轿车和商务车的车位数量分别为各12行,列数同为120列。所以得到车位的设计模型如下图:

5.4.2 问题二、三的求解

问题二条件中提到不用考虑每辆汽车都需要单独调出,所以可以将所有的除消防车道以外的通车道撤去,我们建立了模型三、四来解决这个问题。我们比较具体问题中模型三和模型四哪一个更加优化,选择出最优化的停车方案。

关于模型三,我们需要得出一行停车位中最多可以放多少个小轿车停车位。将数值代入公式97cot =??

????'-W x y φ,即一行最多可以放置97个小轿车停车位。再根据公式2sin 2φNL x ≥

。求出一列停车位的最大个数38=N 个。 根据m n L W m ='φc o s

22,将404.2,2772.0c o s ,333.102='==W L φ代入可得m n m '=596.0,由于m n m ,都是正整数,将23,...,2,1='m 代入得到

当1='m 时,()2max 1=n

当2='m 时,4)(m ax 2=n

...

当23='m 时,38)(m ax 23=n

将以上运算所得数据代入

)...(21m n n n N m M ++-'=

求得400=M

所以整个停车厂车位的总数目为44862=+Nm M 个。

关于模型四,因为都是将多余空间利用起来故而可以套用问题一的形式,即横向可停小轿车的数量为120=??????'W y ,横向纵可停小轿车的数量为382=????

??????'L x ,即小轿车摆放为38行120列,另??????''-<'-''L x L x L L 且??

????''-<'-''W y W y W W ,故多

余的空间可多造的小汽车位为5)tan(21,)(min =???

???????????????????????'-'''+??????''-????????????'-''??????''-W W L W y W y L L L x L x φ,所以停车厂总车位个数共为4565512019=+?个。与模型三相比,停车位个数多于模型三。所以我们选择模型四解决问题二、三。

同时我们可求出小轿车车位可改造为商务车车位最大数量为2)(5,min =???

???????????????????????'-'''-''-??????''-????????????'-''??????''-L L L L L x L x W W W y W y ,故我们应该设置小轿车和商务车的车位数量分别为各36行和2行,其中小轿车有5行为121列,其余为120列,且商务车120列。

问题三中,假定每辆汽车开出仓库时的速度均相同,且汽车前轮可以左右转动90度,意味着汽车的横着进出停车位。而我们所要求的是将车库4个角落全部开出所需最少时间的调运方案。根据汽车库设计防火规范(GBJ67-84),我们在问题二所建立的模型中设置了消防通道,所以我们可以将车辆从消防通道中驶出车库大门。即我们在这里简化了问题三。只需将四个角落的车子沿消防通道开出便能达到最少的时间。如下图箭头所示:

图7

六 对未来的展望

停车场的优化设计实际上是一个比较复杂的非线性整数规划问题。首先我们将具体问题理想化,建立了一般停车场大致可以参考的布局和模型,有利于问题的简化性。其次,我们将多种模型进行对比,使设计更加优良。最后,我们对于利用率、易用性、安全性多方面进行考虑,使设计更加全面。但是在现实生活中可能会出现更多复杂的,如果要运用到现实车库建设上,还需要考虑现实环境的不确定因素以及现实中特定的需要,结合理想情况下的基本布局加以调整,进行局部修改而得出较好的设计方案。

参考文献

[1]赵静,但琦,数学建模与数学实验,北京:高等教育出版社,2008

[2]何文章,宋作忠,数学建模与实验,哈尔滨工程大学出版社,2002

[3]包子龙,刘欣,曹志军,数学建模一周论文,第10页到第12页,https://www.doczj.com/doc/5213169568.html,/link?url=IUpjw8ZSCwtzdVHTPRdIKy1GrP2Jitzb4SnFs bSEoF5JeRg-n8NUHZharw_zZiQGXGkgz1yXSHojPJQYV5su3CeNXtKlzrNxVcw0-X5Ri2 C,2013年10月30日

[4]汽车之家,转弯半径,

https://www.doczj.com/doc/5213169568.html,/shuyu/detail_18_20_675.html,2013年10月30日

[5]易车网,车辆参数,https://www.doczj.com/doc/5213169568.html,/jiahua/peizhi/,2013年10月30日

汽车库设计防火规范(GBJ67-84)汽车与汽车之间以及汽车与墙、柱之间的间距表34.6.0.12

基于数学建模的停车场优化设计

基于数学建模的停车场优化设计 张伟 江西旅游商贸职业学院江西南昌330000 摘要:停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。文章通过数学建模方法探讨停车场的优化设计,的目的就是希望找出缓解停车困难的有效办法。 关键词:数学建模;停车场优化;应用数学 一、引言 假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”,而通道越宽越多,就会使得容纳的车辆数越少。 我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α?=。 再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽车之间的横向间距。 考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =?=米,如图1所示。

2004年中国大学生数学建模竞赛C题 饮酒驾车问题

2004年全国大学生数学建模竞赛C题及建模论文 C题饮酒驾车 据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢? 请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题: 1.对大李碰到的情况做出解释; 2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答: 1)酒是在很短时间内喝的; 2)酒是在较长一段时间(比如2小时)内喝的。 3.怎样估计血液中的酒精含量在什么时间最高。 4.根据你的模型论证:如果天天喝酒,是否还能开车? 5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。 参考数据 1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。 2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下: 0.250.50.751 1.52 2.53 3.54 4.55 时间(小 时) 酒精含量306875828277686858515041时间(小 678910111213141516 时) 酒精含量3835282518151210774

数学建模论文十字路口绿灯

江西师范高等专科学校 论文题目:十字路口绿灯亮30秒,最多可以通过多少辆汽车? 组长:肖根金学号:9015300135 班级:15数教1班 组员:叶强学号:9015300143 班级:15数教1班 组员:谭伟学号:9015300132 班级:15数教1班 2017年4月15日

目录 一、问题重述 (3) 1.1问题背景 (3) 1.2问题简述 (4) 二、模型假设 (4) 3.1 停车位模型 (5) 3.2 启动时间模型 (5) 3.3 行驶模型 (5) 三、模型建立 (5) 四、模型求解 (5) 五、模型的检验与应用 (6) 5.1调查一个路口有关红绿灯的数据验证模型是否正确 5.2分析绿灯亮后,汽车开始以最高限速穿过路口的时间 5.3给出穿过路口汽车的数量n随时间t变化的数学模型 六、模型的评价 (6) 6.1 模型的优点 (6) 6.2 模型的缺点 (7) 参考文献

一、问题重述 1.1问题背景 随着经济和社会快速发展,我国城市道路建设增多,出行车辆增加,城市交通进入了快速发展阶段,城市交通的几个问题,即交通阻塞、交通事故、公共交通问题城市,道路交通问题日益突出.,为城市交通建设和路网规划提供方案和依据,达到优化城市道路交通状况的目的.因此我们针对于交通问题事故,将“十字路口绿灯亮30秒问题”单独列出以建模的形式来进行合理的规划,让十字路口的交通,更安全。在每年的节假时间里,有很多的人喜欢去旅游,交通的拥挤阻塞已经是很大问题,好多事故的发生。这是我们不愿意见到的事实。“十字路口绿灯亮30时间”对于现在的这个新时代的我们来说,城市的汽车车水马龙,它的合理设计是十分重要的。在交通管理中,绿灯的作用是为了维持交通秩序。在十字路口行驶的车辆中,主要因素是机动车辆,驶近交叉路口的驾驶员,在看到绿色信号后要通过路口。利用数学模型解决绿灯在十字路口亮30秒的问题,可以减少交通事故的发生,也相对合理的运用社会科学知识解决实际问题。某一天一个式子路口的绿灯灯亮30秒,那么能通过几辆汽车呢? 1.2问题简述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路

饮酒驾车数学模型

饮酒驾车的数学模型 摘要 本文解决的是一个司机安全驾车与饮酒的问题,目的是通过建立一个数学模型(结合新的国家驾驶员饮酒标准)分析司机如何适量饮酒不会影响正常的安全驾驶。根据一定合理的假设,建立人体内酒精浓度随时间变化的微分方程模型,并通过拟合曲线对数据进行分析。在不同饮酒方式下进行分类讨论,得出体内酒精浓度随时间的变化函数。在讨论过程中,我们得到两个结论:在短时间喝酒形式下,达到最大值的时间为1.23小时,与喝酒量无关;在长时间喝酒形式下,喝酒结束时酒精含量最高。最后,我们讨论了模型的优缺点,并结合新的国家标准写一篇关于司机如果何适量饮酒的一篇短文。 关键词:微分方程、模型、房室系统。

一、问题重述 据报载,2008年全国道路交通事故死亡人数为10.4372万,其中饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液呼气酒精含量值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中酒精含量大于或等于80毫克/百毫升为醉酒驾车。 司机大李在中午12点喝下一瓶啤酒,6小时后检查符合新标准,晚饭地其又喝了一瓶啤酒,他到凌晨2点驾车,被检查时定为饮酒驾车,为什么喝相同量的酒,两次结果不一样? 请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题: 1、对大李碰到的情况做出合理解释; 2、在喝三瓶啤酒或半斤白酒后多长时间内驾车会违反标准,在以下情况回 答:1)酒食在很短时间内喝的: 2)酒食在较长一段时间(比如两小时)内喝的 3、怎样估计血液中的酒精含量在什么时间最高; 4、根据你的模型论证:如果该司机想天天喝酒,是否还能开车? 5、根据你做的模型结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

停车场规划数学建模

医院停车场规划问题 摘要 本题是个优化设计问题,通过合理设计停车场的停车方式和通道大小使得停车场在有限的区域下能停放的下更多的车辆,为医院患者解决停车难的问题。 针对于问题1,由于该医院挂号是从7:30开始,但8:00之后医生才开始门诊,每个患者平均门诊时间为1小时30分钟。所以在7:30-8:00之间来的患者要到9:30才能离开医院,而在8:00之后来的患者只需门诊1小时30分钟就可离开医院。于是,可通过用Excel表对表1数据进行处理和分析,以每五分钟为单位,统计此时停车场停放的车辆数。因此,根据统计结果可知在周二9:30这个时刻医院的车辆数最多为229辆。所以,医院至少需要有229个车位才能够使得每一位患者的车到停车场就有车位停车。 对于问题2, 对于问题3,根据问题1结果可知医院至少要有229个车位才能使患者车到就有车位停车,而由问题2的结果可知,新建的停车场最多只有162个停车位,远远不能满足实际需要。所以问题可转化为从政府部门、医院以及患者的角度提出一些可行性的建议来解决这个问题。政府部门可以从建设新的停车场,开设便利的公交路线等方法来解决这一问题;医院可以通过合理利用医院内部的土地,为医护人员的上班提供便利等方法老解决这一问题;患者可以有意识的不占用停车位,按规定停车,尽可能的乘坐公交车或出租车来医院就诊。 关键词:

一、问题重述 问题背景: 随着现代技术的发展,人民生活条件的不断改善,小轿车的普及率越来越高. 患者自己开车到医院看病的情况也越来越普遍. 然而, 福州市的医院普遍存在停车位不足, 患者停车难的问题. 某医院原有若干个停车位, 零散分布于院内建筑楼房四周以及道路两侧. 现医院经重新规划整合,拆除部分旧楼,在门诊大楼旁整出一个长方形地块(见附录一),准备建公用停车场,用于患者停放小轿车. 该医院8:00开始门诊, 挂号从7:30开始, 每个患者平均门诊时间1小时30分钟(包括候诊、问诊、缴费和取药). 表1(见附录二)是某一周每天从7:30-11:30每5分钟统计的到达车辆数据。11:30-12:00以及下午,门诊患者相对较少,故未做统计. 问题提出: 问题1:假设患者取完药就开车离开,医院至少要有多少个车位能够使得患者车到就有车位停车? 问题2:根据图1的地块,设计停车场车位分布图. 设小轿车长度不超过5.2米,宽度不超过2.0米,因此,每个停车位的长度为5.6米,宽度为2.6米,车位标志线0.1米(不含在车位长、宽之内). 小轿车的转弯最小外半径和内半径分别为6.0米和4.0米,这里转弯最小外、内半径分别是指汽车转向时转向中心到汽车外侧、内侧车轮轨迹的最小距离,为了安全起见,停车场内通道的设计宽度应比理论宽度多至少0.2米,这样在小车转弯时,内侧只需按内半径考虑,不用担心小车转向内侧是否会与相邻车位车辆刮擦问题. 停车场设计入口一个,设置在东面,设计出口两个,设计在南面,请问该小轿车停车场最多能设计多少停车位? 问题3:按照目前的状况,新建的停车场是否能够满足患者停车需要?如果不能满足停车需要,请向政府部门或医院提出一些建议解决这一问题。

最新数学建模-饮酒驾车

第九篇饮酒驾车者三思 2004年 C题饮酒驾车 据报载,2003年全国道路交通事故死亡人数为 10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验 检疫局2004年5月31日发布了新的《车辆驾驶人员血 液、呼气酒精含量阈值与检验》国家标准,新标准规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/ 百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢? 请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题: 1.对大李碰到的情况做出解释; 2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答: ⑴酒是在很短时间内喝的; ⑵酒是在较长一段时间(比如2小时)内喝的。 3.怎样估计血液中的酒精含量在什么时间最高; 4.根据你的模型论证:如果天天喝酒,是否还能开车? 5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。参考数据 1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。 2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如表9-1。 表9-1 喝两瓶啤酒后的时间的血液中酒精含量(毫克/百毫升) 时间(小时) 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 酒精含量30 68 75 82 82 77 68 68 58 51 50 41 时间(小时) 6 7 8 9 10 11 12 13 14 15 16 酒精含量38 35 28 25 18 15 12 10 7 7 4

数学建模,红绿灯闪烁模型

建模实习作业题 之红绿灯闪烁模型班级:计算1502

交通管理中非数字灯闪烁时间模型 摘要 本文在了解过车辆通过红绿灯所遇见的情况,以及对车型的分析下,重点通过常微分方程建立起时间,刹车距离,以及刹车制动因素相关的数学模型。 在问题中对红绿灯灯应闪烁时间做出等价转换,闪烁的意图是让车辆在黄灯前停在停止线前,对于影响车辆刹车距离的因素主要由车辆制动力控制,闪烁时间应为驾驶员观察到信号变换反应的时间与驾驶员制动使车辆停在停车线所需时间之和。在法定通过红绿灯的速度下对大型车辆进行讨论,因为小型车辆制动距离明显小于大型载货汽车。 对于模型的评价,本文采用与实际生活中数据以及对车辆理论数据进行对比,以此检验模型建立的合理性及正确性。 最后,本文分析了现有模型的缺陷,并提出进一步改进方法,使之与贴合生活方面进一步。 【关键词】微分方程;刹车制动力;制动因素

目录 一、问题重 述………………………………………………………………………………… …4 二、基本假 设………………………………………………………………………………… …4 三、符号说 明………………………………………………………………………………… …4 四、模型建立、分析与求 解 (5) 五、模型评价与改 进 (6) 六、参考文 献 (7)

一、问题重述 从2013年元月一日,国家开始实行新的交通法规。在十字路口的交通管理中,最大而且最有争议的改变是闯黄灯。在以前的交规中,亮红灯之前要亮一段时间黄灯,这是为了让那些行驶在十字路口或距十字路口太近以致无法停下来的车辆通过路口.现在规定闯黄灯也是违规行为,为了不违反交通法规,对有时间数字的交通灯,司机根据时间数字可以提前对自己的行动作出决策,但还有很多交通灯是非数字的,这就不可避免的对司机的判断造成障碍,为此,非数字的交通灯在变灯前加入了闪烁,以提醒司机。为了让司机在十字路口有足够的时间决定过不过马路,请你考察实际生活中的道路,给出最佳的闪烁时间。 二、基本假设 1.假设刹车途中,刹车制动力恒定 2.行驶过程中没有意外事故

数学建模案例_停车场的优化设计

案例16 停车场的优化设计 随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。 假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。 我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。 再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽

数学建模例题_之_饮酒驾驶模型[1]

饮酒驾驶模型 摘要 本文针对酒后驾车造成交通事故死亡率高,以及根据国家质量检验检疫局发布的饮酒后驾车新标准,建立了饮酒后血液中酒精含量的数学模型。通过了解酒精在体内吸收,分布和排除的动态过程,及这些过程与人体内酒精反应的定量关系建立微分方程,运用药物动力学原理建立单室和双室模型。得出血液中的酒精含量)(t C ,与进入体内总酒量)(t x 、时间t 的函数关系式: 单室模型:()()()()k k v e e x k v t x t C a t k kt a a --==--0 双室模型:()()n n p n p t p t p t v t x v t x AUC AUC n n ???? ? ? ?++=--10 1 本文还运用了 Wagner-Nelson 法(待吸收的百分数对时间作图法),与题中给出的参考数据在计算机运行的结果作对比。 本文还解决了如下问题: 1、从模型分析了大李第二次被判为饮酒驾车是因为二次饮酒,而使血液中酒精含量累积而超标。 2、对喝了低度酒多长时间驾车违反规则作了量化分析; 3、从单室模型得出了一个血液中酒精含量峰值计算公式: ()k k k gk t a a -=303.2max 4、用本文的模型对天天喝酒能否开车作了讨论。 本文最后对模型的优点和不足作了评价。

一、问题提出 据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢? 请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题: 1. 对大李碰到的情况做出解释; 2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答: 1)酒是在很短时间内喝的; 2)酒是在较长一段时间(比如2小时)内喝的。 3. 怎样估计血液中的酒精含量在什么时间最高。 4. 根据你的模型论证:如果天天喝酒,是否还能开车? 5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。 二、问题假设 1、机体分为中心室(I室)和周边室(II室),两个室的容积(即血液体积或药物分布 容积)的过程中保持不变[1]。 2、药物从一室向另一室的转移速率,及向体外的排除速率,与该室的血药浓度成正比。 3、酒精含量的变化基本只受消除速度常数支配。 4、假定消除只发生在中心室,两个房室内酒精初始量都为零(即没有喝酒)。 5、酒在体内运动的配置和消除都是药物动力学过程。 6、人都是在精神状态正常情况下喝酒。 7、酒精可在整个机体内以同速度达到平衡。 三、符号定义 v:房室表观分布容积; k:酒精消除速度常数; k:酒精吸收速度常数; a k:酒精转移速度常数(pc k); cp f:t时刻体内吸收酒精的速度; ) (t C:血酒浓度的最高峰值; m

数学建模 红绿灯问题

十字路口红绿灯的合理设置 陈金康 检索词:红绿灯设置、红绿灯周期 一、问题的提出 作为城市交通的指挥棒,红绿灯对交通的影响起着决定性作用。如果红绿灯的设置不合理,不仅会影响到交通秩序;还有可能会影响到行人和自行车的安全。 目前杭城还有很多路口的红绿灯设置存在一些不合理的因素,我们以古墩路一个路口(界于天目山路和文苑路之间)的红绿灯设置为例,该路口是刚开通的,交管部门对路况和车流量的研究还不是很成熟,因此红绿灯的设置存在一些问题。该路口的车流量相对比较小,有几个方向的车流量特别小,但绿灯时间设置太长,经常出现路口空荡荡但是车辆必须长时间等待的情况;同时在这样的路口,右转红灯显得有些多余。另外,该路口不同时段的红绿灯设置没有什么区别,显然这是非常不合理的。 下面我们就针对该路口来研究一下红绿灯设置的合理方案。我们主要研究两个方面:红绿灯周期的设置以及一个周期内各个方面开绿灯的时间。 二、模型的建立 1、红绿灯周期 从《道路交通自动控制》中,我们可以找到有关红绿信号灯的最佳周期公式: s q L C ∑ -+= 15 其中 : C 为周期时间。 相位:同时启动和终止的若干股车流叫做一个相位。 L 为一个周期内的总损失时间。每一相位的损失时间I=启动延迟时间-结束滞后时间;而整个周期的总损失时间为各个相位总损失时间的和加上各个绿灯间隔时间R 。(通俗地讲,启动延迟时间即司机看到绿灯到车子启动的反应时间,结束滞后时间即绿灯关闭到最后一辆车通过的时间。) 即R I L +∑= q 为相应相位的车流量 s 为相应相位的饱和车流量。(当车辆以大致稳定的流率通过路口时,该流率即该相位的饱和车流量。) 2、南北方向和东西方向开绿灯时间的分配 不妨忽略黄灯,将交通信号灯转换的一个周期取作单位时间,又设两个方向的车流量是稳定和均匀的,不考虑转弯的情形。

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模论文 饮酒驾车模型

饮酒驾车模型 摘要 交通事故是目前危害人类生命的第一杀手,而酒后驾车已经成为引发交通事故的重要原因之一,并日益凸现为社会问题,因此必须加强有效防控,以保障交通安全和秩序. 长期以来,我国酒后驾车现象一直处于较快增长的态势,由酒后驾车引发的交通事故屡见不鲜,酒后驾车成为备受社会关注的热点问题. 本文主要讨论了在两种饮酒方式下血液中酒精含量如何变化的问题.通过建立了胃、肠和体液里酒精浓度的微分方程,综合分析了饮酒量、饮酒方式和饮酒者质量三个因素对安全驾车的影响. 针对饮酒方式的不同,本文将饮酒过程分成快速饮酒、某时间段内匀速饮酒和多次饮酒三种形式来讨论.并分别建立了快速饮酒、匀速饮酒和多次饮酒系统动力学模型,并运用非线性最小二乘法进行数据拟合得到相关参数,从而得到了血液中酒精含量与时间的函数关系(见图二)。并结合模型Ⅰ,运用MATLAB工具得到了快速饮用三瓶啤酒时的违规时间分布(见图三).进而推广到快速饮用不同量的啤酒的违规时间分布图(见图四).最后对相关问题进行了解答,结果表明,模型是合理和有效的.另外,本文在模型分析中具体的解释了大李所遇到的问题(详见模型分析).并给想喝一点酒的司机在驾车方面提出了相应的建议和指导. 关键词最小二乘法房室模型动力学模型 matlab软件拟合曲线

目录 摘要 .......................................................................................................................... 错误!未定义书签。 一、问题重述 (3) 二、问题分析 (3) 三、模型假设 (4) 四、符号说明 (4) 五、模型的建立与求解 (5) 5.1 快速饮酒的模型............................................................................................ 错误!未定义书签。 5.2 慢速饮酒的模型............................................................................................ 错误!未定义书签。 5.3 多次饮酒模型 (10) 六、模型的评价与改进 (11) 6.1 解释题目中大李遇到的问题 (12) 6.2喝了三瓶酒或半斤低度白酒后多久才能驾车 (13) 6.3 估计血液中酒精含量在何时最高 (13) 6.4 天天喝酒,能否开车 (14) 6.5 给司机的忠告 (15) 七、模型评价 (16) 八、模型推广 (17) 九、参考文献 (17) 十、附录 (17)

交通路口红绿灯__数学建模

交通路口红绿灯 十字路口绿灯亮30秒,最多可以通过多少辆汽车?一问题重述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路口绿灯亮30秒,最多可以通过多少辆汽车”时应综合考虑各方面因素二模型假设 (1)十字路的车辆穿行秩序良好不会发生阻塞; (2)所有车辆都是直行穿过路口,不拐弯行驶,并且仅考虑马路一侧的车辆。 (3)所有车辆长度相同,并且都是从静止状态开始匀加速启动; (4)红灯下等侍的每辆相邻车之间的距离相等; (5)前一辆车启动后同后一辆车启动的延迟时间相等。 另外在红灯下等侍的车队足够长,以至排在队尾的司机看见绿灯又转为红灯时仍不能通过路口。 参数,变量:车长L,车距D,加速度a,启动延迟T,在时刻 t 第n 辆车的位置 S n(t) 用数轴表示车辆行驶道路,数轴的正向为汽车行驶方向, 数轴原点为红绿灯的位置。于是, 当S n(30)>0时, 表明在第30秒第n辆车已通过红绿灯,否则,结论相反。

三模型建立 1.停车位模型: S n(0)=–(n-1)(L+D) 2. 启动时间模型: t n =(n-1)T 3. 行驶模型: S n(t)=S n(0)+1/2 a (t-t n) 2, t>t n 参数估计 L=5m,D=2m,T=1s,a=2m/s 四模型求解 解: S n(30)=-7(n-1)+(30-(n-1))2>0 得 n≤19 且 t19=18<30=t 成立。 答案: 最多19辆车通过路口. 改进:考虑到城市车辆的限速,在匀加速运动启动后,达到最高限速后,停止加速, 按最高限速运动穿过路口。 最高限速:校园内v*=15公里/小时=4米/秒,长安街上v*=40公里/小时=11米/秒,环城路上 v*=60公里/小时=17米/秒 取最高限速 v*=11m/s,达到最高限速时间t n*=v* /a+t n =5.5+n-1 限速行驶模型: S n(t)=S n(0)+1/2 a(t n *–t n )2+v*(t-t n*), t>t n* =S n(0)+1/2 a (t-t n) 2, t n*>t>t n = S n(0) t n>t 解:S n(30)=-7(n-1)+(5.5)2+11(30-5.5-(n-1))>0 得 n≤17 且 t17 * =5.5+16=21.5<30=t 成立。 结论: 该路口最多通过17辆汽车.

数学建模饮酒驾车问题 论文

江西科技师范大学理工学院 理工学科部2010级数学与应用数学专业数学建模实训论文 论文题目: 饮酒驾车问题 第六实训小组 学生姓名与学号: 李颖娇20108634 蔡小鹏20108628 眭玉兰20108615 朱丽20108601 论文完成时间: 2012年5月 13日

饮酒驾车的数学模型 摘要 本文解决的是一个司机安全驾车与饮酒的问题,目的是通过建立一个数学模型(结合新的国家驾驶员饮酒标准)分析司机如何适量饮酒不会影响正常的安全驾驶。根据一定合理的假设,建立人体内酒精浓度随时间变化的微分方程模型,并通过拟合曲线对数据进行分析。在不同饮酒方式下进行分类讨论,得出体内酒精浓度随时间的变化函数。在讨论过程中,我们得到两个结论:在短时间喝酒形式下,达到最大值的时间为1.23小时,与喝酒量无关;在长时间喝酒形式下,喝酒结束时酒精含量最高。最后,我们讨论了模型的优缺点,并结合新的国家标准写一篇关于司机如果何适量饮酒的一篇短文。关键词:微分方程、模型、房室系统。 一、问题重述 饮酒驾车问题主要是分析驾驶员在喝过一定量的酒后,酒精在体内被吸收后,血液中酒精含量上升,影响司机驾车,所以司机饮酒后需经过一段时间后才能安全驾车,国家标准新规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中酒精含量大于或等于80毫克/百毫升为醉酒驾车,司机大李在中午12点喝下一瓶啤酒,6小时后检查符合新标准,晚饭地其又喝了一瓶啤酒,他到凌晨2点驾车,被检查时定为饮酒驾车,为什么喝相同量的酒,两次结果不一样?讨论问题: 1、对大李碰到的情况做出合理解释; 2、在喝三瓶啤酒或半斤白酒后多长时间内驾车会违反标准,喝酒时间长短不同情况会 怎样? 3、分析当司机喝酒后何时血液中的酒精含量最高; 二、模型假设 1、酒精从胃转移到体液的速率与胃中的酒精浓度成正比。 2、酒精从体液转移到体外的速率与体液中的酒精浓度成正比。 3、酒精从胃转移到体液的过程中没有损失。 4、测量设备完善,不考虑不同因素所造成的误差。 5、酒精在体液中均匀分布。 三、符号说明 k :酒精从体外进入胃的速率; f (t):酒精从胃转移到体液的速率; 1 f (t):酒精从体液转移到体外的速率; 2

数学建模--交通问题

摘要 近年来随着机动车辆的迅猛增长,城市道路的交通压力日渐增大,各大城市对旧城改造及城市道路建设的投入也不断扩大,交通拥挤问题却仍旧日益严重。因此,科学全面地分析和评价城市的绩效,进而找到适合我国的城市交通规划模式,已成为我国城市交通迫切需要解决的课题。 本文通过大量查阅城市交通绩效评价指标,结合目前我国交通发展现状,以兰州为例,首先建立了绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u ==∑ 1 ,n i ij j w u ==∑ 1 ,i i n j j w w w ==∑ []R W R W R W R W R W W R W O 5544332211,,,,==计算出权重值,经过一致性检验公式RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =K 。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着,为了优化兰州安宁区道路交通,我们建立了评价城市交通的指标体系,继而构造模糊判断矩阵P ,计算出相应的权重值。我们挑选了道路因素进行优化,以主干道利用率约束、红绿灯效率约束、公交站点数目约束、非负约束为约束条件建立了安宁区道路交通优化方案的权系数模型,最后利用实际测算数据给出最终优化模型,提出合理化的优化建议,希望能为更好的建设兰州交通体系作出贡献。 关键词:城市交通 层次分析 模糊综合评判 绩效评价 隶属度

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

停车场数学建模

数学建模一周论文论文题目:停车场的设计问题 姓名:唐磊 专业:自动化 班级:093121 学号:08312217 指导教师:乐励华 2012年11月9日

目录 1、摘要 (3) 2、问题的提出 (4) 3、模型假设和符号说明 (5) 3.1模型假设 (5) 3.2符号说明 (5) 4、问题分析 (6) 5、模型建立 (12) 5.1停车场泊位规划模型 (12) 5.1.1单辆车停车位最佳角度 (12) 5.1.2整体车位规划 (15) 6、模型的求解 (15) 7、结果的分析检验 (19) 8、建模心得体会 (21)

1、摘要 “停车难”的影响不仅仅局限于停车本身,还引发了一系列城市管理问题。“停车难”不仅加重了交通的拥堵,而且还带来了安全隐患问题。因此,解决停车与场地的问题已经成为城市发展的难题,已经迫在眉睫。对于如何设计好一个面积为100*200平方英尺的停车场,即设计在场地划线的方案问题已经是当今城市土地合理利用的一个重要方面。解决好了这样一个问题,就是给城市管理和城市建设带来了很大的作用。容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。现在,有以下几个问题,问题一:对车子的一些车身结构和专业知识的了解。只有对汽车的知识有所了解还有一些数据的查询,就可以更好地更准确地建立停车的数学模型。当然,不同的车子的结构和参数是不一样的,我们通过假设将车子的大小长度都是固定不变的,这样才能够将问题更加具体直观。问题二:车子排放,因为停车的地方是以面积为100*200平方英尺大小地方,要合理安排车子的停放方向和过道宽窄度才能安全合理的将每辆车停好。问题三:停车场划线的数学方法和建立数学模型。通过问题一和问题二两个问题的讨论,将停车场划线设计跟数学建模联系一起,并通过数学模型解决现实中的实际问题。通过问题的确立,有些实际问题的变数很大,在建立数学模型之前,我们必须将现实问题模型化,即将现实中的问题具体化,统一化,数学化,那就需要对实际问题进行假设。我们是根据自己的思路和想法通过跟实际联系建立的这个数学模型,这个模型可能算不上是最优化的设计,但是我们通过这次设计学到了用数学模型解决一些问题的方法。也可以说我们是有收获的。 关键词:停车设计最优化数学模型

数学建模论文++饮酒驾车的数学模型

一、问题重述 关键词:微分方程、模型。 本问题主要是分析驾驶员在喝过一定量的酒后,血液中酒精含量上升,影响司机驾车,所以司机饮酒后需经过一段时间后才能安全驾车,国家标准新规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中酒精含量大于或等于80毫克/百毫升为醉酒驾车,司机大李在中午12点喝下一瓶啤酒,6小时后检查符合新标准,晚饭地其又喝了一瓶啤酒,他到凌晨2点驾车,被检查时定为饮酒驾车,为什么喝相同量的酒,两次结果不一样?讨论问题: 1. 对大李碰到的情况做出解释; 2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答: 1)酒是在很短时间内喝的; 2)酒是在较长一段时间(比如2小时)内喝的。 3. 怎样估计血液中的酒精含量在什么时间最高。 4. 根据你的模型论证:如果天天喝酒,是否还能开车? 5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。 参考数据 1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。 2. 体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下: 二、模型假设 1、酒精从胃转移到体液的速率与胃中的酒精浓度成正比。 2、酒精从体液转移到体外的速率与体液中的酒精浓度成正比。 3、酒精从胃转移到体液的过程中没有损失,且不考虑误差。 三、符号说明 k :酒精从体外进入胃的速率; f (t):酒精从胃转移到体液的速率; 1 f (t):酒精从体液转移到体外的速率; 2

关于停车场数学建模问题

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学院(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 日期: 2013 年 11 月 2 日 评阅编号(教师评阅时填写):

汽车车库库存的优化方案 摘要 本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。 针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。 针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。最后,我们对这两种模型进行了比较,最终选择交叉排列模型为最佳模型。 针对问题三,我们通过问题二的模型进行了分析,由于条件三的改变,使得模型得到简化。由于车子的前轮可以90度转动,即小车的转弯半径可以忽略不计。再结合消防通道的设计,明确了车从车库开出的具体方向,设计了最优化的调运方案,使得调运方案费时最短。 最后就对本文模型建立的不足之处进行剖析,并阐明了实际建设的停车场与理论设计的停车场的不同之处,需要具体问题具体分析。 关键词:倾斜泊车模型交叉排列模型车库利用率安全性

相关主题
文本预览
相关文档 最新文档