当前位置:文档之家› 海川化工论坛-NOVOLEN工艺综述

海川化工论坛-NOVOLEN工艺综述

海川化工论坛-NOVOLEN工艺综述
海川化工论坛-NOVOLEN工艺综述

简述各种化工流程模拟软件的特点及优缺点

简述几种化工流程模拟软件的功能特点及优缺点 化学工艺09级1班 摘要:化工过程模拟是计算机化工应用中最为基础、发展最为成熟的技术。本 文综合介绍了几种主要的化工流程模拟软件的功能及特点,并对其进行了简单的比较。 关键词:化工流程模拟,模拟软件,Aspen Plus, Pro/Ⅱ,HYSYS, ChemCAD l 化工过程概述 化工流程模拟(亦称过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析,作出环境和经济评价。它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术的结合产物,是近几十年发展起来的一门新技术[1]。现在化工过程模拟软件应用范围更为广泛,应用于化工过程的设计、测试、优化和过程的整合[2]。 化工过程模拟技术是计算机化工应用中最基础、发展最为成熟的技术之一,化工过程模拟与实验研究的结合是当前最有效和最廉价的化工过程研究方法,它可以大大节约实验成本,加快新产品和新工艺的开发过程。化工过程模拟可以用于完成化工过程及设备的计算、设计、经济评价、操作模拟、寻优分析和故障诊断等多种任务。[3]当前人们对化工流程模拟技术的进展、应用和发展趋势的关注与日俱增。 商品化的化工流程模拟系统出现于上世纪70年代。目前,广泛应用的化工流程模拟系统主要有ASPEN PLUS、Pro/Ⅱ、HYSYS和ChemCAD。 2 Aspen Plus 2.1 Aspen Plus简述 “如果你不能对你的工艺进行建模,你就不能了解它。如果你不了解它,你就不能改进它。而且,如果你不能改进它,你在21世纪就不会具有竞争 力。”----Aspen World 1997 Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目称为“过

海川化工论坛_液氨站氮气置换方案

鄂尔多斯联合化工有限公司60/104化肥项目 液氨站氮气置换方案 (编号ELAF-015-001) 编制:徐宝安 审核: 审定: 批准: 内蒙古鄂尔多斯联合化工有限公司 (合成氨分厂)

目录 1.编制依据 2.编制目的 3.氮置换具备的条件 4.人员准备 5.物资准备 6.氮置换步骤 7.安全注意事项

1.编写依据 PID流程图,操作原则。 2.置换目的 利用N2置换氨罐中的空气,是为了避免氨罐在首次引液氨时产生空气和气氨爆炸性混合物。 3.N2置换具备条件 3.1 有足够的低压N2。 2101FA/B已机械竣工,水压试验结束,设备、管道等按PID检查正确无误。 所有阀门、安全阀、仪表已检查和校验处在投用状态。 氨罐区公用工程系统已投用。 氨罐除锈及机械清扫工作结束。 4.人员准备 工艺人员: 4人 安全人员: 1人 检修人员:1人 指挥人员:1人 5.物资准备 见物资准备表 6.为了置换彻底N2置换分两个部分:第一部分包括2010FA/B、2101-F、 2101-C、2101JA/B/C等设备和管道。第二部分2101L。 6.1第一部分置换步骤 6.1.1关闭NH-0508-8″去尿素的截止阀,

6.1.2.关闭2101L入口阀,NH0546-4″、NH0545-4″、NH0519-1″、 NH0537-10″、NH0538-3″、NH0547-2″、NH0548-2″NH0543-4″、NH0535-1.5″上截止阀。 6.1.3.关闭SP501伐,NH0525-1.5″NH0507-14″NH0513-14″上截止阀。 6.1.4.打开NH0502-6″截止阀。 6.1.5. 打开电动阀MOV2007、MOV2009。 打开2101J/JA的进出口阀,最小流量线阀,泵公共出口阀。 打开NH2034-4″上去尿素的界区截止阀、止逆阀。 6.1.5 投用LI2009A、LI2010A、LI2011A、LI2012A,投用所有安全阀和仪 表根部阀。 6.1.6 打开2101FA/B底部的4″导淋阀,慢慢打开N2源截止阀,通过节流 孔板以300nm3/h的速度充N2到2101FA内,小心控制罐内压力不超过 0.005MPag,同样调节以300nm3/h充N2到2101FB内。 6.1.7 实行连续充N2,连续排放的方法进行置换,排放时,可在管路中所 有的导淋点排放(如2101FA/B进出口导淋,6″到尿素管线上导淋)和在PV2003处排放。 6.1.8 在连续排放时,在2010D顶部1.5″阀处取样分析O2含量。 6.1.9 在分析O2含量小于5%时,关闭排放点。 6.1.10 继续置换空气,直到从所有的排放点取样分析O2含量小于5%,N2 置换合格后关闭所有排放点,用PIC2003控制压力在0.00 5MPag。 6.1.11 N2置换合格后,用N2保持氨罐压力0.005MPag 24小时以上,以确 保在管道端点死角的剩余O2的扩散。 6.1.12 在氨罐内保持0.005MPag压力24小时,关闭4″导淋和充氮阀,每

化工流程模拟软件大全

工流程模拟软件大全 -------------------------------------------------------------------------------- 1 概要目前,国内主要的化工流程模拟软件美国SimSci-Esscor公司的PRO/II,美国AspenTech公司的Aspen Plus,Hysys,英国PSE公司的gPROMS,美国Chemstations公司ChemCAD和美国WinSim Inc. 公司的Design II,加拿大Virtual Materials Group的VMGSim。现将这几种软件简介归纳如下,供参考学习之用。 2 CHEMCAD, PROII, ASPEN的比较简单总结以下七点: 1 一般认为,PROII在炼油工业应用更为准确些,因其数据库中有不少经验数据;而ASPEN在化工领域表现更好,Aspen Plus与之比较有其它软件不可比拟的优点它基本上覆盖了以上各软件的所有优点。有人比喻:PROII是经验派,ASPEN 是学院派。 2. 学习aspen plus必备 1化工原理;讲化工过程得单元操作 2热力学方法;讲述物性计算方法; 3化工系统工程;讲述如何对化工系统进行建模,分析、求解如果简单掌握, 1、2就可以了,如果想进一步深入,还需看看3,另外有一个有经验得老师辅导也是很重要的。 3.HYSYS主要用于炼油。动态模拟是它的优势。 ASPEN是智能型的,用于化工领域流程模拟,比较大或长的流程,而且数据库比较全,开方式的。它和HYSYS 现在是一家。 PRO/II可以用于设备核算,流程短,或精馏核算。 chemcad由于物性较少,使用不方面,相对较差,网上到处都可以下载,设计院不太使用,高校中有一定市场。 4. 我觉得aspen plus的计算是最精确的,数据库的建设也是最完善的。不过我对它的操作不太适由于它考虑的方面非常全面,所以让我感觉学起来比较费劲。chemcad的界面操作让人感觉非常简单,使用起来比较顺手。但是数据库不是太大,我用的 5.0版本,就只有2000中常用物质的物性数据。PRO/II在这两方面都在中间。 5. 从易收敛性上看,chemcad>hysys>proii。 6. 从贴近工业实际看,proii>hysys>chemcad四个都是工程模拟仿真软件,其中Aspen、PRO/II, HYSYS为国内绝大多数设计院所使用。感觉Aspen适应范围最广,电解质、固体、燃烧等模块是其它软件难以比拟的;PRO/II在石化上应用较多,积累了丰富的经验;HYSYS则在油气工程领域就有着极高的精度和准确性。青岛科技大学(原青岛化工学院)开发了个ECSS,对它的评价只能是“国货”,青岛科技大学自己也不使用它的。 7. 版本介绍: aspen好用的版本是10.2和11.1,其中10.2在winXP上使用会

循环水泵节能改造方法措施与案例

在石油、化工、冶金、医药、电力等行业都大量应用循环水泵,其耗电量不容小视。对循环水泵系统进行节能改造,对企业降耗增效具有很大经济价值。 我公司长期致力于水泵系统节能服务,改造了数十台循环水泵,有丰富的实践经验和体会,在此和大家交流、分享。 我们把水泵系统节能原理概括为一句话,就是“用高效水泵在高效点工作,降低管路损失尤其是降低或消除节流损失”。 这句话包含了高效水泵(水泵效率)、高效点、管路损失三个关键词,也是水泵系统节能的三个关键点。 (1)高效水泵(水泵效率):要节能,水泵效率必须高。水泵效率高低首先取决于设计水平,其次取决于制造精度和质量; (2)高效点:同一台水泵,在不同的流量点其效率是不同的,一般在额定工况附近效率最高,如果偏离额定工况较多,水泵额定效率即便很高,其实际运行效率也不高。 再延伸一点说,高效点还要考虑电机的负荷率和电机高效区,也就是说要使整个水泵系统总效率处于综合高效点。 (3)管路损失:管路损失要尽可能降低,尽量消除节流损失。 我们就是通过紧紧瞄准水泵效率、高效点、管路损失这三个关键点,对水泵实际运行工况进行科学分析和诊断,利用先进理论和科学方法,找出水泵系统存在的问题,有针对性地采取切实有效的措施,全面深入挖掘各项潜力,提高水泵额定效率、使水泵实际工作参数处于高效点、最大限度地降低管路损失,通过三方面的有机结合,实现节能目标,这就是我们

的节能原理。 我公司的具体节能措施有以下几点: 1、现场调研,正确诊断系统存在问题,有的放矢,精准确定设计参数。 2、凭借高超设计水平和节能理念,提高设计工况点的额定效率。 广泛学习和利用三元流等先进设计理论,结合CFD流场分析和动态模拟,瞄准特定工作范围,借鉴优秀水利模型,采用先进CAD设计软件,最重要的是我们有经验丰富的高级设计师,将几十年的设计经验和体会融入其中,使设计的水泵及叶轮效率接近特定工况的极限值,用高效水泵或高效叶轮(三元流叶轮)替换旧泵或旧叶轮。 3、消除工况偏移造成的效率低下。 普通水泵都是系列化定型产品,用适当间隔的有限的规格参数,来满足千差万别的工况,不可能针对某厂具体需要参数来设计制造。 水泵产品型谱的有限性和实际生产工况参数千差万别的多样性,必然会造成水泵性能参数和实际生产工艺需求及管路实际阻力之间的不完全匹配,这就导致水泵偏离高效运行区间;由于各种原因造成水泵负荷的变化也会导致水泵偏离高效区;这都会导致效率低下,造成能源浪费。 我们根据具体情况,采取各种措施消除工况偏移状况,使水泵重回高效区工作。 4、量身定做,专门设计制造,消除无用功耗。 设计院在工程设计时,一般没有对每台水泵的流量需求、管道阻力进行精确计算,普遍采用类比估算,为了安全可靠相对比较保守。

简述各种化工流程模拟软件的特点及优缺点

简述几种化工流程模拟软件的功能特点及优缺点摘要:化工过程模拟是计算机化工应用中最为基础、发展最为成熟的技术。本文综合介绍了几种主要的化工流程模拟软件的功能及特点,并对其进行了简单的比较。 关键词:化工流程模拟,模拟软件,Aspen Plus, Pro/Ⅱ,HYSYS, ChemCAD l 化工过程概述 化工流程模拟(亦称过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析,作出环境和经济评价。它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术的结合产物,是近几十年发展起来的一门新技术[1]。现在化工过程模拟软件应用范围更为广泛,应用于化工过程的设计、测试、优化和过程的整合[2]。 化工过程模拟技术是计算机化工应用中最基础、发展最为成熟的技术之一,化工过程模拟与实验研究的结合是当前最有效和最廉价的化工过程研究方法,它可以大大节约实验成本,加快新产品和新工艺的开发过程。化工过程模拟可以用于完成化工过程及设备的计算、设计、经济评价、操作模拟、寻优分析和故障诊断等多种任务。[3]当前人们对化工流程模拟技术的进展、应用和发展趋势的关注与日俱增。 商品化的化工流程模拟系统出现于上世纪70年代。目前,广泛应用的化工流程模拟系统主要有ASPEN PLUS、Pro/Ⅱ、HYSYS和ChemCAD。 2 Aspen Plus Aspen Plus简述

“如果你不能对你的工艺进行建模,你就不能了解它。如果你不了解它,你就不能改进它。而且,如果你不能改进它,你在21世纪就不会具有竞争力。”----Aspen World 1997 Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。1982年为了将其商品化,成立了AspenTech 公司,并称之为Aspen Plus。该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。全球各大化工、石化、炼油等过程工业制造企业及着名的工程公司都是Aspen Plus的用户。 Aspen Plus特点 (1)产品具有完备的物性数据库物性模型和数据是得到精确可靠的模拟结果的关键。人们普遍认为Aspen Plus 具有最适用于工业、且最完备的物性系统。许多公司为了使其物性计算方法标准化而采用Aspen Plus 的物性系统,并与其自身的工程计算软件相结合。Aspen Plus 数据库包括将近6000种纯组分的物性数据:①纯组分数据库,包括将近6000 种化合物的参数。 ②电解质水溶液数据库,包括约900种离子和分子溶质估算电解质物性所需的参数。③固体数据库,包括约3314种固体的固体模型参数。④ Henry 常数库,包括水溶液中61种化合物的Henry 常数参数。⑤二元交互作用参数库,包括Ridlich-Kwong Soave、Peng Robinson、Lee Kesler Plocker、BWR Lee Starling,以及Hayden O’Connell状态方程的二元交互作用参数

负离子乳胶漆的研究及应用进展

负离子乳胶漆的研究及应用进展 摘要:介绍了空气中负离子的作用、负离子乳胶漆释放负离子的原理和国内外负离子乳胶漆产品的研发进展。 关键词:负离子;乳胶漆;负离子涂料 室内环境是人们接触最频繁、最密切的地方,据统计,已发现的室内空气污染物有300多种。空气负离子是空气中的中性分子结合电子而形成的带负电荷的气体离子。当空气中负离子浓度较高时,能抑制多种病菌的繁殖,降低血压和消除疲劳,促进人体的生长和发育,因而人们将空气负离子比喻为“空气中的维生素”。在环境评价中,空气负离子已成为衡量空气质量的一个重要参数。为了增加居住环境中的负离子浓度,人们采用了各种各样的方法(负离子发生器、人造瀑布、负离子织物等,目前采用最普遍和最有效的方法是涂刷负离子内墙乳胶漆。 1负离子的作用 当人们漫步在森林、瀑布或海滩的时候,会感觉到空气清新、心情舒畅,这是因为这些场所负离子浓度较大的缘故,经过人们多年的研究,总结出了负离子浓度同人体健康的关系(见表1)。 表1负离子浓度同人体健康的关系 2负离子乳胶漆释放负离子的机理 负离子涂膜在宏观上表面光洁致密,但在微观上是高分子纤维网结成的多孔膜。正是这种孔隙的存在,使得空气分子可以与乳胶漆中的填料颗粒作用(见图1)。

图1乳胶漆成膜后产生空气负离子示意 负离子具体释放机理为:空气中的水蒸气通过孔隙与涂层中的负离子粉体相接触,在负离子粉体的作用下发生如下反应: 3负离子乳胶漆的研究现状 负离子对人体和生态环境的重大作用已被国内外医学界广泛认可。随着工业的发展、环境污染日益严重,空气中负离子浓度越来越低,人类健康受到威胁。为了改善空气质量,增加空气中负离子的浓度,人们研制了各种产生负离子的仪器设备和材料。 3.1国外研究现状 国外对空气负离子研究较早,在1932年美国RCA公司的汤姆逊发明了世界上第一台医用空气负离子发生器,之后空气负离子研究在欧、美、日经历了很长时间的发展。但是由于负离子发生器有其不可避免的缺陷,如产生臭氧、氮氧化合物,以及采用高压放电引起的耗能和安全问题,人们开始考虑采用其他环保材料。日本学者Kubo发现电气石具有永久性自发电极,而且其表面电场可以电离空气中的水分子,并可添加到涂料、织物、陶瓷等物品中,生产具有负离子功能的生活用品。 日本、美国、韩国等国家对于负离子涂料的研究位居世界前列,日本立邦涂料采用丙烯酸系列树脂、阻燃材料、无机填充材料及水制成一种负离子涂料,其中添加的负离子粉体为电气石及电融稳定化氧化锆粉末,其涂刷房间中的负离子浓度为1200~2000个/cm3。日本涂料研究开发中心研制的三立漆采用多种无机材料组合而成,该涂料除了具有良好的涂膜性能外,还具有透气、凋湿、杀菌抗霉、净化空气及产生负离子的功能。日本神东涂料公司采用功能性人工陶瓷粉,经特殊处理后加入涂料,因其含有微弱放射性稀有元素,可以放出短

海川化工论坛-热水二段型溴化锂吸收式冷水机组

浓溶液1稀溶液1加热热水冷水冷剂水浓溶液2稀溶液2冷却水 冷水出靶式流量计冷水进靶式流量计冷却水进靶式流量计蒸发温度1发生器温度2热水进口温度3溶晶管温度45蒸发器液位6自动抽气装置液位7冷却水进温度8冷水进温度冷水出口温度9热水出口温度

基本原理 溴化锂水溶液只是吸收剂,其中的水才是真正的制冷剂,利用水在高真空下低沸点汽化,吸收热量达到制冷目的。 首先由真空泵将机组抽至高真空状态,为低温下水的沸腾创造了必要条件。又由于溴化锂水溶液有低于冷剂水的沸点压力,两者之间存在压力差,所以后者具有了吸收水蒸气的能力,因此提供了使得冷剂水连续沸腾的可能性。 热水二段型机组由两个发生器、冷凝器、蒸发器和吸收器组成基本分开又有一定联系的两个独立制冷剂和吸收剂工作循环系统。热水、冷水和冷却水串联在两个循环系统之间,而且热水与冷水、冷却水相向而行,形成彼此间逆流热交换。 溶液泵将吸收器里的稀溶液经热交换器送到发生器里去,由热水将它加热浓缩成浓溶液,同时产生冷剂蒸汽。冷剂蒸汽在冷凝器中冷凝成冷剂水,其潜热由冷水带至机外。 冷剂水进入蒸发器后,由冷剂泵经布液器淋激在换热管表面。冷剂水吸收管内冷水的热量,低温沸腾再次形成冷剂蒸汽,与此同时制取低温冷水(本机组提供的冷源)浓缩后的浓缩液经换热器后直接进入吸收器,经布液器淋激于吸收器换热管上。浓溶液一方面吸收蒸发器所产生的冷剂蒸汽后,本身变成稀溶液,另一方面将吸收冷剂蒸发时释放出来的吸收热量转移至冷却水中。 制冷循环是溴化锂水溶液在机内由稀变浓再由浓变稀和冷剂水由液态变汽态再由汽态变液态循环。两个循环同时进行,周而复始。 热交换器是高、低温溶液间相互进行热量交换的设备,有利于提高机组的热效率。

最新[海川]下午注册化工工程师专业基础考试第二套模拟试题答案

[海川]下午注册化工工程师专业基础考试第二套模拟试题答案

121 (A )。 ΔU=0 ΔH =V Δp =5dm 3×150kPa =750J 122 (B )。 ΔS =nRln(V 2/V 1)=2×8.314 J ·K -1ln(50/25)=11.526 J ·K -1 ΔH =0,ΔG =-T ΔS =-350×11.526×10-3kJ =-4.034 kJ 123 (C )。 C p,m =3.5R K K P P T T m p C R 24.377)200260(350)(5 .31 1212,=== W=ΔU =nC v,m (T 2-T 1)=2×2.5×8.314(377.24-350)J=1.132kJ 124 (B )。 P A =P *A x A =120kPa ×0.35=42kPa P B =P *B x B =80kPa ×0.65=52kPa P=P A -P B =94kPa y B =P B /P=52/94=0.553 125 (A )。 因为在100 ℃、101.325kPa 下的纯水,其相应的饱和蒸气压也是100 ℃、101.325 kPa ,故μ*(100 ℃,101.325kPa ,l )=μ*(100 ℃,101.325 kPa ,g ),于是 μ*(100 ℃,80kPa ,g )-μ* (100 ℃,101.325kPa ,l ) =μ(100 ℃,80kPa ,g )-μ*(100 ℃,101.325kPa ,g ) 纯理想气体的化学势表达式为μ?=μ?(T )+RTln (P/P ?),若设P=80kPa ,P'=100kPa ,则便可分别写出 100 ℃、80kPa 水蒸气化学势表达式为 μ*(80kPa ,g )=μ?(T )+RTln (P/P ?) (1) 100 ℃、100kPa 水蒸气化学势表达式为 μ*(100kPa ,g )=μ?(100 ℃)+RTln (P '/P ?) (2) 式(1)-式(2)可得μ*(80kPa ,g )-μ*(10kPa ,g )=RTln {(P/P ?)/(P '/P ?)} =RTln (P/P')=8.314J ·K -1·mol -1×373.15K ×ln (80/100) =-692.27J 126 (C )。 K ?=K y(P/P ?)ΣvB =K n {P/P ?ΣnB}vB Σv B =1,恒温、恒压,K ?不变,K y不变;Σn B 变大,K n变大,故α变大。 127 (A )。

海川化工论坛_ProII-塔设计例题说明(超值)

Prob-20 蒸馏塔设计算例(1) 1、工艺条件 有一泡点物料, F=100kgmol/hr;物料组分和组成如下: 进料组分和组成 C5H12 C4H10 C3H8 组分 C2H6 组成(mol%) 1 79 12 8 2、设计要求 试设计蒸馏塔,将C3和C4分离;塔顶物料要求butane浓度小于0.1%, 塔釜物料要求propane浓度小于0.1%; 试确定该物料的进塔压力;塔的操作压力,理论板数,进料位置,回流比, 冷凝器及再沸器热负荷; 公用工程条件:冷却水30℃,蒸气4kg/cm2(温度143℃); 冷凝器设计要求热物料入口温度与水进口温之差大于10℃,水的允许温升 为10℃;再沸器冷物料入口温度与蒸气进口温差大于15℃。 塔的回流比取最小回流比的1.2倍。 模拟计算采用SRK方程; 3、塔简化法提示 简化法塔的操作压力无填写对话框,故进料的压力即默认为操作压力。 4、简化计算说明 (1) 须根据公用工程条件确定操作压力,即塔顶冷凝器须采用冷却水冷却,故塔顶上升气相温度应不低于40℃;塔釜再沸器采用蒸气加热,进再沸器 物料温度不得高于128℃。操作压力可以采用简化法试算,即先假设一操 作压力,若温度未满足要求则调整压力,直至温度要求满足为止。 (2) 采用简化法,求理论塔板数和回流比 先假设操作压力8kg/cm2,简化法计算如下图及表所示: 计算结果表明塔顶、塔釜温度分别为16℃和80.4℃,均不满足要求,故

须提高塔的操作压力。 Stream Name Stream Description Phase Temperature Pressure Flowrate Composition ETHANE PROPANE BUTANE PENTANE C KG/CM2 KG-MOL/HR S1 Liquid 23.570 8.000 100.000 0.010 0.790 0.120 0.080 S2 Liquid 16.021 8.000 80.060 0.012 0.987 0.001 0.000 S3 Liquid 80.430 8.000 19.940 0.000 0.001 0.598 0.401 (3) 再假设操作压力16kg/cm2,进行简化计算,结果如下表: Stream Name Stream Description Phase Temperature Pressure Flowrate Composition ETHANE PROPANE BUTANE PENTANE C KG/CM2 KG-MOL/HR S1 Liquid 53.643 16.000 100.000 0.010 0.790 0.120 0.080 S2 Liquid 44.246 16.000 80.060 0.012 0.987 0.001 0.000 S3 Liquid 114.992 16.000 19.940 0.000 0.001 0.598 0.401 简化计算结果塔顶、塔釜温度分别为44.2℃和115℃,均满足要求,故设定压力合适。 简化计算的详细结果如下: MINIMUM REFLUX RATIO 1.07745 FEED CONDITION Q 1.00000 FENSKE MINIMUM TRAYS 16.76383 OPERATING REFLUX RATIO 1.20 * R-MINIMUM

浅谈化工流程模拟

浅谈化工流程模拟技术 20420132201107 陈秀萍 前言 化工流程模拟是近几十年发展起来的一门新技术,是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术的结合产物。这一技术对于探索最佳工艺工况条件起着重要作用,已成为化学工程设计、原有工程改造优化的强有力工具,备受关注。 化工流程模拟技术简介 1、化工流程模拟技术的发展 化工流程模拟技术从20世纪50年代开始开发,至今已经经历了四代。1985年美国Kellogg公司推出了世界上第一个化工模拟程序并在当时的化学工程界产生了重大影响。上世纪70年代之后出现了一系列稳态流程模拟软件;80年代中后期,化工流程模拟软件在技术上日益成熟;90年代开始,稳态模拟技术进一步推广,动态模拟技术问世并得到长足发展。 目前化工流程模拟技术的发展趋势呈现出以下特点:在发展和应用通用化工流程模拟系统的基础上,注重开发专用化工流程模拟系统;稳态模拟与动态模拟技术有合并趋势;向计算机集成化过程系统;引入人工智能。 2、化工模拟软件的构成 (1)物性数据库:在模拟计算中,频繁进行各种热力学性质及传递性质计算,物性数据的准确直接影响到模拟结果的可靠性。 (2)单元模块库:依照结构化和面向对象编程思想,将各个过程操作单元编织成可独立运行的子程序或对象模块,存放到单元模块库,通过系统管理程序调用。 (3)输入和输出:必不可少的组成部分。有些模拟软件采用实时信号输出,以利于实现系统实施仿真。 (4)解算和管理系统:根据用户输入定义完成系统的模拟计算、优化计算等功能。 (5)网络通讯 主要的化工模拟软件有:Aspen Plus、H ysys、Pro/II、ChemCAD等。 3、化工流程模拟技术的应用 (1)科研开发:以过程模拟代替中间试验,进而构建工艺过程流程方案,提高工作效率和质量,节省大量资金、时间和人力。 (2)工艺设计:方便的在不同的过程方案中筛选出最优方案。 (3)操作优化:通过流程模拟消除“瓶颈”,为装置的技术改造提供依据,实现传统产业高新化。 (4)优化控制:进行数据拟合分析,送入过程模拟软件中运行,进行工况研究和优化。(5)仿真技术的基础:动态仿真系统用来模拟装置的实际生产,不仅能得到稳态的操作情况,而且能够借助动态仿真技术随意改变某些可调量,系统地考察干扰存在时系统行为的变化。 4、化工流程模拟技术的优点 应用化工流程模拟技术可以节省过去由试验探索最佳工艺工况条件所消耗的大量资金、时间和人力,使我们从整个系统的角度来认识、分析、预测生产中深层次的问题,进行装置

海川化工论坛14精馏原理

第六章 蒸馏(14学时) 教学目的:通过本章学习,掌握蒸馏的原理、精馏过程计算和优化。教学重点:精馏原理、精馏装置作用精馏分离过程原理及分析 教学难点:精馏原理,部分气化和部分冷凝在实际精馏操作中有机结合的过程。 教学内容: 第一节概述 1、易挥发组分和难挥发组分 液体均具有挥发性,但各种液体的挥发性各不相同。通常沸点较低的组 分挥发性强,称为易挥发组分,沸点较高的组分挥发性较弱,称为难挥 发组分,因此液体混合物加热部分汽化时所生成的气相组成和液相组成 必有差异。利用这一差异,就可将液体混合物分离。 易挥发─沸点低─轻组分 难挥发─沸点高─重组分 2、蒸馏:根据混合液中各组分挥发度的差异而达到分离的单元 按操作方式:可分为间歇蒸馏和连续蒸馏。生产中以连续蒸馏为主,间歇蒸馏只用于小规模的场合。 2、按蒸馏方法:简单蒸馏、平衡蒸馏(闪蒸)(易分离或分离要求不高的物系) 精馏(各种物系得到较纯的产品) 特殊精馏(很难分离或普通精馏不能完成的物系) 3、按操作压力:常压(一般情况);减压(沸点高且热敏性);加压(常温常压下呈气态,沸点低,冷凝困难)。 双组分和多组分:双组分是多组分的特殊情况;多组分(多用于工业上)。 石油加工:苯、甲苯、二甲苯的分离。 造酒:从发酵的醪液中提取饮料酒。 合成材料:从反应的混合物中提出高纯度的单体(苯乙烯、氯乙稀) 第二节 双组分溶液的汽掖相平衡 本节重点:气液两相平衡物系的自由度、理想溶液和拉乌尔定律 本节难点:汽液相组成与温度(泡点、露点)的关系

6-1 溶液的蒸气压及拉乌尔定律 1、理想溶液:指其中各个组分都在全部浓度范围内服从拉乌尔定律 2.拉乌尔定律:设在纯液体A中逐渐加入较难挥发的溶液B,形成A、B的溶液,当A的平衡分压(蒸汽压)P A仅仅由于被B所释放而降低,则:p A = p A o? x A p A o─纯液体A的蒸汽压;x A─溶液中组分A的摩尔分率。 同理,将拉乌尔定律用于组分B为:p B=p B o x B 3.道尔顿分压定律: p = p A + p B p A = p A o x A = p A o x p B = p B o (1-x) 精馏原理是根据图所示的t-x-y图,在一定的压力下,通过多次部分气 化和多次部分冷凝使混合液得以分离,以分别获得接近纯态的组分。 理论上多次部分气化在液相中可获得高纯度的难挥发组分,多次部分冷凝在气相中可获得高纯度的易挥发组分,但因产生大量中间组分而使产品量极少,且设备庞大。工业生产中的精馏过程是在精馏塔中将部分气化过程和部分冷凝过程有机结合而实现操作的。 6-2 精馏装置流程 一、精馏装置流程:典型的精馏设备是连续精馏装置,包括精馏塔、冷凝器、再沸器等,如图所示。用于精馏的塔设备有两种,即板式塔和填料塔,但常采用的

《化工流程模拟》课程教学大纲

《化工流程模拟》课程教学大纲 课程名称:化工流程模拟课程编号: 18000034 学时:32学时学分:2学分 开课学期:第 5学期 课程类别:选修 课程性质:学科技术基础任选课 适用专业:化学工程与工艺专业 先修课程:大学计算机基础、物理化学、化工原理 一、课程的性质、目的与任务 本课程是化学工程与工艺及应用化学专业学生的专业选修课之一。其目的是让学生在化工专业知识和实践的基础上,做进一步的拓展,以巩固和提高学生的计算机理论与应用能力,使学生了解和掌握当前化工领域中设计过程的应用软件及其功能,同时培养学生利用计算机进行化工流程模拟的能力,为今后从事化工设计、新工艺流程的开发研究提供初步能力。 本课程主要是根据化工过程的数据,其中包括进料的温度、压力、流量、组成,有关的工艺操作条件,工艺规定,产品规格以及相关的设备参数,采用Aspen Plus模拟软件,将由多个单元操作组成的化工流程用数学模型描述,模拟实际的生产过程,并通过改变各种有效条件得到所需要的结果。 二、基本要求 熟悉Aspen Plus模拟环境,掌握物性方法的选择和物性的分析,了解物性 参数的估算和物性数据的回归。熟练掌握主要单元模块包括混合器、分离器、压力变送设备、换热器、塔和反应器的模拟操作。掌握小型的稳态过程系统模拟、 设计和优化操作。了解采用Aspen Plus进行化工厂的综合性设计操作。 根据大纲要求,选用孙兰义主编,化学工业出版社出版的《化工流程模拟实训-Aspen Plus教程》作为教材。因为该教材与大纲要求基本适应。在教学方法上采用课堂讲解、课堂演示以及学生上机实践相结合的方法,讲授运用Aspen Plus对常见化工单元进行模拟计算的过程和方法,再通过运用Aspen Plus软件模拟实际化工过程,穿插讲解化工系统的模拟算法(序贯模块法、联立方程法和

化工行业应用

化工行业数字化之旅罗克韦尔自动化 刘俊杰

罗克韦尔服务于能源化工整个生产链

罗克韦尔自动化油气化工行业的产品家族 35万多种工业 控制产品以及 系统方案, PLC/RTU APC 先进控制系统,用于石化、炼油行业ESD/F&G/TMC 模块化三重冗余 紧急停车/火气/机组控制 FactoryTalk 系列模 块化统一平台,编程 软件,人机接口,信息化,能源管理,数据库,报表分析,通信和组件,软件方案 ICS Triplex Entek 机组振动监 测及全厂状态监测系统预维护诊断DySC 电压暂降保护用于电压波动或瞬时停电的保护 数字化油气田,井口优化,生产优化,对应中石油A11-A2/A8 PowerFlex? 系列 低压变频器高压变频器MCC 马达控制中心

融合的关键:数据质量数据处理基于模型 高效的大脑— 信息化健全的体魄—自动化 理性的决策—智能化

Cloud Level 5 Factory Talk Historian Devices PanelView ?Plus ViewPoint Server Machine Control Factory Talk Metrics Factory Talk TeamONE Factory Talk VantagePoint Factory Talk Batch Factory Talk EnergyMetrix Factory Talk View HMI Factory Talk ProductionCentre MES Factory Talk View SE Server Factory Talk AssetCenter Studio 5000 EWS Factory Talk Transaction Manager Process Control Safety Controller ERP Integration Gateway Project Sherlock Factory Talk TeamONE Factory Talk Historian Machines DataFlowML DataView DataModel MPC Pavilion8

海川化工论坛_机泵维护检修规程

1.离心泵维护检修规程SHS 01013-2004

1 总则 1.1 主题容与适用围 1.1.1 本规程规定了离心泵的检修周期与容、检修与质量标准、试车与验收以及维护与故障处理。 1.1.2 本规程适用于石油化工常用离心泵。 1.2 编写修订依据 SY-21005-73 炼油厂离心泵维护检修规程 HGJ 1034-79 化工厂清水泵及金属耐蚀泵维护检修规程 HGJ 1035-79 化工厂离心式热油泵维护检修规程 HGJ 1036-79 化工厂多级离心泵维护检修规程 GB/T 5657-1995 离心泵技术要求 API 610-1995 石油、重化学和天然气工业用离心泵 2. 检修周期与容 2.1 检修周期 2.1.1 根据状态监测结果及设备运行状况,可以适当调整检修周期。 2.1.2 检修周期(见表1) 表1 检修周期表月 2.2 检修容 2.2.1 小修项目 2.2.1.1 更换填料密封。 2.2.1.2 双支承泵检查清洗轴承、轴承箱、挡油环、挡水环、油标等,调整轴承间隙。 2.2.1.3 检查修复联轴器及驱动机与泵的对中情况。 2.2.1.4 处理在运行中出现的一般缺陷。 2.2.1.5 检查清理冷却水、封油和润滑等系统。 2.2.2 大修项目 2.2.2.1 包括小修项目。 2.2.2.2 检查修理机械密封。 2.2.2.3 解体检查各零部件的磨损、腐蚀和冲蚀情况。泵轴、叶轮必要时进行无损探伤。2.2.2.4 检查清理轴承、油封等,测量、调整轴承油封间隙。 2.2.2.5 检查测量转子的各部圆跳动和间隙,必要时做动平衡检验。 2.2.2.6 检查并校正轴的直线度。 2.2.2.7 测量并调整转子的轴向窜动量。 2.2.2.8 检查泵体、基础、地脚螺栓及进出口法兰的错位情况,防止将附加应力施加于泵体,必要时重新配管。

化工分析过程与模拟

宁夏大学硕士生(博士生)考试考查卷面纸2011~~ 2012 学年度第二学期 姓名学号 院(所、部)化学化工学院年级 11 级专业化学工程研究方向 课程化工分析过程与模拟考试方式论文主考教师评语成绩 主考教师签名: 200 年月日

浅谈化工过程模拟及相关高新技术 摘要:化工过程模拟在化工界已经成为家喻户晓的先进工具,广泛应用于工业装置的研究、设计、改造等领域,并带来明显的经济效益。化工过程模拟与实验研究的结合是最有效和最廉价的化工过程研究方法。可以大大节约实验成本,加快新产品和新工艺的开发过程稳态模拟软件的应用也已成为一股不可抗拒的浪潮,席卷全球。 关键词:化工模拟稳态装置 化学工业正不断满足化学和相关的过程工业的需要,如石油化工、制药、食品、环境、冶金、材料、电子等[1]。工业的不断需求要求对现存的技术或设备进行不断地修改和改进,不断开发新技术方法。一个最有效和最廉价的方法是采用实验研究和计算机辅助模拟设计(化工模拟)相结合[2]。 国外化工模拟软件起步很早[3],上个世纪50年代中、后期,美国M.W.Kellogg 公司就开发了第一个化工模拟程序—Flexible Flowsheeting。到80年代,化工过程模拟软件的研发已经走向专业化、商品化。模拟计算的准确性、可靠性也大大增强.应用范围不断拓展。这一时期,美国ASPEN Tech公司的ASPEN PLUS,Simulation Sciences。公司的PRO/II,,加拿大Hypro Tech公司的HYSIM等商业化软件正式走向市场。90年代后,化工模拟软件开始由德态过程向动态过程模拟和适时优化的方向发展,如Hysys,Aspen Plus等软件。国内化工过程模拟研究约起始于上世纪60年代末。70年代末化工部第五设计院在国内率先推出了大型烃类分离模拟系统,80年代由青岛化工学院韩方煌、丁惠华教授等人开发的ECSS模拟系统软件—ECSS化工之星研究成功,并走向商业化[4]。下面就具体化工过程稳态模拟进行简单介绍。 1、化工过程稳态模拟 稳态模拟又称静态模拟或离线模拟[5]。流程模拟就是将一个由许多个单元过程组成的化工流程用数字模型进行描述,并且在计算机上通过改变各种有效条件得到所需要的结果,如操作条件等。通常所说的化工过程模拟或流程模拟多指稳态模拟。它是根据化工过程的稳态数据,诸如物料的压力、温度、流量、组成和有关的工艺操作条件、工艺规定、产品规格以及一定的设备参数,如蒸馏塔的板数、进料位置等,采用适当的模拟软件,用计算机模拟实际的稳态生产过程,得出详细的物料平衡和热量平衡。其中包括人们最为关心的原材料消耗、公用工程消耗和产品、副产品的产量和质量等重要数据。简言之,化工过程模拟就是在计算机上“再现”实际的生产过程。由于这一“再现”过程并不涉及到实际装置的任何管线、设备以及能源的变动,因而给了化工模拟人员最大的自由度。可以在计算机上“为所欲为”地进行不同方案和工艺条件的探讨、分析。并且化工过程模拟所需的成本以及完成一定研究任务所需的时间也是任何实验研究所无法比拟的,因而化工过程稳态模拟已成为研究、开发、设计、挖潜改造、节能增效、生产指导以至于企业管理等工作必不可少的工具,并且在科研和实际生产中发挥着愈来愈大的作用[6]。

海川化工论坛-海川化工论坛-四川石化烟气脱硫脱硝学习总结

250×104吨/年重油催化裂化联合装置BELCO烟气洗涤系统学习总结 (EDV?、PTU和DeNO x系统) 2014年2月7日

四川石化250WT/a重油催化装置烟气脱硫脱硝装置首开总结 1. 简单介绍: 四川石化250WT/a重油催化裂化装置烟气脱硫脱硝脱粉尘采用了贝尔格技术公司(BELCO?)设计了命名为EDV?全套的气体净化系统技术。该技术总投资1.2亿元,是目前炼油厂普遍采用的较为成熟的烟气净化技术。 1.1 颗粒物脱除 烟气中含有的颗粒物绝大部分是FCC装置释放烟气携带来的催化剂颗粒。烟气中携带的固体颗粒可用冷却吸收塔(152-C-101)脱除。利用冷却吸收塔(152-C-101)内安装,位于G400型喷嘴下游的过滤模组(27)除去细小颗粒。 1.2 SO2/ SO3脱除 冷却吸收塔(152-C-101)为将SO2/ SO3吸收进洗涤液中提供了密集的气/液接触场所。洗涤液的pH值可通过添加来自装置碱液系统的碱液进行控制。 1.3 NOx脱除 臭氧注入到冷却吸收塔(152-C-101)的入口段。注入的臭氧氧化烟气中的NO x,将其转化为N2O5。N2O5结合烟气中的水蒸汽形成硝酸(HNO3)。以上这些变化发生在注入点到冷却吸收塔(152-C-101)入口段之间的区域。 接下来是反应区,烟气被四层雾化喷嘴(4)(每一层有三个雾化喷嘴)洗涤,用以吸收硝酸(HNO3)。这些雾化喷嘴同时从烟气中脱除的未反应的臭氧,完成NO x控制工艺的最后一步。 1.4 消除水雾 CYCLOLAB液滴分离器(9个)安装在冷却吸收塔(152-C-101)内,位于EDV?过滤模组的下游,用以除去外排烟气中残存的水珠。 1.5 水平衡和使用 添加补充水以补偿PTU单元排放排液以及急冷区域水的气化。完整的水平衡应包括了添加碱液和化学反应水。冷却吸收塔(152-C-101)的排液排放量用来维持洗涤液中亚硫酸盐/硫酸盐、氯离子和悬浮固体浓度低于设计工况下的规定值。在异常工况下,会产生催化剂颗粒超量携带,PTU单元的排液排放量应大

化工设计新人学习资料

首先声明这篇文档不是我写的,是我在海川化工论坛上看到一位比较有经验的工程师写的,传到文库给大家分享学习一下。感谢海川化工论坛注册名为“高端大气上档次”的前辈给我们分享的经验。 工艺那些事: 第一期: 化工工艺设计是一个大话题,在设计院哪一个专业都说工艺是龙头,龙头自然承担的就多,因此过硬的知识基础才是舞龙头的根本,但是大家总是觉得工艺太复杂,新进的同事觉得这得多长时间能全都学会了啊,我不能给你一个确切的答案,但是我能给你一个相对我认为比较好的方法,化工有个特点,就是任何事情解决的法则是“大事化小,各个击破”。无论是研发,设计,生产,销售都是这样。因此我们接下来也要“各个击破”,把以后用到的和将要徘徊犹豫的我们“各个击破”。为了避免漏项,我采用20570标准作为参考,其间我会穿插一些我在实际设计过程中遇到的例子。 第一期设备设计压力和设计温度 设计压力和设计温度为什么拿出来单独来说呢?因为我遇到很多设计院的 同志,现场的技术人员,设备厂家技术人员,有很多人对设计压力和设计温度概念模糊,规范使用的乱,各持自己的说法,还都各有道理。设备专业的GB150中对设计压力和设计温度的确定原则进行了表述,管道的压力管道审核人员培训教材中对设计压力和设计温度进行了定义,化工设计手册中对设计压力和设计温度也进行了描写,但是我认为,应该按照20570.1中规定的设备和管道系统设计压力和设计温度的确定方法来实施, 20570.1中明确规定了:“工艺系统专业负责确定容器、塔、换热器的设计

压力”,这个确定方法基本上与GB150中规定的方法一致,只是从工艺的角度去充分考虑各种工况。 是不是所有的设计压力都高于最高工作压力呢,不是,在20570.1中规定了设计压力不小于最高工作压力,这说明有等于的时候。但是这本规范是不是什么时候都适用呢?不是,这本规范只适用于表压35MPa以下的工况,但是这就满足了大多数工况,极特别的另行讨论。 设备设计温度,这个基本没有什么解释的,就是正常工作过程中,设备达到最高压力相对应的设备材料达到的温度。这里注意是材料的温度,并不是设备里面介质的温度。 下面唠叨一下具体的选取方法。 常压容器,内压容器这都正常按照表中规定的选取,这里有一个需要解释的,就是当容器位于泵进口且无安全泄放装置的时候,我们为什么提设计压力的时候还要提一个设备的全真空状态呢,因为在泵将前面容器内的液体全部抽空的时候,容器内就会产生负压,这个负压就是全真空状态,设备在设计的时候要考虑这种事故工况。 容器位于泵出口测无安全泄放装置时,取泵关闭压力。这主要是考虑当容器打满或者容器出口阀门关闭或堵塞时,泵没有停还一直在向容器中注,这时候最大的压力也就是泵关闭压力(泵关闭压力不是泵关闭,是泵的出口阀门关闭泵还在运转),为什么跟0.1MPa表压比较,就是因为0.1MPa表压就近似于大气压。 这里还要注意烃类的液化气体这个版块规范中给的压力值是常温储存条件 下的,这个新手比较容易犯错误,在设计大乙烯装置的时候,有个设计师就把压缩机后缓冲罐压力按照上面的选取的(当时工艺包没有这个缓冲罐,后

相关主题
文本预览
相关文档 最新文档