当前位置:文档之家› 专题03 导数及其应用 解析版

专题03 导数及其应用 解析版

专题03 导数及其应用     解析版
专题03 导数及其应用     解析版

专题03 导数及其应用(原创)

【2020年】

1.(2020·新课标Ⅰ)函数43()2f x x x =-的图像在点(1

(1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+

【答案】B 【解析】

()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,

因此,所求切线的方程为()121y x +=--,即21y x =-+. 2.(2020·新课标Ⅲ)若直线l 与曲线y

x 2+y 2=1

5

都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +

12 C. y =

1

2

x +1 D. y =

12x +12

【答案】D

【解析】设直线l

在曲线y =

(0x ,则00x >,

函数y =

y '=

,则直线l

的斜率k =

, 设直线l

的方程为)0y x x =

-

,即00x x -+=, 由于直线l 与圆22

15x y +=

= 两边平方并整理得2

005410x x --=,解得01x =,01

5

x =-

(舍), 则直线l 的方程为210x y -+=,即1122

y x =+. 【2019年】

1.(2019·全国Ⅲ卷】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,

D .1e a -=,1b =-

【答案】D

【解析】∵e ln 1,x

y a x '=++

∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .

2.(2019·天津卷)已知a ∈R ,设函数222,1,

()ln ,

1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0f x ≥在R

上恒成立,则a 的取值范围为 A .[]

0,1 B .[]0,2 C .[]

0,e

D .[]

1,e

【答案】C

【解析】当1x =时,(1)12210f a a =-+=>恒成立;

当1x <时,2

2

()22021

x f x x ax a a x =-+≥?≥-恒成立,

令2

()1

x g x x =-,

则222(11)(1)2(1)1

()111x x x x g x x x x -----+=-=-=-

---

112201x x ????

=--+-≤-= ? ? ?-????

, 当1

11x x

-=

-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x

a x

恒成立, 令()ln x

h x x

=

,则2ln 1()(ln )x h x x -'=,

当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,

∴min ()e a h x ≤=,

综上可知,a 的取值范围是[0,e]. 故选C.

3.(2019浙江卷)已知,a b ∈R ,函数32

,0()11(1),03

2x x f x x a x ax x

=?-++≥??.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0

【答案】C

【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,

则y =f (x )﹣ax ﹣b 最多有一个零点;

当x ≥0时,y =f (x )﹣ax ﹣b x 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,

2(1)y x a x =+-',

当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;

当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.

根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

∴0且,

解得b <0,1﹣a >0,b (a +1)3,

则a >–1,b <0. 故选C .

4.(2019·全国Ⅰ卷)曲线23()e x

y x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=

【解析】2

2

3(21)e 3()e 3(31)e ,x

x

x

y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,

则曲线2

3()e x

y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 5.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线4

(0)y x x x

=+

>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .

【答案】4 【解析】由4(0)y x x x =+

>,得241y x

'=-, 设斜率为1-的直线与曲线4

(0)y x x x

=+

>切于0004(,)x x x +,

由20

4

11x -

=-得02x =02x =-

∴曲线4

(0)y x x x

=+>

上,点P 到直线0x y +=

4=.

故答案为4.

6.(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)

【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x

'=

, 当0x x =时,0

1y x '=

, 则曲线ln y x =在点A 处的切线为000

1

()y y x x x -=

-, 即00

ln 1x

y x x -=

-, 将点()e,1--代入,得00

e

1ln 1x x ---=-, 即00ln e x x =,

考察函数()ln H x x x =,

当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,

当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,

故00ln e x x =存在唯一的实数根0e x =, 此时01y =,

故点A 的坐标为()e,1.

7.(2019·北京卷)设函数()e e x

x

f x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )

是R 上的增函数,则a 的取值范围是___________. 【答案】(]1

,0--∞

【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.

若函数()e e x

x

f x a -=+为奇函数,则()(),f x f x -=-即()e

e e e x

x x x a a --+=-+,

即()(

)1e e

0x

x

a -++=对任意的x 恒成立,

则10a +=,得1a =-.

若函数()e e x

x

f x a -=+是R 上的增函数,则() e e 0x x

f x a -'=-≥在R 上恒成立,

即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(]

,0-∞. 【2018年】

1.(2018·全国Ⅰ卷)设函数32

()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处

的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =

【答案】D 【解析】因为函数

是奇函数,所以

,解得

,所以

所以,

所以曲线在点

处的切线方程为

,化简可得

.

故选D.

2.(2018·全国Ⅱ卷)函数()

2 e e x

x

f x

x

-

-

=的图像大致为

【答案】B

【解析】()()()

2

e e

0,,

x x

x f x f x f x

x

--

≠-==-∴为奇函数,舍去A;

()1

1e e0

f-

=->,∴舍去D;

()

()()()()

2

43

e e e e22e2e

,

x x x x x x

x x x x

f x

x x

---

+---++

==

'2

x

∴>时,()0

f x

'>,()

f x单调递增,舍去C.

因此选B.

3.(2018·全国Ⅲ卷)函数422

y x x

=-++的图像大致为

【答案】D

【解析】函数图象过定点(0,2),排除A ,B ;

令4

2

()2y f x x x ==-++,则3

2

()422(21)f x x x x x '=-+=--,

由()0f x '>得2

2(21)0x x -<,得22x <-

或202

x <<,此时函数单调递增, 由()0f x '<得2

2(21)0x x ->,得2

x >

或20x -<<,此时函数单调递减,排除C. 故选D.

4.(2018·全国Ⅱ卷)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】

【解析】

则所求的切线方程为

.

5.(2018·全国Ⅲ卷)曲线()1e x

y ax =+在点()0,1处的切线的斜率为2-,则a =________. 【答案】-3

【解析】()e 1e x

x

y a ax =++',则0|12x y a ='=+=-,所以

.

6.(2018·全国Ⅰ卷)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.

【答案】

【解析】,

所以当时函数单调递减,当时函数单调递增,

从而得到函数的递减区间为()5ππ2π,2π33k k k ?

?

-

-∈????

Z , 函数的递增区间为()ππ2π,2π33k k k ?

?

-

+∈???

?

Z ,

所以当π

2π,3

x k k =-

∈Z 时,函数取得最小值,

此时,

所以,

故答案是.

7.(2018·江苏卷)若函数

内有且只有一个零点,则

上的最大值与最小值的和为________. 【答案】–3

【解析】由()2

620f x x ax =-='得0x =或3

a x =

, 因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以

0,03

3a a f ??

>= ???

, 因此3

2

210,33a a a ????

-+= ? ?????

解得3a =.

从而函数()f x 在[]1,0-上单调递增,在[]

0,1上单调递减,所以()()max 0,f x f =

()()(){}()min min 1,11f x f f f =-=-,

则()()max min f x f x +=()()0+114 3.f f -=-=- 故答案为-3. 【2017年】

1.(2017·全国Ⅲ卷)已知函数2

1

1()2(e e )x x f x x x a --+=-++有唯一零点,则a =

A .12

- B .

13

C .

12

D .1

【答案】C

【解析】函数()f x 的零点满足()

2112e e x x x x a --+-=-+,

设()1

1

e

e

x x g x --+=+,则()()211

1

1

1

1

1e 1e

e

e

e e x x x x x x g x ---+----'=-=-

=,

当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.

设()2

2h x x x =-,当1x =时,函数()h x 取得最小值,为1-,

若0a ->,函数()h x 与函数()ag x -没有交点;

若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -?=-,解得1

2

a =

.故选C. 2.(2017·全国Ⅱ卷)若2x =-是函数2

1

()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为

A .1-

B .32e --

C .35e -

D .1

【答案】A

【解析】由题可得12121

()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,

因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21

()(2)e x f x x x -'=+-,

令()0f x '>,解得2x <-或1x >,

所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11

()(111)e 11f -=--=-.

故选A .

3.(2017·浙江卷)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是

【答案】D

【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D . 11.(2017·江苏卷)已知函数3

1

()2e e

x

x f x x x =-+-

,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 .

【答案】1[1,]2

-

【解析】因为3

1

()2e ()e

x x f x x f x x -=-++

-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+?≥,所以函数()f x 在R 上单调递增, 又2

1)02()(f f a a +-≤,即2

())2(1a a f f ≤-, 所以221a a ≤-,即2120a a +-≤, 解得112

a -≤≤

, 故实数a 的取值范围为1[1,]2

-.

12.(2017·山东卷)若函数e ()x

f x (e 2.71828

=是自然对数的底数)在()f x 的定义域上单调递增,

则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .

①()2x

f x -=

②()3x

f x -=

③3

()f x x =

④2

()2f x x =+

【答案】①④

【解析】①e

e ()e 2()2

x x x x f x -=?=在R 上单调递增,故()2x

f x -=具有M 性质; ②e e ()e 3()3

x x x x f x -=?=在R 上单调递减,故()3x

f x -=不具有M 性质;

③3

e ()e x

x

f x x =?,令3

()e x g x x =?,则3

2

2()e 3e e (3)x

x

x

g x x x x x '=?+?=+,

∴当3x >-时,()0g x '>,当3x <-时,()0g x '<,∴3

e ()e x

x

f x x =?在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故3

()f x x

=不具有M 性质;

④2

e ()e (2)x

x

f x x =+,令2

()e (2)x

g x x =+,则2

2

()e (2)2e e [(1)1]0x

x

x

g x x x x '=++=++>,则

2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有M 性质.

【2016年】

1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x = (B )ln y x =

(C )e x y =

(D )3y x =

【答案】A

【解析】当sin y x =时,cos y x '=,cos0cos 1?π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3

ln ,e ,x

y x y y x ===的导数值均非负,不符合题意,故选A 。

2.【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,

ln ,1,x x x x -<?

图象上点P 1,P 2处的切线,l 1

与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A

【解析】设()()111222,ln ,,ln P x x P x x -(不妨设1

21,01x x ><<),则由导数的几何意义易得切线12

,l l 的斜率分别为1212

11

,.k k x x =

=-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为

()1111ln y x x x x -=

-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ??

-=-- ??

?.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ??

-+ ?++??

,11x >,

2112211

211

1211PAB

A B P x x S y y x x x ?+∴=-?=<=++,01PAB S ?∴<<.故选A . 3.【2016高考新课标2理数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln2-

【解析】对函数ln 2y x =+求导得1y x '=

,对ln(1)y x =+求导得1

1

y x '=+,设直线y kx b =+与曲线

ln 2y x =+相切于点111(,)P x y ,与曲线ln(1)y x =+相切于点222(,)P x y ,则1122ln 2,ln(1)y x y x =+=+,由点111(,)P x y 在切线上得()111

1

ln 2()y x x x x -+=

-,由点222(,)P x y 在切线上得2221ln(1)()1y x x x x -+=-+,这两条直线表示同一条直线,所以122

21

2111

21ln(1)ln 1x

x x x x x ?=?+??+?+=+?+?,解得

111

11

,2,ln 211ln 22x k b x x =∴===+-=-.

4.【2016高考新课标3理数】已知()f x 为偶函数,当0x <错误!未找到引用源。时,()ln()3f x x x =-+错误!未找到引用源。,则曲线()y f x =在 点(1,3)-处的切线方程是_______________. 【答案】21y x =--

【解析】当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1

()3f x x

'=-,则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--.

专题04导数及其应用(解析版)

大数据之十年高考真题(2011-2020)与最优模拟题(北京卷) 专题04导数及其应用 本专题考查的知识点为:导数及其应用,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:导数研究函数的几何意义,导数研究函数的单调性、极值与最值,导数证明不等式的方法等,预测明年本考点题目会有所变化,备考方向以导数研究函数的极值,导数研究函数的最值为重点较佳. 1.【2020年北京卷11】函数f(x)=1 x+1 +lnx的定义域是____________. 【答案】(0,+∞) 【解析】 由题意得{x>0 x+1≠0,∴x>0 故答案为:(0,+∞) 2.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a=;若f(x)是R上的增函数,则a的取值范围是. 【答案】解:根据题意,函数f(x)=e x+ae﹣x, 若f(x)为奇函数,则f(﹣x)=﹣f(x),即e﹣x+ae x=﹣(e x+ae﹣x),变形可得a=﹣1, 函数f(x)=e x+ae﹣x,导数f′(x)=e x﹣ae﹣x 若f(x)是R上的增函数,则f(x)的导数f′(x)=e x﹣ae﹣x≥0在R上恒成立, 变形可得:a≤e2x恒成立,分析可得a≤0,即a的取值范围为(﹣∞,0]; 故答案为:﹣1,(﹣∞,0]. 3.【2016年北京理科14】设函数f(x)={x3?3x,x≤a ?2x,x>a . ①若a=0,则f(x)的最大值为; ②若f(x)无最大值,则实数a的取值范围是. 【答案】解:①若a=0,则f(x)={x3?3x,x≤0?2x,x>0 ,

则f ′(x )={3x 2?3,x ≤0 ?2,x >0 , 当x <﹣1时,f ′(x )>0,此时函数为增函数, 当x >﹣1时,f ′(x )<0,此时函数为减函数, 故当x =﹣1时,f (x )的最大值为2; ②f ′(x )={ 3x 2?3,x ≤a ?2,x >a , 令f ′(x )=0,则x =±1, 若f (x )无最大值,则{a ≤?1 ?2a >a 3 ?3a ,或{a >?1 ?2a >a 3?3a ?2a >2, 解得:a ∈(﹣∞,﹣1). 故答案为:2,(﹣∞,﹣1) 4.【2020年北京卷19】已知函数f(x)=12?x 2. (Ⅰ)求曲线y =f(x)的斜率等于?2的切线方程; (Ⅱ)设曲线y =f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值. 【答案】(Ⅰ)2x +y ?13=0,(Ⅱ)32. 【解析】 (Ⅰ)因为f (x )=12?x 2,所以f ′(x )=?2x , 设切点为(x 0,12?x 0),则?2x 0=?2,即x 0=1,所以切点为(1,11), 由点斜式可得切线方程为:y ?11=?2(x ?1),即2x +y ?13=0. (Ⅱ)显然t ≠0, 因为y =f (x )在点(t,12?t 2)处的切线方程为:y ?(12?t 2)=?2t (x ?t ), 令x =0,得y =t 2+12,令y =0,得x =t 2+122t , 所以S (t )=1 2×(t 2+12)? t 2+122|t| , 不妨设t >0(t <0时,结果一样), 则S (t )= t 4+24t 2+144 4t =14(t 3+24t + 144t ), 所以S ′(t )=1 4(3t 2+24?144 t )=3(t 4+8t 2?48) 4t

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

高中导数经典知识点及例题讲解.

§ 1.1 变化率与导数 1.1.1 变化率问题 自学引导 1.通过实例分析,了解平均变化率的实际意义. 2.会求给定函数在某个区间上的平均变化率. 课前热身 1.函数f (x )在区间[x 1,x 2]上的平均变化率为 Δy Δx =________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则Δy Δx =________,表示函 数y =f (x )从x 0到x 的平均变化率. 1.f (x 2)-f (x 1)x 2-x 1 答 案 2. f (x 0+Δx )-f (x 0) Δx 名师讲解 1.如何理解Δx ,Δy 的含义 Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1). 2.求平均变化率的步骤 求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f x 2-f x 1 x 2-x 1 . 对平均变化率的认识 函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在 [0,π2]上的平均变化率为sin π 2-sin0 π2 -0=2 π . 在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.

典例剖析 题型一求函数的平均变化率 例1 一物体做直线运动,其路程与时间t的关系是S=3t-t2. (1)求此物体的初速度; (2)求t=0到t=1的平均速度. 分析t=0时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1) -S(0),再求时间改变量Δt=1-0=1.求商ΔS Δt 就可以得到平均速度. 解(1)由于v=S t = 3t-t2 t =3-t. ∴当t=0时,v0=3,即为初速度.(2)ΔS=S(1)-S(0)=3×1-12-0=2 Δt=1-0=1 ∴v=ΔS Δt = 2 1 =2. ∴从t=0到t=1的平均速度为2. 误区警示本题1不要认为t=0时,S=0.所以初速度是零. 变式训练1 已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点 (-1+Δx,-2+Δy),则Δy Δx =( ) A.3 B.3Δx-(Δx)2 C.3-(Δx)2D.3-Δx 解析Δy=f(-1+Δx)-f(-1) =-(-1+Δx)2+(-1+Δx)-(-2) =-(Δx)2+3Δx. ∴Δy Δx = -Δx2+3Δx Δx =-Δx+3 答案D 题型二平均变化率的快慢比较 例2 求正弦函数y=sin x在0到π 6 之间及 π 3 到 π 2 之间的平均变化率.并比 较大小. 分析用平均变化率的定义求出两个区间上的平均变化率,再比较大小. 解设y=sin x在0到π 6 之间的变化率为k1,则

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

2019衡水名师原创理科数学专题卷:专题五《导数及其应用》

2019届高三一轮复习理科数学专题卷 专题五 导数及其应用 考点13:导数的概念及运算(1,2题) 考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是最符合题目要求的。) 1.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( ) A.2sin x B.22sin x C.2cos x D.sin 2x 2.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 已知()21cos 4 f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( ) 3.【2017课标II ,理11】 考点14 易 若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2e a b + +的取值范围是( ) A.2,2e e ??++∞ ??? B.[),e +∞ C.[)2,+∞ D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难 已知函数2x y =的图象在点),(2 00x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象 相切,则0x 必满足( )

(新高考专用)专题 导数(含详细解析)

初高中数学学习资料的店 初高中数学学习资料的店 第 1 页 共 13 页 专题12 导数 1.已知函数()()211ln ,022 f x x a x a R a =--∈≠. (1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间; (3)若对任意的[)1,x ∈+∞,都有()0f x ≥成立,求a 的取值范围. 【答案】(1)22y x =-+(2)当0a <时,函数()f x 的递增区间为()0,∞+; 当0a >时,函数()f x 的递增区间为 )+∞ ,递减区间为(; (3)()(],00,1-∞ 【解析】(1)3a =时,()2113ln 22f x x x = --,()10f =()3f x x x '=-,()12f '=- ∴()y f x =在点()() 1,1f 处的切线方程为22y x =-+故答案为:22y x =-+; (2)()()20a x a f x x x x x -'=-=>①当0a <时,()20x a f x x -'=>恒成立,函数()f x 的递增区间为()0,∞+ ②当0a >时,令()0f x '= ,解得x = x = 所以函数()f x 的递增区间为+∞,递减区间为( 当0a <时,()20x a f x x -'=>恒成立,函数()f x 的递增区间为()0,∞+; 当0a >时,函数()f x 的递增区间为)+∞,递减区间为(. (3)对任意的[)1,x ∈+∞,使()0f x ≥成立,只需任意的[)1,x ∈+∞,()min 0f x ≥ ①当0a <时,()f x 在[)1,+∞上是增函数,所以只需()10f ≥而()111ln1022f a =--= 所以0a <满足题意;

导数及其应用专题训练

导数及其应用专题训练 (时间:100分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若函数y=e x+mx有极值,则实数m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1 2.函数f(x)=x2+x-ln x的零点的个数是() A.0 B.1 C.2 D.3 3.函数f(x)=-的图象大致为() 4.已知函数f(x)=a x+x2-x ln a,对任意的x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-2恒 成立,则a的取值范围为() A.[e2,+∞) B.[e,+∞) C.[2,e] D.[e,e2] 5.已知定义在R上的函数f(x),其导函数为f'(x),若f'(x)-f(x)<-3,f(0)=4,则不等式f(x)>e x+3的解集是() A.(-∞,1) B.(1,+∞) C.(0,+∞) D.(-∞,0) 6.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处 的切线方程是() A.y=-2x+3 B.y=x C.y=3x-2 D.y=2x-1 7.若正项递增等比数列{a n}满足1+(a2-a4)+λ(a3-a5)=0(λ∈R),则a6+λa7的最小值为() A.-2 B.-4 C.2 D.4 8.已知函数f(x)为R内的奇函数,且当x≥0时,f(x)=-e x+1-m cos x,记a=-2f(- 2),b=-f(-1),c=3f(3),则a,b,c之间的大小关系是() A.b

专题13 导数(知识梳理)(新高考地区专用)(解析版)

专题13 导数(知识梳理) 一、基本概念 1、导数定义:函数)(x f y =在0x x =处的瞬时变化率x x f x x f x f x x ?-?+=??→?→?) ()(lim lim 0000,我们称它为函数)(x f y =在0x x =处的导数,记作)(0x f '或0|x x y =',即x x f x x f x f x f x x ?-?+=??='→?→?)()(lim lim )(00000。 附注:①导数即为函数)(x f y =在0x x =处的瞬时变化率; ②定义的变化形式:x x x f x f x y x f x x ??--=??='→?→?)()(lim lim )(0000; 000) ()(lim lim )(0x x x f x f x y x f x x x --=??='→→?;x x f x x f x f x ?--?-='→?-)()(lim )(000; 0x x x -=?,当0→?x 时,0x x →,∴0 0) ()(lim )(0 x x x f x f x f x x --='→。 ③求函数)(x f y =在0x x =处的导数步骤:“一差;二比;三极限”。 2、基本初等函数的八个必记导数公式 3(1))()(])()([x g x f x g x f '±'='±; (2))()()()(])()([x g x f x g x f x g x f '?+?'='?; (3)[]2 )() ()()()(])()([ x g x g x f x g x f x g x f '-'= '(0)(≠x g )。 特别提示:)(])([x f C x f C '?='?,即常数与函数的积的导数,等于常数乘函数的导数。 4、复合函数的导数 (1)复合函数定义:一般地对于两个函数)(x f y =和)(x g u =,如果通过变量u ,y 可以表示成x 的函数,就称这个函数为)(x f y =和)(x g u =的复合函数,记作)]([x g f y =。 (2)复合函数求导法则:复合函数)]([x g f y =的导数和函数)(x f y =、)(x g u =的导数的关系为x u x u y y '?'=', 即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积。 例1-1.求函数23x y =在1=x 处的导数。 分析:先求2)(6)1()1(x x f x f y f ?+?=-?+=?=?,再求 x x f ?+=??6,再求6lim 0=??→?x f x 。

2017年高考真题分类汇编(理数)专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2 导数 一、单选题(共3题;共6分) 1、(2017?浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A、 B、 C、 D、 2、(2017?新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为() A、﹣1 B、﹣2e﹣3 C、5e﹣3 D、1 3、(2017?新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=() A、﹣ B、 C、 D、1 二、解答题(共8题;共50分)

4、(2017?浙江)已知函数f(x)=(x﹣)e﹣x(x≥ ). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间[ ,+∞)上的取值范围. 5、(2017?山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分) (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017?北京卷)已知函数f(x)=e x cosx﹣x.(13分) (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个 零点x0, g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0, 2],满足| ﹣x0|≥ . 8、(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (Ⅰ)求b关于a的函数关系式,并写出定义域; (Ⅱ)证明:b2>3a; (Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 9、(2017?新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分) (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 10、(2017?新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (Ⅰ)求a; (Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 11、(2017?新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx. (Ⅰ)若 f(x)≥0,求a的值; (Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.

导数应用八个专题汇总

1.导数应用之函数单调性 题组1: 1.求函数32()3912f x x x x =--+的单调区间. 2.求函数2()3ln f x x x x =-+的单调区间. 3.求函数2()3ln f x x x x =+-的单调区间. 4.求函数1 ()ln f x x x =的单调区间. 5.求函数ln ()ln ln(1)1x f x x x x =-+++的单调区间. 题组2: 1.讨论函数43 22411()(0)43 f x x ax a x a a =+-+>的单调区间. 2.讨论函数3 2 ()3912f x x ax x =+--的单调区间. 3.求函数321()(2)4132 m f x mx x x =-+++(0)m >的单调递增区间.

4.讨论函数1ln )1()(2 +++=ax x a x f 的单调性. 5.讨论函数1()ln 1a f x x ax x -=-+-的单调性. 题组3: 1.设函数3 2 ()1f x x ax x =+++. (1)讨论函数()f x 的单调区间; (2)设函数()f x 在区间21()33 --, 是减函数,求a 的取值围. 2.(1)已知函数2 ()ln f x ax x x =++在区间(1,3)上单调递增,数a 的取值围. (2)已知函数2()ln f x ax x x =++在区间(1,3)上单调递减,数a 的取值围. 3.已知函数3 2 ()(3)x f x x x ax b e -=+++. (1)若3a b ==-,求()f x 的单调区间; (2)若()f x 在(,),(2,)αβ-∞单调递增,在(,2),(,)αβ+∞单调递减,证明:6βα->.解:(1)当a="b=" -3时,f (x )=(x+3x-3x-3)e ,故 = (3) 分 当x<-3或00; 当-33时,<0, 从而f(x)在(-,-3),(0,3)上单调递增,在(-3,0),(3,+)上单调递减………. 6分 (2) …..7分

导数及其应用大题精选

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数)0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数 2()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数 ()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数 a ax x x f 23)(3+-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.

(完整版)高三复习导数专题

导 数 一、导数的基本知识 1、导数的定义:)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 2、导数的公式: 0'=C (C 为常数) 1 ' )(-=n n nx x (R n ∈) x x e e =')( a a a x x ln )('= x x 1)(ln '= e x x a a log 1)(log '= x x cos )(sin '= x x sin )(cos '-= 3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=- [()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+g g g 2 ()()()()() [ ]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()b f x ax x =+ ( 0a > ,0b >) 其图像关于原点对称 (2)三次函数32 ()f x ax bx cx d =+++(0)a ≠ 导 数 导数的概念 导数的运算 导数的应用 导数的定义、几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则 比较两个的代数式大小 导数与不等式 讨论零点的个数 求切线的方程

导数的基本题型和方法 1、、导数的意义:(1)导数的几何意义: () k f x ' =(2)导数的物理意义:() v s t' = 2、、导数的单调性:(1)求函数的单调区间;()0()b] f x f x '≥?在[a,上递增()0()b] f x f x '≤?在[a,上递减(2)判断或证明函数的单调性;() f x c ≠(3)已知函数的单调性,求参数的取值范围。 3、、函数的极值与最值:(1)求函数极值或最值;0 ()0 f x= x是极值点(2)由函数的极值或最值,求参数的值或参数的范围。 4、导数与不等式。通过研究函数的最值,进而证明不等式 ⑴证明不等式f(x)>g(x)在区间A上成立 方法一:构造函数F(x)=f(x)-g(x), 再利用导数求出函数在区间A上的最小值 min ()0 F x> 方法二:转化为证明 min max ()() f x g x > ⑵ f(x)>g(x)在区间A恒成立,求参数取值范围。构造函数F(x)=f(x)-g(x), 再利用导数求函数在 区间A上的最小值 min ()0 F x>,解此不等式既得参数的范围 ⑶不等式f(x)>g(x)的解集为空集,求参数取值范围。构造函数F(x)=f(x)-g(x),再利用导数求出 函数在区间A上的最小值 min ()0 F x≤解此不等式既得参数的范围 ⑷不等式f(x)>g(x)的解集非空,求参数取值范围。:构造函数F(x)=f(x)-g(x),再利用导数求出 函数在区间A上的最小值 max ()0 F x>解此不等式既得参数的范围 ⑸比较两个代数式f(x)和g(x的大小:构造函数F(x)=f(x)-g(x), 再利用导数求函数在 区间A上的最值,若最小值 min ()0 F x≥,则()() f x g x ≥;若最大值 min ()0 F x≤,则()() f x g x ≤ 5、讨论讨论函数f(x)零点(方程根)的个数:通过研究函数的单调性、极值等,画出函数图像,进而讨 论零点的个数 三次函数32 () f x ax bx cx d =+++(0) a≠的图像 > a0 a< ≤ ?0 > ?0 ≤ ?0 > ? 三次函数是关于M对称的中心对称图

导数的应用(单调性)专题

导数第2节 导数的应用(1)单调性 1.(优质专题天津文20(1)) 已知函数4 ()4,,f x x x x =-∈R 求()f x 的单调性; 2.(优质专题广东文21)设函数32()()f x x kx x k =-+∈R . (1) 当1k =,求函数()f x 的单调区间; 3.(优质专题四川文21(1))已知函数()2 2 2ln 2f x x x x ax a =-+-+,其中0a >. 设()g x 为()f x 的导函数,讨论()g x 的单调性; 4.(优质专题全国2文21(1))设函数()() 21e x f x x =-. (1)讨论()f x 的单调性; 5.(优质专题重庆文19(1))已知函数()()32f x ax x a =+∈R 在4 3 x =-处取得极值. 若()()e x g x f x =,讨论()g x 的单调性. 6.(优质专题湖北文21) 设0a >,0b >,已知函数()1 ax b f x x += +. (1) 当a b ≠时,讨论函数()f x 的单调性;

7.(优质专题江苏19(1))已知函数()32f x x ax b =++(),a b ∈R .试讨论()f x 的单调性. 8.(优质专题山东文20(1))设()()2 ln 21f x x x ax a x =-+-,a ∈R . (1)令()()g x f x '=,求()g x 的单调区间; 9.(优质专题新课标2卷文21(1))已知函数()()=ln +1f x x a x -.讨论()f x 的单调性. 10.(优质专题全国1文21*(1))已知函数()() 2 e e x x f x a a x =--. (1)讨论()f x 的单调性;

专题03 导数及其应用 解析版

专题03 导数及其应用(原创) 【2020年】 1.(2020·新课标Ⅰ)函数43()2f x x x =-的图像在点(1 (1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+ 【答案】B 【解析】 ()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-, 因此,所求切线的方程为()121y x +=--,即21y x =-+. 2.(2020·新课标Ⅲ)若直线l 与曲线y x 2+y 2=1 5 都相切,则l 的方程为( ) A. y =2x +1 B. y =2x + 12 C. y = 1 2 x +1 D. y = 12x +12 【答案】D 【解析】设直线l 在曲线y = (0x ,则00x >, 函数y = y '= ,则直线l 的斜率k = , 设直线l 的方程为)0y x x = - ,即00x x -+=, 由于直线l 与圆22 15x y += = 两边平方并整理得2 005410x x --=,解得01x =,01 5 x =- (舍), 则直线l 的方程为210x y -+=,即1122 y x =+. 【2019年】 1.(2019·全国Ⅲ卷】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D

【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.(2019·天津卷)已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[]0,2 C .[] 0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 112201x x ???? =--+-≤-= ? ? ?-???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤ 恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,

相关主题
文本预览
相关文档 最新文档