当前位置:文档之家› 第八讲 与声学有关的交叉学科

第八讲 与声学有关的交叉学科

第八讲与声学有关的交叉学科

声学之所以被认为是“最古老而又最年轻的学科”,其根本原因是声学本身与其他许多学科之间存在着非常广泛的相互渗透关系,以致形成许多相应的边缘学科,其中不仅涉及包括生命科学在内的几乎所有主要的基础自然科学,还在相当程度上涉及若干人文科学.这种广泛性不仅在物理学其他分支中,即使在整个自然科学中也是非常罕见的.

现代声学是一门跨层次的基础性学科,研究从微观到宏观、从次声(长波)到特超声(短波)的一切形式的线性与非线性声(机械)波现象.同时,现代声学具有极强的交叉性与延伸性,它与现代科学技术的大部分学科发生了交叉,形成了一系列诸如声化学、医学超声学、生物声学、海洋声学、环境声学、建筑声学、语言声学等新型独特的交叉学科方向,在现代科学技术中起着举足轻重的作用.现代声学更是一门具有广泛应用性的学科,对当代科学技术的发展、社会经济的进步、国防事业的现代化、以及人民物质与精神生活的改善与提高中发挥着极其重要、甚至不可替代的作用.本讲分别做一简介.

§8.1次声学§8.2大气声学§8.3电声学§8.4生理声学§8.5生物声学§8.6水声学§8.7语言声学

次声学的研究范畴

次声学的发展历史

次声学

次声波在大气中的传播特性

次声学的应用

次声学是研究次声波在媒质中的产生、传播和接收及其效应和应用的科学.

次声学的研究范畴

次声是频率低于可听声频率范围的声,它的频率范围大致为10-4Hz ~20Hz .次声学的发展历史早在19世纪,人们就已记录到了自然界中一些偶发事件(如大火山爆发或流星爆炸)所产生的次声波.其中最著名的是1883年8月27日,印度尼西亚的喀拉喀托火山突然爆发,它产生的次声波传播了十几万公里,当时用简单微气压计都可以记录到它.在理论方面,最早在1890年,英国物理学家瑞利就开始了大气振荡现象的研究.

第一次世界大战前后,火炮和高能炸药的出现,提供了较大的声源,促进了对次声在大气中传播现象的了解.在20世纪20年代还进行了高层大气的温度和风对次声传播影响的研究,并建立了探测高层大气的简单声学方法,为此还研制了灵敏度更高的微气压计、热线式次声传声器.30年代发展了电容次声传声器.40年代后,利用声波在大气中的传播速度与温度的均方根成正比关系的原理,提出了火箭-榴弹次声法测定高层大气温度和风速的方法,发展了次声接收和定位的新技术.

核武器的发展对次声学的建立起了很大的推动作用,使得次声接收、抗干扰方法、定位技术、信号处理和次声传播等方面部有了很大发展.

核爆炸会形成强大的次声源,它产生的次声波在大气中可以传播得非常远,次声方法曾成为探测大气中核爆炸的主要方法之一.为此建立了许多次声观察站,进行了长时期连续记录和观察.人们还发现了大气中存在许多自然次声源,对它们的发声机制和特性进行了初步的了解.

现在知道的自然次声源有

火山爆发、流星、极光、电离层扰动、地震、晴空湍流、海啸、台风、雷暴、龙卷风、雷电等.

认识并利用次声方法来预测它们的活动规律,已成为近代次声学研究的重要课题.

长周期的次声波在电离层中传播,使电离层受到扰动,这种以声重力波方式传播的次声波成为高空大气研究中非常活跃的课题之一.

次声波在大气中的传播特性

次声在大气中的传播衰减小

声在大气中传播的衰减主要是由分子吸收、热传导、和粘滞效应引起的,相应的吸收系数与频率的二次方成正比.由于次声的频率很低,所以大气对次声波的吸收系数很小.此外,湍流的作用也会引起次声波的衰减.但是它们的影响都很小,通常可略去不计.

大气温度、密度和风速影响次声在大气中的传播

大气温度、密度和风速随高度具有不均匀分布的特性,使得次声在大气中传播时出现“影区”、聚焦和波导等现象.

大气温度当高度增加时,气温逐渐降低,在20公里左右出现一个极小值;之后,又开始随高度的增加,气温上升,在50公里左右气温再次降低,在80公里左右形成第二个极小值;然后复又升高.

大气次声波导现象与这种温度分布有密切关系.声波主要沿着温度极小值所形成的通道(称为声道)传播.通常将20公里高度极小值附近的大气层称为大气下声道,高度80公里附近的大气层称为大气上声道.次声波在大气中传播时,可以同时受到两个声道作用的影响.

次声在大气中的传播具有衰减小并受波导和重力影响等特点.

在距离声源100~200公里处,次声信号很弱,通常将这样的区

域称为影区.在某种大气温度分布条件下,经过声道传输次声

波聚集在某一区域,这一区域称它为聚焦区.

风速风也会对次声在大气中的传播产生很大的影响.次声的传播在顺风和逆风时差别很大:顺风时,声线较集中于低层大气;逆

风时,产生较大的影区.

不同频率的次声在大气声道中传播速度不相同,产生频散现象,这使得在不同地点测得次声波的波形各不相同.

大气密度大气的密度随高度增加而递减,如果次声波的波长很大,例如有几十公里长,这时,在一个波长的范围内,大气密度已经产生显著的变化了.当大气媒质在声波的作用下受到压缩时,它的重心较周围媒质提高,这时除了弹性恢复力作用外,它还受重力的作用.反之,当它在声波作用下膨胀时,也有附加重力作用使它恢复到平衡状态.所以长周期的次声波,除了弹性力作用外,还附加有重力的作用,这种情况下,次声波通常称为声重力波.

声重力波在大气中传播时,在理论上可以看作是一些简正波的叠加.基本上可分为声分支和重力分支.它们在大气中传播都具有频散现象.由于重力分支主要能量在地面附近传播,而地面附近温度较高,因此传播速度较大.

次声学的应用

早在第二次世界大战前,次声方法已应用于探测火炮的位臵,可是直到20世纪50年代,它在其他方面的应用问题才开始被人们注意,它的应用前景是很广阔的,大致可分为下列几个方面:

通过研究自然现象产生的次声波的特性和产生机制,更深入地认识这些现象的特性和规律.

利用接收到的被测声源所辐射的次声波,探测它的位臵、大小和其它特性.

预测自然灾害性事件.

对大范围某些大规模大气现象的性质和规律的连续探测、监视和预测.

通过测定次声波与大气中其它波动的相互作用的结果,探测这些活动特性.

利用测定次声波的特性来了解人体或其他生物相应器官的活动情况.

大气声学

大气声学的研究范畴

大气声学的主要研究内容大气声学的发展历史

大气声学的研究范畴

大气声学是研究大气声波的产生机制和各种声源的声波在大气中传播规律的分支,作为以声学方法探测大气的一种手段,也可看成是大气物理的一个分支.

大气中存在着的各种各样的声音,可以笼统的分成自然的和人为的两大类.

大气声学的主要研究内容

自然声主要来源于一系列气象现象和其他地球物理现象,如飓风(台风)、海浪、地震、极光、磁暴等.它们不仅产生可听声而且更产生次声;风的呼啸是由于大气涡旋通过各种障碍物时被破坏而产生的.其他一些常见的自然声则大多来自空气流中某些物体的振动,如电线的嗡嗡声、树叶的沙沙声等.

人为声人为的声音中主要是工业和交通工具的噪声,特别是超音速喷气机飞行时产生的冲击波传播问题,日益引起人们的注意.如果大气条件有利于这种波的聚焦,那么地面上的建筑物和人的健康就会受到危害.

主要研究内容

声源定位

频谱分析

雷电声随着声定位技术的发展,现在已可由若干个接收站测得的数据定出自然声源或人为声源的位臵,这在预报台风、地震以及侦察核爆炸、炮位中都有具体应用.随着数字式数据处理技术的迅速改进,这类应用将日臻完善和广泛.

大气中自然源发出的声波具有极宽的频谱,此外,在周期几分钟至几十分钟内,还存在一类空气压缩力和重力共同参与作用的声重力波.不过大部分自然声源主要产生大气次声波.由于发声过程的复杂性、测量技术和识别声源方面的困难,仅对雷声作过较多的频谱测量,其他发声过程的频谱尚只能估计.

雷是伴随闪电出现的大气发声现象.雷形成的机制,主要是强烈的闪电放电时,电流通过闪电通道而产生高温高压等离子体,造成一个向通道四周传播的激震波,这个高压激震波在很短距离内迅速衰减并退化为强的可闻声和次声.

大气不均匀性的影响从声学观点来看,大气是一种运动着的不均匀媒质,大气声学的重大课题都与声在大气中传播时所发生的现象相关联.大气的密度和温度随高度而降低,而温度在某些高度重新增长.在这种规则的不均匀性上,叠加着温度和风随气象条件的变化以及不同尺度的随机湍流脉动.所有这些不均匀性都对声传播产生强烈影响:无湍流大气的分层不均匀性使声音产生折射;湍流不均匀性引起声音的散射和减弱.

不同频率的声波在大气中具有不同的传播速度,因而在大气中传播的(非单频)次声波会产生频散.同时大气特定的温度层结构和风结构对各种频率和向各个方向传播的次声波具有选择作用,即只允许某些频率的次声波作远距离传播,其余频率的传播则受到强烈抑制,这就是大气选频作用.次声波的频散和大气选频作用,在探测人工和自然声源以及解释声信号特征方面,都是十分重要的.

频散和选频由于闪电放电的复杂性,不同闪电的雷声在时间变化和强度等方面也有很大差异,大体可分为炸雷(持续时间1秒左右的强烈雷声脉冲)、闷雷(重复数次的隆隆声脉冲)和拉磨雷(持续较长时间的低沉声响)三种.

电声学

电声学的研究范畴

电声换能器

电声学的发展历史

电声技术

电声学与其它学科的交叉

电声学的研究范畴

电声学是研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和利用的科学.它所涉及的频率范围很广泛,从极低频的次声一直延伸到几十亿赫的特超声.不过通常所指的电声,都属于可听声范围.

电声学的发展历史

电声技术的历史最早可以追溯到19世纪,由爱迪生发明留声机和贝尔发明用于电话机的碳粒传声器开始,1881年曾有人以两个碳粒传声器连接几对耳机,作了双通路的立体声传递表演.大约在1919年第一次用电子管放大器和电磁式扬声器做了扩声实验.

在第一次世界大战以后,科学家们把机电方面的研究成果应用于电声领域中,于是电声学就有了理论基础.随着电声换能器理论的发展,较为完善的各类电声设备和电声测量仪器相继问世,特别是20世纪70年代来,电子计算机和激光技术在电声领域中的应用,大大促进了电声学的发展.

电声换能器

电声换能器是把声能转换成电能或电能转换成声能的器件,对它的研究是电声学的一个重要内容分支.

通常所指的电声换能器,都属于可听声范围.

电声换器能的组成

各种电声换能器,尽管其类型、功用或工作状态不同,它们都包含两个基本组成部分,即电系统和机械振动系统.

在换能器内部,电系统和机械振动系统之间通过某种物理效应相互联系,以完成能量的转换.

在其外部,换能器的电系统与信号发生器的输出回路,或前级放大器的输入回路相匹配.

换能器的机械振动系统,以其振动表面与声场相匹配.

设计电声换能器要同时考虑到力-电-声三个体系.这三种体系是互相牵制的,处理得不好往往会顾此失彼.

电声转换器的分类

广义的电声换能器应用的频率范围很宽,包括次声、可听声、超声换能器.属于可听声频率范围内的电声换能器分类如下:

声频换能器

按用途分

传声器

扬声器

送受话器

助听器

按换能方式分

可逆

换能器

不可逆

换能器

电动式

静电式

压电式

可用作声发射器

碳粒式

离子式

调制气流式

电声技术

电声技术是电声领域中发展得比较快的一个分支,在政治、军事、文化各个领域内有着广泛的应用.例如,应用于有线或无线通信系统;有线或无线广播系统以及会场、剧院的扩声;录音棚、高保真录放系统等;此外还应用于发展中的声控、语控技术;以及语言识别等新技术.总起来说,它主要包括录放声技术、扩声技术以及与它们有关的电声仪器和电声测试技术等.

录放声技术

录放声技术是指把自然声音经过一系列技术设备(如传声器、录音机、拾声器等)进行接收、放大、传送、存储、记录和复制加工,然后再重放出来供人聆听的技术.它研究的主要问题是如何保持自然声的优良的音质,即在各个环节以及整个系统,都具有逼真地保持声音信号原来面貌的能力,包括对声音信号进行必要的美化和加工.

声频放声装臵

可分成四个部分:

电信号提取设备——输入端录声机、电唱机、接收机,是从盒式磁带、唱片及广播电波中把希望的节目作为电信号提取出来的设备.

调音设备——前级控制台(包括前臵放大器、衰减器、混合网路等)主要作调音用.

功率放大器——将控制台的输出信号增强到能够驱动扬声器系统工作的放大器.

声辐射器——扬声器或耳机,将电信号转换成声信号.

收听室相当于扬声器系统的使用环境,对重放音乐的音质起很大的作用.

扩声系统扩声系统主要包括:扩声系统是具有反馈的系统.在通路增益足够大时系统就会失去稳定性,并过渡到自振状态,产生啸叫.所以在扩声技术中除了对声信号进行加工美化外,为了提高扩声系统的最大功率增益,改进扩声质量和系统的稳定性,必须采取措施来抑制声反馈所引起的声音畸变.

把电信号转变为声信号的扬声器和听众区的声

学环境

声源和它周围的环境

把声信号转变为电信号的传声器

放大电信号并对信号加工的设备

传输线

扩声不同于放声之处是传声器和扬声器处在同一声场内.

考研交叉学科研究报告

考研交叉学科研究 报告 1

考研交叉学科:人参果OR金苹果? 曾几何时,“交叉学科”成为了研究生专业领域的热门词汇,许多学校都在打通学科门类界限,努力争取打造“大学科平台”。“合作实验室”,“联合培养”等新模式雨后春笋般在211学校中间纷纷建立。一批“交叉学科”的新专业也出现在研究生学科招生目录上,成为许多学子的目标对象。 “交叉学科”到底仅仅是“看上去很美”,还是真的含金量十足?神通广大的孙猴子上天入地才求得了医治人参果树的灵丹妙药,特洛伊王子把光彩夺目的金苹果判给了美神却挑起了人间大乱。交叉学科专业是不是值得许多人跨系、跨学科报考?是不是看似光鲜却隐藏着隐患?新嫁衣可试,但专业选择却只有一次。冷静分析,细心思考,交叉学科专业的魅力与误区是什么?来听一听考研教育咨询专家曹先仲老师的分析,有心人自会做出适合自己的判断。 【交叉学科名片】 横跨两个一级学科门类的专业 “交叉学科”其实是个很早就出现的名词,并不新鲜。由于现有的学科是人为划分的,而科学问题是客观存在的,根据人们的认识水平,过去只有天文学、地理(地质)、生物、数学、物理、化学六个一级学科;而经过20世纪科学的发展和交叉研究,又逐

渐形成了新的交叉学科,如生命科学、材料科学、环境科学等。现在的学科被划分为哲学、理学、工学、文学、医学、教育学、历史学、农学、经济学、管理学、法学等数个一级学科。而我们这里所说的“交叉学科”专业,指的是横跨两个一级学科门类的专业,或者兼顾两个方向明显有区别的二级学科。比如,农林经济管理专业,农学为主要研究方向可是学位颁发管理学;传媒经济专业,名为经济,其实是文学硕士;科学技术哲学,是哲学分支,但主要在理工类学校开设,以自然科学为主要研究对象。而更多的其实是生物医学工程、材料物理与化学、等复合性学科,以技术结合为导向的居多。 【风险分析】 得失之间要靠自己综合权衡 选择交叉学科专业的学生,并非是第一个吃螃蟹的人,但似乎并没有太多的信息可供参考证明其前景光明与否。人参果好吃,要使用专业工具来采摘,还要有专人看护,还得不能放置时间太长,如此麻烦,想一劳永逸也难;金苹果好看,至于好吃不好吃就说不准了,可是留下无穷后患确是肯定的。有利也有弊,有收益自然有风险,得失之间,要靠自己综合权衡。首先说说交叉学科本身。 正说交叉学科:新颖多样朝气蓬勃

家庭影院装修设计声学处理

家庭影院装修设计声学处理 随着现在生活品质的提高,家庭影院也成了品质生活一族中不可缺少的居室空间。打造一间专业的家庭影院影音视听室,需要彻底的融入音视频世界之中,并能满足视觉、听觉、触觉各方面的感官要求。 对于成功人士来说,家庭影院带来的不仅是一场场视听盛宴,这更是一种高格调的品质生活。一间优秀的家庭影院视听室,需要从整体环境到细节等各方面进行从多方面的考察、测算、设计,才可以帮助客户完成影院主题的设计并把想法概念化实施。 为了打造好每间家庭影院视听室,光影音响前期都会透过与客户不断沟通和测算,在整体环境上,无论是从椅子的样式的选择、座位的舒适度、房间布局布置、色调、座椅,或是投影幕的方向等一处处细节进行了整体设计,在充分考虑客户的主题概念、预算及房间内部情况之下,以最经济最合理的配置,实现了视听室观感、体验方面的完美效果。 私人家庭影院,在自己享受的同时也要考虑到不能打扰到左右上下的邻居,因此隔声与室内音质处理是私人影院视听室必不可少的一部分。而声学设计方面的完美处理,对于影音汇来讲也是手到擒来。下面影音汇就为大家分享一些基本的声学处理技巧要点: 一、噪声的控制 因为现有视听室的隔声问题主要来自对外的窗户以及进出的门和观察窗。所以,对于上述问题的隔声主要采用下面方法: 1.室内设备安装时做好隔声减振处理,在设备下设减振器和橡胶垫,所有悬挂风管的吊钩和天花层均做减振吊钩,管道接口采用软性连接;风机的送风端和回风端加消声器,所有风道弯头尽量做成吸声弯头。 2.将进出的门采用复合材料的国标隔声门。 3.利用吸声进行一定程度的降噪处理。 4.采用专业轻质隔音防火墙板。 5.观察窗采用国标隔声观察窗。 二、室内隔声处理 理想的视听室结构,应该是上下、前后、左右的墙壁均采用254mm(1英尺)以上厚度的混凝土建造,这样才能造成一个理想隔绝的无音环境。但是,现在生活中,99%的者都无法实现这一要求。如果说找一座坚实的墙来作为喇叭摆放的后墙反射声波,这就很容易实现了。 三、混响时间的控制

小型听音室的声学设计

音响技术AVtechnology专业音响 从经济角度和可行性实用角度来看,为欣赏高保真音乐及影视节目,采用专业的建筑声学技术设计和建造昂贵的听音环境是不可行的。因此,小型听音室的声学设计应采用能达到一定的建筑声学指标、一定的视听环境要求,满足人们生理和心理的一定要求而造价不高的声学设计方法。 1 小型听音室的音质要求 小型听音室的音质是由声源的音色结构、电声系统的质量、室内的声学条件、聆听者的音乐修养及心理因素等相互作用的结果。根据环绕立体声或立体声音响效果,小型听音室的用途主要有3种:一是以欣赏音乐为主的小型音乐厅,可采用3/2方式的A环绕立体声系统,要求混响时间稍长;二是以看DVD 影碟或电影录像为主的小型影院,可采用5.1方式的AV环绕立体声系统,要求混响时间稍短,以保证电影的对白清晰;三是以看戏剧、杂技、球类比赛等为主的室内小运动场,可采用Cinema DSP环绕立体声系统,要求混响时间在0.35~0.5 s,根据需要还可采用人工混响技术提供各类不同的声环境感和空间感。 2 小型听音室的环境设计 小型听音室的环境设计可采用下述步骤。首先,选择合理的房间和位置,最好远离交通干道或繁华街道。其次,合理设计房间的容积、形状及长、宽、高的比例,最好满足黄金分割率,即房间的长、宽、高比例为1.618∶1∶0.618。良好的小型听音室容积建议设计在90~120m3,较大的容积可获得更好的音质。小型听音室允许混响时间为0.35~0.5s,要求在125~4000Hz频率范围内具有平直的或者低频平直、高频稍长的混响时间频率特性,并且不得有低频嗡嗡声、高频咝咝声或颤动回声等缺陷,使混响时间测量值和选取值的允许偏差在±0.05s范围内。然后按照要求的混响时间计算出所需的吸声量,根据吸声量决定吸声材料的选取、规定他们的布置和安装方法,并兼顾美学效果进行室内装修,以达到声学设计的要求。 许多典型房间的室内平均混响时间的实测结果总是偏长。用125Hz的音频信号频率实测,40m2的客厅平均混响时间约为0.67s;15m2的卧室平均混响时间约为0.53s。虽然放置软椅、沙发等家具能减小一点混响时间,但仍不能满足设计要求。并且室内噪声级较高,楼板隔振也不好,因此直接用作听音室,其音质不会太令人满意,有必要进行改建或装修,以改善其音质。 3 小型听音室的混响时间 通常听音室在保证语言清晰的条件下,要求声音圆润、丰满。为满足混响时间的要求,房间需进行声学处理,即在不同位置铺设不同类型的吸声材料或吸声结构。声学处理的材料应就地取材,室内吸声结构的分布要兼顾声学和建筑的要求。听音室的容积大一些有利于声学设计,有利于减弱低频共振的不良影响。如音质要求较高的听音室容积取160m3,中频混响时间为0.4±0.05s,室内噪声级要求35~40dBA。这时在听音室内听音效果较好的下限频率约为100Hz。若房间的长度(L)、宽度(W)、高度(H)的比 小型听音室的声学设计 [摘 要] 小型听音室的声学设计应采用能达到一定的指标和要求并能满足人们需求而造价不高 的声学设计方法。文中从小型听音室的音质要求、环境设计、混响时间、低频混响时 间和音质设计,以及听音室的声学处理几方面作介绍。 [关键词] 小型听音室 音质 混响时间 声学处理 钱巧芳 陈金坤

专业发展报告

专业发展前沿总结 数学科学是研究数、量的关系和空间形式的一个庞大科学体系,它包含纯粹数学、应用数学以及这二者与其它学科的交叉部分。它是一门集严密性、逻辑性、精确性和创造力与想象力于一体的学问,也是自然科学、技术科学、社会科学、管理科学等的巨大智力资源。数学为其它科学提供语言、观念和工具,它与计算机技术的紧密结合产生了可直接应用的数学技术,成为许多高、新技术的核心。按照马克思的看法,一门科学只有当它成功地应用了数学的时候,才算是成熟的科学。数学也是一种文化,在人类理性的认识世界的过程中起着重要的作用。从古时候起,数学就被当作了人类文明的一个智力顶峰。数学的传播与发展对提高国民素质、提高人们的分析与决策能力、推理与创造能力至关重要。数学研究本身则造就出一批富于创新精神的科学研究人才。推动数学发展的动力既来自于内部,即解决自身的问题,也来自于外部研究现实世界提出的模式。当今,数学科学包含了许多分支与丰富的内容,其发展的主要趋势为:数学各分支的融汇;与其它科学更加深入的交叉;以及更加自觉地扩大数学的应 用范围,使它的触角伸向几乎一切领域。 现代控制理论现代控制理论现代控制理论现代控制理论 定义:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 现代控制理论的发展过程:现代控制理论实在20世纪50年代中期迅速兴起的空间技术推动下发展起来的,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂年,苏联科学家庞特里亚金提出了名为极大值的原理综合控制系统的心方法。1960~1961年,美国学者R.E.布什建立了卡尔曼-布什滤波理论。因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究扩大,包括了更为复杂的控制问题。到60年代初,一套以状态空间法、大值原理、动态规划、卡尔曼理和方法为基础的分析和设计控制系统的新的运力和方法已经确立。 现代控制理论所包含的学科内容十分广泛,主要方面有:线性系统理论、非线性系统理论最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。 金融和高科技中的数学建模、计算与运筹决策 计算科学是伴随计算机的发展而兴起的一门科学。利用计算机的计算(或模拟或仿真) 来揭示自然界以及人类社会物质生产过程中的复杂运动和现象。计算与理论和实验一起成为人们研究的三大手段。计算科学包括科学与工程计算以及高性能计算系统研制相关的数学问题。从学科内容来讲有三部分:一是包含了各科学领域内的计算性质的学科分支,如计算数学,以及与相关学科相结合的计算分支学科。二是包含了不同工程技术领域在实验与生产过程中所采用的大型计算。第三部分是与计算机科学有关的数学分支。计算科学是计算机科学、数学与相关学科相交叉融合的边缘性学科。其基础是数学,以计算(或模拟) 方法、算法以及与计算系统相关的优化问题的研究为其主要内容。我国的计算科学研究和实践曾为原子弹和氢

交叉学科

考研交叉学科:人参果OR金苹果? 曾几何时,“交叉学科”成为了研究生专业领域的热门词汇,许多学校都在打通学科门类界限,努力争取打造“大学科平台”。“合作实验室”,“联合培养”等新模式雨后春笋般在211学校中间纷纷建立。一批“交叉学科”的新专业也出现在研究生学科招生目录上,成为许多学子的目标对象。 “交叉学科”到底仅仅是“看上去很美”,还是真的含金量十足?神通广大的孙猴子上天入地才求得了医治人参果树的灵丹妙药,特洛伊王子把光彩夺目的金苹果判给了美神却挑起了人间大乱。交叉学科专业是不是值得许多人跨系、跨学科报考?是不是看似光鲜却隐藏着隐患?新嫁衣可试,但专业选择却只有一次。冷静分析,细心思考,交叉学科专业的魅力与误区是什么?来听一听考研教育咨询专家的分析,有心人自会做出适合自己的判断。 【交叉学科名片】 横跨两个一级学科门类的专业 “交叉学科”其实是个很早就出现的名词,并不新鲜。由于现有的学科是人为划分的,而科学问题是客观存在的,根据人们的认识水平,过去只有天文学、地理(地质)、生物、数学、物理、化学六个一级学科;而经过20世纪科学的发展和交叉研究,又逐渐形成了新的交叉学科,如生命科学、材料科学、环境科学等。现在的学科被划分为哲学、理学、工学、文学、医学、教育学、历史学、农学、经济学、管理学、法学等数个一级学科。而我们这里所说的“交叉学科”专业,指的是横跨两个一级学科门类的专业,或者兼顾两个方向明显有区别的二级学科。比如,农林经济管理专业,农学为主要研究方向但是学位颁发管理学;传媒经济专业,名为经济,其实是文学硕士;科学技术哲学,是哲学分支,但主要在理工类学校开设,以自然科学为主要研究对象。而更多的其实是生物医学工程、材料物理与化学等复合性学科,以技术结合为导向的居多。 【风险分析】 得失之间要靠自己综合权衡 选择交叉学科专业的学生,并非是第一个吃螃蟹的人,但似乎并没有太多的信息可供参考证明其前景光明与否。人参果好吃,要使用专业工具来采摘,还要有专人看护,还得不能放置时间太长,如此麻烦,想一劳永逸也难;金苹果好看,至于好吃不好吃就说不准了,但是留下无穷后患确是肯定的。有利也有弊,有收益自然有风险,得失之间,要靠自己综合权衡。首先说说交叉学科本身。 正说交叉学科:新颖多样朝气蓬勃 从我们服务过的学员来看,许多同学跨考这些专业的主要目的就是为了能够改变自己的学位,从纯理论型专业向应用型专业,从纯文科专业向经管结合型专业转变。比如许多理科专业的本科同学,诸如物理学、应用化学、计算科学、力学等同学纷纷向电子、化工、软件、航天、船舶等工科专业跨考;中文、历史、哲学向对外汉语、新闻、旅游、文化管理方面跨考。虽然说文凭并不能定终身,可是在申请大企业校园招聘的时候,网申就是非常难对付的

迪厅、酒吧、KTV低频噪声隔音处理

迪厅、酒吧、KTV低频噪声隔音处理 历年来我们KTV、迪吧酒吧因噪音污染被停业整顿的店铺不少,为此很多KTV经营者对装修设计很看重。特别是KTV包房装修设计中的隔音效果设计方面的问题。那么怎样才能够在装修设计中达到完美的效果呢?下面给大家介绍关于我们KTV隔音装修设计中关于隔音方面的几个问题。 一、声源特性: 迪吧所播放的音乐通常采用大功率低音炮音箱进行驱动,它所释放的音量可达105~125dB(A)左右,且基本为低频段,63~125赫兹,这种低频声波穿透能力强、传播距离远、衰减系数低,通常可以通过沿着墙柱,上传至楼顶各层住户,底楼的声音可以直达30楼以上。 二、噪声治理: 迪吧这样的噪声特性给治理带来很大难度,一是低频声波具有很强的穿透能力,在建筑设计及装饰设计上很难有抵销该波长所需的消声腔厚度;二是每个酒吧大厅都是一个六面体,需要控制的范围过大,单地面一个面的减振就难以做到,而声音减低的话,酒吧就会因为没有震憾效果而流失顾客。 (一)低频振动的消除 迪厅酒吧的声波通过数个音箱来实现的,有几个音箱就有几个点声源,也就有几个球面声波。在传播途径上,音箱可以通过悬挂吊杆、顶梁、立柱、墙面、下水管道、门窗、排气口向四处传递声波。对处于在居民楼尤其是高层建筑中间或底层酒吧,控制难度则相当大,必须从各个点、面都进行必要的减振隔音,才有可能达到设计要求。 1、安装音箱减振器或减振吊钩。酒吧音箱通常放置地面或悬吊于横梁四周,在播放强劲音乐时,音箱对地面、梁柱体或楼板产生与音乐频率谐振的撞击,进而以固体传声的形式以弹性波传至楼上居民室内。因此,必须采用铺垫减振系统、增加减振吊钩的形式,将点声源所带振动与建筑联接点进行隔离。 2、梁柱及楼板增设减振阻尼层和隔声层。音箱声波发出后,声波在空气中产生高能量振动,一波一波对墙柱梁楼板产生声波撞击,其中低频部分可以穿透水泥墙面并迅速上传居民室内。因此,必须将主梁、主柱及楼板加设弹性面层或吸隔声中空共振层,以消除高能量声波对主梁、主柱及楼板产生的撞击。 3、消防管道与下水管道增设阻尼层和隔声层。高层建筑的下水管一般在底层店面集中,酒吧声波可以透过水管薄壁直传各户,因此,必须对各与楼上住户连接的下水管道重新包裹,内层加包减振阻尼层,外层加裹隔音层,中间还必须增加软联结。

家用声学处理大全

音响器材重播声音的好坏,与聆听环境的建筑声学特性有着非常密切的关系,要使音响系统发挥最高性能,必须对听音房间作一定的声学处理。 对于听音房间的建筑声学特性,有四个方面需予考虑,一是混响时间,二是混响衰减的扩散特性,三是房间的频率特性,四是环境噪声级。 听音房间的建筑声学特性各不相同,不同物体对声音的反射和吸收也各不相同,所以为改善听音环境而进行声学处理,改善声学缺陷的工作就显得十分复杂。只要可能,最好避免房间任何两面的尺寸相等,或一面恰好是另一面的两倍,也就是正方形或长宽比是两倍的房间,因为这种比例的房间会产生驻波、低频声共振,造成声染色。 房间内从墙壁、天花板、地板、家具和人身反复反射所形成的声音持续存在、逐渐衰减的现象,称为混响(rever beration,也称交混回响)。它和回声(echo)不同,回声不是一种平滑的衰减而是声音的突然返回。对于室内声学的最重要指标,首先是混响时间,它是声能衰减下跌到原有强度的百万分之一(60dB)所需的时间,对于一个已确定的房间,混响时间主要取决于吸声处理。对于Hi–Fi听音房间的混响时间,可取~秒。混响时间适度可使乐音丰满,语音饱满,混响时间较长声音较活泼丰润,但太长时声音容易含混不清,语音清晰度下降,乐音缺乏力度和节奏感,混响时间太短则声音较干硬,缺少生气,没有混响的声音(如室外)常有呆板感。 房间的扩散特性好,则声音的衰减平滑,室内各处声音感觉均匀。任何凸面都有扩散声波的能力,包括斜面、曲面以及凸弧面,当需要扩散声波频率受制凸面大小时,可采用扩散板进行处理。 当由于某种原因造成声音中的某一频率得到过份加强或减弱时,就将破坏房间内声音的均匀性,这种现象我们称之为声染色(sound coloration)。例如,驻波能改变声音原有的特性,在某些频段出现峰值,改善的方法是室内物品摆放避免对称。 大空间的听音室不仅对低频延伸有帮助,还可使声音感觉更轻松,更具活生感。我国一般用作听音房间的居室面积约为14m2,高左右,容积约为40m3.在这种房间里,只要声学处理得当,应该是能有较好听音效果的。由于100Hz以下声音的波长大于,与房间的尺寸处在同一数量级,所以在其空间只能产生几个

力学交叉学科发展报告

力学中的交叉学科 力学中的交叉学科基本上可以分为两类:第一类由力学学科内部不同分支学科交叉组成; 第二类由力学与其它学科交叉组成。 内部的交叉学科最典型的是由流体力学与固体力学交叉组成的学科,它们有: 1)流体弹性力学,研究流体和固体的运动和相互作用发生耦合效应的问题; 2)流体弹塑性体力学,研究兼有固体和流体的双重特征的物体的变形和运动; 3)含有流体的多孔介质或散体的动力学,研究的客体本身就由多相组成,而骨架的变形和破坏与体内流体的状态和运动发生相互制约。这方面的实例有地下渗流、地基、边坡和断层的稳定性、泥石流、雪崩等。

物质的运动形式多种多样,除了机械运动这一最基础的形式以外,还有热运动、电磁运动、原子及其内部的运动和分子及原子层次的化学运动等。机械运动往往不能脱离其他运动形式独立存在,在需要和可能研究其他运动形式对机械运动有较大影响或者考虑它们之间的相互作用及内在联系的情况下,便会在力学同其他学科之间形成交叉学科或边缘学科的生长点。 力学是研究物质机械运动规律的科学。随着人类观测手段的进步和对各种形式运动认识的深入和提高,特别是20世纪物理学各个分支和数学的飞速发展,加上计算机科学和技术的突飞猛进,人们对于伴随有其他运动的机械运动的认识也随之提高。今天,我们对自然界各种层次的物质,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子已经有了较为广 深的认识。这样就为研究多种形式同时存在的复杂运动提供了有利条件,从而产生了力学中多种多样的交叉学科,如物理力学、电磁流体和等离子体力学、物理化学力学、爆炸力学等。 此外,自然科学发展到今天,已经形成了一些传统的一级学科,如天文学、地学和生物学等。这些学科和力学的研究内容和范围历来存在着重大的相交和重叠。对于天体、地球和生物这样一些重大类别的物体来说,机械运动形式也是他们的基本运动形式,研究他们的结构和运动变化的规律也是力

低频噪音隔音方法

噪声控制中存在一种很难处理的噪声。这是低频噪声。只要做过噪声控制的人都知道,低频噪声是许多噪声中较难处理的一种,它已经严重影响了人们的生活。 低频噪声是指频率低于500 Hz的声音。主要来源包括交通噪声(汽车发动机,轮胎噪声等),电梯,变压器,高层建筑中的水泵,中央空调(包括冷却塔)等。 低频噪声可以通过建筑结构,墙壁和地基,地面,空气等方式传播。建筑结构声传递是指噪声将低频振动声波通过建筑物的地基结构通过梁,承重梁,承重墙和承重柱传递到患处。由于低频噪声的衰减较慢且声波较长,因此它很容易穿过障碍物并穿过墙壁直达人耳。因此,低频噪声是家庭噪声中影响最大的噪声源。 首先,“减振”对于屏蔽噪声是必要的 简单的隔音门窗很难阻止低频噪声的穿透。解决墙体的结构振动非常重要,特别是在迪斯科,KTV,酒吧,鼓房,钢琴室,音响室等低频噪声较大的房间,必须减少墙体的振动。 以鼓室为例,鼓槌敲门声可达到100分贝以上,比公交车启动时的90分贝还高。如此大的噪音会影响墙壁,并且通过建筑物传播声音会给室内及周围的邻居带来很大麻烦。

为了应对这种高分贝的低频噪声,我们通常会增加壁厚,使用吸音材料或在门窗上添加密封条。但是,这些方法不能解决由结构声音传输引起的低频振动。 仅具有隔音和阻尼材料的结构可以将噪声固定在结构上并控制噪声的传播源。在迪斯科,KTV,酒吧,鼓房,视听室,钢琴室等嘈杂的空间中,采用减振结构可以基本消除“外部传播”的噪音。 与传统的隔音材料相比,阻尼结构的厚度要薄得多。两层阻尼结构的厚度仅为4到5厘米,对室内空间的影响要小得多。 目前,在装修中,很少有人需要隔音和降噪处理。靠近电梯室的墙壁,面向街道的房间和薄地板都是噪音的灾区。这样做的一般方法是铺设吸音材料或使用软袋。 目前,家庭装修公司在处理室内噪声方面经验丰富,常见的解决方案是解决下水道的冲洗噪声。鉴于PVC管的噪音,家庭装修公司通常使用橡胶和塑料管覆盖下水道,然后用扎带将它们逐层包裹以达到隔音效果。

走出家用听音室吸声的误区

音响技术AVtechnology Hi-Fi音响 听音环境对音响系统的影响已经引起越来越多音响发烧友的高度重视。从严格意义上讲,听音环境也是音响系统的一部分,他的声学性能优劣将直接影响音响系统重放声音的质量。目前,很多音响发烧友在组建音响系统或器材反复升级后,也会对听音室进行声学环境改造,改造的一项重要内容就是对听音室进行吸声处理。由于大部分音响发烧友都缺乏建筑声学知识,因此在对家用听音室进行吸声处理时往往凭主观想象盲目行事,不仅达不到预期的效果,而且“劳民伤财”。笔者根据建筑声学原理和工程实践经验总结出家用听音室吸声处理中常见的误区,以供广大音响发烧友参考。 1 误区一:听音室的声学处理只要吸声就可以了 很多音响发烧友不明白听音室为什么要作吸声处理,而且认为对听音室的声学环境改造只要进行吸声处理就可以了。其实对听音室进行吸声处理只是提高听音室音质的手段,但不仅限于此。其他提高听音室音质的声学处理方法,如隔声、声扩散、消除声学缺陷等也都相当重要。如果听音室仅作吸声处理而不作隔声处理,即使吸声性能再好,也会因为外界噪声的传入而影响正常听音,或因为听音室的声音传到外界而干扰他人。这样的听音室的声学性能显然不尽如人意。 对听音室进行吸声处理的主要目的是控制室内的混响时间(用T 60表示),T 60是指当室内声场达到稳态 后,声源停止发声至声压级衰减60 dB(百万分之一)所经历的时间,单位为秒(s),如图1所示。T 60长将增加声音的丰满度,但过长会影响声音的清晰度,使声音听起来浑浊不清;T 60短有利于声音的清晰度,但过短会使声音显得干涩、强度变弱,进而感到听音吃力。一般用于高保真音乐欣赏的家用听音室T 60控制在0.4~0.5 s 比较理想,如果用于家庭影院T 60要短些,一般控制在0.3~0.4 s。对听音室进行吸声处理,就是合理运用吸声材料从而改变T 60的长短,达到控制其音质的目的,但要想使听音室拥有理想的声学性能,仅对听音室进行吸声处理是远远不够的。 2 误区二:吸声越多越好 有的音响发烧友在对家用听音室进行吸声处理时往往采用大量的吸声材料,惟恐吸声不够。前面已经介绍,吸声的作用是控制房间的混响时间T 60。过量的吸声必将导致其T 60过短,也必将使音响系统重放 走出家用听音室吸声的误区 [摘 要] 吸声是对家用听音室进行声学环境改造的重要手段,由于很多音响发烧友缺乏建筑 声学知识,因此对家用听音室进行吸声处理时往往会因主观原因形成很多误区。笔 者根据建筑声学原理和工程实践经验总结出家用听音室吸声处理中常见的误区,以 供广大音响发烧友参考。 [关键词]  吸声 材料 混响时间 频率特性 吸声体 □蒋加金 殷顺东

2020年(发展战略)力学交叉学科发展报告

(发展战略)力学交叉学科发展方案

2.4力学中的交叉学科 力学中的交叉学科基本上能够分为俩类:第壹类由力学学科内部不同分支学科交叉组成;第二类由力学和其它学科交叉组成。 内部的交叉学科最典型的是由流体力学和固体力学交叉组成的学科,它们有: 1)流体弹性力学,研究流体和固体的运动和相互作用发生耦合效应的问题; 2)流体弹塑性体力学,研究兼有固体和流体的双重特征的物体的变形和运动; 3)含有流体的多孔介质或散体的动力学,研究的客体本身就由多相组成,而骨架的变形和破坏和体内流体的状态和运动发生相互制约。这方面的实例有地下渗流、地基、边坡和断层的稳定性、泥石流、雪崩等。物质的运动形式多种多样,除了机械运动这壹最基础的形式以外,仍有热运动、电磁运动、原子及其内部的运动和分子及原子层次的化学运动等。机械运动往往不能脱离其他运动形式独立存于,于需要和可能研究其他运动形式对机械运动有较大影响或者考虑它们之间的相互作用及内于联系的情况下,便会于力学同其他学科之间形成交叉学科或边缘学科的生长点。 力学是研究物质机械运动规律的科学。随着人类观测手段的进步和对各种形式运动认识的深入和提高,特别是20世纪物理学各个分支和数学的飞速发展,加上计算机科学和技术的突飞猛进,人们对于伴随有其他

运动的机械运动的认识也随之提高。今天,我们对自然界各种层次的物质,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子已经有了较为广 深的认识。这样就为研究多种形式同时存于的复杂运动提供了有利条件,从而产生了力学中多种多样的交叉学科,如物理力学、电磁流体和等离子体力学、物理化学力学、爆炸力学等。 此外,自然科学发展到今天,已经形成了壹些传统的壹级学科,如天文学、地学和生物学等。这些学科和力学的研究内容和范围历来存于着重大的相交和重叠。对于天体、地球和生物这样壹些重大类别的物体来说,机械运动形式也是他们的基本运动形式,研究他们的结构和运动变化的规律也是力学学科的内容。今天,天体力学和天体物理实际上超出了刚体和多体动力学的范围,增添了连续介质力学、物 理化学流体力学以及电磁流体和等离子体力学的内容;地学的研究对象则超出了地球表面现象的范围而拓宽到大气、海洋以至地球内部的力学过程;而生物力学则方兴未艾,从基因、细胞、组织和器官四个层次全面展开系统的研究。 交叉学科的形成不仅有利于发展新学科且促进源学科的发展,而且对推动科学、技术和工农业的发展起着巨大的作用。下面将分别探讨物理力学、电磁流体和等离子体力学、爆炸力学、环境流体力学、地球动力学和生物力学今后壹个时期的发展方向和建议着重研究的领域。我们估计于下壹世纪这些交叉学科,特别是物理力学、地球动力学、生物力学和环境流体力学等学科将会有长足的进步,且将有力地促进人类和社会的

交叉学科前沿概述

交叉学科前沿概述 20世纪下半叶,各类交叉学科的应用和兴起为科学发展带来了一股新风,许多科学前沿问题和多年悬而未决的问题在交叉学科的联合攻关中都取得了可喜的进展。随着越来越多交叉学科的出现及其在认识世界和改造世界中发挥作用的不辩事实,交叉学科在科学领域中的生命力都得到了充分的证明。 一、交叉学科的概念 交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。其宽泛的含义也包括:边缘学科、综合学科、横断学科等在内。交叉学科既是一个学科概念,同时一又是一个历史范畴。从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。新学科在经历一段时一期的发展之后,将成为成熟的学科,进而有可能再与其他学科交叉作用发展而产生新的交叉学科。 1.交叉学科名词的起源 为了追溯“交叉学科”名词出现的时间,应该首先确定“交叉学科”的词源。形容词“跨学科的”( Interdisciplinary)是美国哥伦比亚大学心理学家伍德沃斯(R. S. Woodworth)于1926年首创的一个专门术语,用于指称超过一个学科范围的研究活动。在1926年新成立的SSRC(美国社会科学研究理事会)上,伍德沃斯建议说,理事会是几个学科的集合,要努力促进不仅仅是一个学科进行的研究,理事会的任务是促进被专业化所隔离的两个或多

个学科之间跨学科的综合研究。当时,Interdisciplinary就是SSRC 会议使用的记录文字,但未普及。1930年,SSRC在一份文件中正式使用了“跨学科的活动’,这样一种说法。1937年,《新韦氏大词典》、《牛津英语辞典》(增补本)首次收入“跨学科”一词。到了50年代,这一术语己在社会科学界被普遍使用,到了60年代,这个词变得时髦起来,自然科学家、教育学家等广泛使用,此后又相继出现了交叉学科研究(Interdisciplinary Researcher ),交叉学科理论(Interdisciplinarytheory ),交叉学科特征(Interdisciplinary characteristics)等,还出现了一些首字母组成的缩写词,如IDE(Interdisciplinary Education)、IDR(Interdisciplinary Research)、IDU(Interdisciplinary Union) ,IGPH(Interdisciplinary Graduate Progxarn in Humanity) ,IDS( Interdisciplinary Survey)。自20世纪60年代以来,国际上交叉科学研究日趋繁荣,各种交叉科学研究机构、研究中心和学术团体纷纷成立。1970年9月在法国召开了“大学的跨学科问题”国际学术讨论会,会后出版了文集《跨学科—大学中的教学和研究问题》,1976年,在英国创办了国际性的交叉科学杂志《交叉科学评论))( Interdisciplinary Science Review),1980年,国际跨学科学陇会i1,式成立,以跨学科科研和跨学科竹理的研究为中心,迄今为止己经成功地组织了多次跨学科国际学术研讨会。范岱年先生早在1981年就指出,自然科学、社会科学之间存在着一条鸿沟。1984年,国务院通过了《关于科学工作的六条方针》,其中特别提到“自然科学中有

低频噪声----挡不住的致病源

低频噪声----挡不住的致病源 凡是噪声都会对人体产生危害,而低频噪声更会对人体健康产生长远的影响,但是,现在这种低频噪声所产生的危害还没有得到人们足够的重视。 低频噪声源主要有四大类:电梯、变压器、中央空调(包括冷却塔)及交通噪声,一般是指频率在500赫兹(倍频程)以下的声音。低频噪声对生理的直接影响没有高频噪音那么明显,但是近来国内从事低频噪声研究的专家指出,低频噪音会引起头痛、失眠等神经官能症。 低频噪声充斥现代生活 人耳能听到的低频声音通常是在125赫兹至250赫兹这范围内,而使人不舒服的低频噪音的形成主要在声音MR曲线某个频率超过峰值,从而会造成持续低频噪音对人不停滋扰。要命的是,这种低频噪声不容易衰减。高频噪音随着距离越远或遭遇障碍物,能迅速衰减,如高频噪音的点声源,每10米距离就能下降6分贝,马路上的线性声源每10米也能下降3分贝。而低频噪音却递减得很慢,因此能够长距离奔袭和穿墙透壁直入人耳。 低频噪声由于可直达人的耳骨,而且会使人的交感神经紧张,心动过速,血压升高,内分泌失调。人被迫接受这种噪声,容易烦恼激动、易怒,甚至失去理智。如果长期受到低频噪音袭扰,容易造成神经衰弱、失眠、头痛等各种神经官能症,甚至影响到孕妇腹中的胎儿,致使胎儿畸形等等。长期生活在这样的噪音中对人的听力和神经系统影响很大,而且是器质性不可逆转的变化。 低频噪音一般通过固体传声,比如高层建筑的供水系统,水泵一旦工作就会产生噪声和震动,通过地板、墙壁等楼体结构向四周传播。 据业内人士介绍,低频噪音分贝数并不高,但可穿墙透壁。当平常在室外或开门窗时,屋外噪音中,低频噪音部分被其他中高频噪音盖过去而使人没有感觉,但关了门窗后,低频噪音就会比较明显。因此,在夜深人静或较为安静的时候,更容易感受到低频噪音的干扰。 早在上世纪90年代初,低频噪声就已经悄悄地开始影响人们的生活。当时一些开在居民区的“卡拉OK厅”和“迪斯科舞厅”生意兴隆,尽管那些娱乐场所里有着厚厚的墙纸和各种隔音设备,但阻挡的只是属于“高频”的歌声,而低频噪声,比如歌舞厅内的鼓点震动声却可穿墙透壁,直达市民们的客厅、卧房等处。此外,随着城市道路、桥梁以及各种大楼的建成,特别是在一些住宅小区内,电梯和那些本来置于楼外的变压器房、水泵纷纷被移入居民楼内,使用时产生的震动就形成了低频噪音。中国疾控中心环境影响评价室主任窦燕生特别对记者指出,现在有很多的高层塔楼使用的都是二次供水,这种利用高压水泵供水的方

听音房间的声学处理

听音房间的声学处理 用于欣赏重放音乐的房间,他的听音环境在很大程度上决定了重放声的音质,设备最好,环境不良,也难有好的效果,但这一点常被忽略。房间的声学特性,在很大程度上与室内装潢及房间布置有关。理想的听音乐房间的形状尺寸,应按黄金分割比例,三个尺寸(长、宽、高)不成整数倍的关系,以使房间内外的驻波影响降低,提高听感。其次要隔声,使房间内外不致干扰,并使声音扩散,还要有适当的吸声,以免声波往复反射激发出某些固有频率(简正频率)的声音干扰,造成声染色。但在现实生活中,用作听声音的质量要求很高时,除信号源、器材外,还要对房间采取一些声学处理。 房间里声源发出的声音通过六个途径到聆听者的耳朵,①音箱发出的直达声(direct sound),②地板的反射声,③天花板的反射声,④音响后墙的反射声,⑤两侧墙的反射声,⑥聆听这背后墙壁的反射声。只要改变声波的任一反射条件,就会使声音发生变化。对于反射声的强度必须适当。我国一般房间的墙面都是相互平行的刚性墙,高度都在3m以下,对12m2左右的房间而言,在低频段容易产生共振,是某频率声音得到异常加强,造成低音轰鸣声,严重影响重放声的质量,这种声染色是家庭听音室最常见问题。这种房间共振还会使某些频率(主要是低频)的声音在空间分布上很不均匀。产生声染色可能性最大的频率为100~175Hz,以及250Hz附近。 对房间的声学处理,重点在侧墙和天花板。原则上室内声波的处理扩散应多于吸收,目的是强度减低,要防止过度使用吸音材料,以免房间的混响时间太短(<0.3秒)而是声音干涉不圆润。对音箱后面的墙壁,最好不要有大片吸声物质,通常不需做处理,砖墙或水泥墙面会使声音饱满,充满活力。 侧墙可均匀适当地设置一些吸声和扩散物,如厚重的羊毛毯就是极好的全频吸声物体,薄的地毯及壁毯只对中、高频有吸收作用。木制无门书柜则是一种很好的声音扩散物,用来调整低频有很好效果。此外,桌、椅、床垫、沙发等家具都能对声音的传播其调整作用,都可用作声学处理。最理想的声学处理是在侧墙上贴以适当的扩散板,但费用昂贵,有影响美观,一般家庭很难接受。凸圆弧是很好的声音扩散兼有吸声的装置,可以适当利用。在作吸声处理时,墙壁的下半部比上半部更重要,可使用穿孔板及薄板等共振吸声结构处理。 薄的地毯、挂帘、壁毯等主要对中、高频有吸收作用,对低频的次生作用很小,太多使用会导致房间里的中、高频声音的混响时间偏短,使得声音缺乏色彩,不够明亮。木质墙裙等木板,可有效吸收低频,但在安装时还要与墙壁间留有适当空隙,必要时在其间还要放置吸声材料。但切记不能把大量的夹板顶在墙上,也不要大量吸收,会造成声音死板发干,细节减少,以及音量的减小。 室内声学简单处理 众所周知,听音室的声学环境对音响系统你重放效果有这远比其他任何一种音响器材更大的影响。虽然有不少改善声学环境的方法,但对听音室做过多的处理反而会误事。比方说,让声音能有多扩散当然很好,扩散让声音向四面八方散射并能避免出现回声,然而,要是让屋子里处处皆为扩散表面,便会使立体声的声像定位变坏,声音阶向四方传播而无法精确地聚焦为声像。 小房间的室内声学情况则更为复杂。虽说好些音响书刊专门对此作了介绍,但都说不出确切中肯的意见,问题在于有不少相互矛盾之处,不同的专家也发表了不不同的意见。但关于室内声学环境和音箱的摆放位置及聆听位置对音响重放效果所起的重大影响倒是意见一致的,本书将不谈那些深奥的原理以及那些稀奇古怪的处理室内声学环境的方法。我们只

控制科学与工程学科发展报告,发展现状及趋势

控制科学与工程学科发展现状及趋势 一、国内外现状概述: 经典控制理论的研究对象一般为单输入、单输出的自动控制系统,特别是线性定常系统。 经典控制理论的特点是以输入输出特性(主要是传递函数)为系统的数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频域方法。经典控制理论主要研究系统运动的稳定性、时域和频域中系统的运动特性、控制系统的设计原理和校正方法。其局限性主要表现在一般仅适用于单变量和定常系统。 现代控制理论以线性代数和微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。状态空间法本质上是一种时域的方法,它不仅描述了系统的外部特性,而且描述和揭示了系统内部状态和性能。较之经典控制理论,现代控制理论的研究对象要广泛得多,原则上将,它既可以是单变量、线性、定常、连续的,也可以是多变量、非线性、时变、离散的。 智能控制可以概括为自动控制和运筹学、计算智能、人工智能等学科的结合,其结构是: 识别、推理、决策、执行。在低层次的控制中用常规控制器,而在高层次的控制中则应用具有在线学习、修正、组织、决策和规划能力的控制器,模拟人的某些智能和经验来引导求解过程。智能控制理论是以专家系统、模糊控制、神经网络等智能计算方法为基础的智能控制。 智能控制的发展还不完善,甚至可以说才刚刚开始,但是可以预见智能控制的发展与完善将引起控制科学与工程学科的全面革命。 集散控制系统(DCS)就是在生产过程自动化的巨大需求的背景下发展起来的一种自动化技术。它把控制技术、计算机技术、图像显示技术以及通信技术结合起来,实现对生产过程的监视、控制和管理。它既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理和控制作用过于集

低频噪音的隔音方法

低频噪音的隔音方法 聚茂声学低频噪音是生活中最难对付的噪音之一。 低频噪音是指频率在500赫兹以下的声音,主要来源包括交通噪音(汽车发动机、胎噪等)、电梯、变压器、高楼中的水泵、中央空调(包括冷却塔)等。 低频噪音可以通过建筑物结构、墙面和地基、地面,空气等方式传播,建筑物结构传声是指噪音通过楼房的基础结构将噪音通过大梁、承重梁、承重墙、承重柱等将低频振动的声波传导到所影响的范围内。由于低频噪音衰减慢,声波较长,能轻易穿越障碍物,穿墙透壁直入人耳,所以低频噪音是目前家庭噪声影响最大的噪音源。 屏蔽噪音首先要“减振” 低频噪音的穿透能力很难用简单的隔音门窗阻隔,解决墙体的结构振动非常关键,尤其是的士高、KTV、酒吧、鼓房、琴房、音响室等低频噪音很大的房间,进行墙体减振十分必要。 以鼓房为例,鼓槌敲击的噪音能达到100分贝以上,比公交车起步时发出的90分贝噪音还要高,如此大的噪音撞击到墙面,通过结构传声会给室内和四周邻居带来巨大的困扰。 处理这种高分贝的低频噪音,一般会通过加大墙体厚度、采用吸音材料或者给门窗加密封条,但是这些方法都无法解决低频振动导致的结构传声。 只能采用隔音阻尼材料的减振结构能够将噪音“固定”在结构上,控制噪音的传播源。在的士高、KTV、酒吧、鼓房、影音室、琴房等噪音很大的空间采用减振结构基本能够杜绝噪音“外传”。 相比传统的隔音材料,减振结构的厚度要薄了很多,两层减振结构的厚度仅有四、五厘米,对室内空间的影响要小很多。 家庭噪音的来源非常多,噪音源可分为外部噪音与内部噪音,外部噪音多来自城市交通噪音、建筑施工、电梯房、水泵房等,内部噪音则多为生活噪音,比

(完整word版)如何给你的家庭录音室做声学处理

如何给你的家庭录音室做声学处理 现在,入手优质的录音设备和软件变得越来越容易,几乎任何一个空间都可以摇身一变成为录音室。但是,尽管先进的制作软件以及高品质的录音设备,能让你即使是在自己家中也可以获得惊人的录音质量,但仍然有一个关键的因素会左右你的家庭录音室的声音效果,那就是声学环境。除非您只是一直戴耳机对电脑中的音乐进行缩混或制作,否则,声学环境一定是影响家庭录音室声音质量的重要因素。 如果你的录音一开始就被刺耳或污浊的声音所污染,那么想要让声音效果变得更好,你面临的将是一场苦战。在混音和母带处理的时候,那就更是成败关头了——房间的声学环境不好,自然会污染那些传到你耳朵里的声音。虽然这世界上没有可以改变声音的物理定律的插件、踏板或者处理器,但是你可以通过市场上大量存在的声学处理产品,比如如GIK Acoustics,Auralex和RealTraps等品牌,来改善您房间的声学环境。不论是什么空间,做一些声学处理总是有百利而无一害的,但是,你需要做什么样的(或者多少)声学处理,则是要根据你的空间情况和工作类型而定。而不幸的是,坊间也一直流传着各种关于声学处理的错误信息,这也导致很多人不清楚如何才能有效使用这些声学处理相关的东西。因此,在您开始收集鸡蛋盒、在衣柜里贴地毯甚至拿泡沫方块往墙上贴之前,请先看看这篇文章。01这个录音空间是用来做什么的? 你在这个家庭工作室中所要做的工作将直接决定所需要使用的声学处

理方法以及达到最佳效果所需要的程度。举个例子,如果你所要做的只是录制自己的人声,那您可能只需要一个麦克风屏风来做一下隔离就够了。不过,在绝大多数情况下,投入一点时间、金钱和精力去创造一个声学环境非常棒的环境,绝对是值得的。如果你录制的是柔和的声学乐器,那你可能会希望在没有过多反射声的情况下,录制一种偏“干”的声音,以便获得一种集中、紧致的效果。而如果您是鼓手,根据演奏风格的不同,你可能倾向于一种紧绷的干声,或者明亮、活泼的声音。而如果你录制的乐器会有很多低频,比如贝斯或者钢琴的话,那你应该会希望避免浑浊的声音。而如果你一般是录制整个乐队,那可能会希望能尽可能将每个乐器隔离开来,以避免麦克风之间串音。 Marantz专业麦克风防风屏而混音和母带,则是考验听力的关键时候,因此更要仔细调整房间声学,以便于获得更加准确的听音环境,才能保证做出平衡的混音和母带。如果在混音的过程中,耳朵听到的声音不够准确的话,便会无意识地去通过添加或衰减某些频率来修正它。这样一来可能导致在您房间里,这个缩混听起来很完美,但是一旦出了您房间,恐怕就没法听了。因此,如果您是在家庭录音室中进行缩混和母带的工作的话,请务必保证房间的声学环境能做到让声音听起来尽可能平直。02声学处理的不同类型 吸音,顾名思义,就是吸收掉声波防止发生更多的反射。任何柔软的材料,比如泡沫或者布料,都可以通过捕捉和消散声能来吸收声音——而事实上,你的房间可能已经有了一些吸声的物品:你的沙发、地

相关主题
文本预览
相关文档 最新文档