当前位置:文档之家› 【7A文】各种声音的频率范围

【7A文】各种声音的频率范围

【7A文】各种声音的频率范围
【7A文】各种声音的频率范围

各种声音的频率范围,制定你喜欢的EQ

下表是各种声音的频率范围,可据此调节各频段的表现度,制定你喜欢的EQ。音乐本来就该是丰富多彩的,也会因人而异,所以不会有一个放之四海而皆准的EQ存在的。

乐器频率表

小提琴200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。

中提琴150Hz~300Hz影响音色的力度;3~6KHz影响音色表现力。

大提琴100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。

贝斯提琴50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。

长笛250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。

黑管150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。

双簧管300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz提升使音色明亮华丽。

大管100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。

小号150Hz~250Hz影响音色的丰满度;5~7.5KHz是明亮清脆感频带。

圆号60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz明显增强。

长号100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。

大号30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。

钢琴27.5~4.86KHz是音域频段。音色随频率增加而变的单薄;20Hz~50Hz是共振峰频率。

竖琴32.7Hz~3.136KHz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。

萨克斯管600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。

萨克斯管bB100Hz~300Hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加细腻,增强音色的表现力。

吉它100Hz~300Hz提升增加音色的丰满度;2~5KHz提升增强音色的表现力。

低音吉它60Hz~100Hz低音丰满;60Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。

电吉它240Hz是丰满度频率;2.5KHz是明亮度频率3~4KHz拨弹乐器的性格表现的更充分。

电贝司80Hz~240Hz是丰满度频率;600Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。

手鼓200Hz~240Hz共鸣声频;5KHz影响临场感。

小军鼓(响弦鼓)240Hz影响饱满度;2KHz影响力度(响度);5KHz是响弦音频(泛音区)

通通鼓360Hz影响丰满度;8KHz为硬度频率;泛音可达10~15KHz

低音鼓60Hz~100Hz为低音力度频率;2.5KHz是敲击声频率;8KHz是鼓皮泛音声频。

地鼓(大鼓)60Hz~150Hz是力度音频,影响音色的丰满度;5~6KHz是泛音声频。

镲250Hz强劲、坚韧、锐利;7.5~10KHz音色尖利;1.2~15KHz镲边泛音“金光四溅”。

歌声(男)150Hz~600Hz影响歌声力度,提升此频段可以使歌声共鸣感强,增强力度。

歌声(女)1.6~3.6KHz影响音色的明亮度,提升此段频率可以使音色鲜明通透。

语音800Hz是“危险”频率,过于提升会使音色发“硬”、发“楞”

沙哑声提升64Hz~261Hz会使音色得到改善。

喉音重衰减600Hz~800Hz会使音色得到改善

鼻音重衰减60Hz~260Hz,提升1~2.4KHz可以改善音色。

齿音重6KHz过高会产生严重齿音。

咳音重4KHz过高会产生咳音严重现象(电台频率偏离时的音色)

均衡器还可以用来根据用家听音口味做适当优化,比如:适当提升7khz和10khz 可以突出细节并且让人声变甜。而对14khz和20khz的提升则可能造成声音变得具有华丽感和金属味,但也容易变噪变得数码味较浓,建议20khz的滑块不要给增益,而14khz的滑块可以轻微增益。5khz的适当增益能提升人声清晰度。将1.8khz和2.5khz适当压低能起到一定柔化和净化的作用,适当提升则能起到锐化的作用,但是这两个滑块不要大起大落,2个dB的幅度已经算是很大胆了。220hz和311hz这两个滑块轻微提升能显得较为温暖。具体的调节,需要用家自己根据实际环境和器材情况进行调节,这同样是很有意义的。乐器的调节范围:●弦乐器:明亮度调节6KHz和12KHz,丰满度170Hz和310Hz,拨弦声1KHz和1KHz

●钢琴:低音60Hz和170Hz,临场感3K和6K,衰减12KHz14KHz16KHz声音单薄反之实在。

●低音鼓:敲击声3K,低音60Hz。

●小鼓/高音鼓/手鼓:饱满度170Hz和310Hz清脆度/临场感6K

●钹:尖锐感6K和12K。

●手风琴/风琴:饱满度310Hz、临场感6K

●BASS:拨弦声1K,低音效果60Hz,拨弦噪声(擦弦声)3K

●电吉它:丰满度170Hz和310Hz,明亮度3K

●木吉它:琴身声310Hz,清晰度/宏亮度3K和6K,衰减12KHz14KHz16KHz 声音单薄反之实在。

●小号:丰满度170Hz和310Hz,清脆感6K

一些音乐的调节方法:

1、在放管弦乐或交响乐时,可把60Hz、170Hz提升一半,310Hz、600Hz提升四分之一1K可不提升或少许衰减,3K和6K适当提升,12K、14K、16K可把16K提升到最大,它们三个可成一个30来度的坡。

2、在放独唱或合唱时可把170Hz和1KHz稍提升,3K和6K稍衰减。频率说明<80Hz80Hz以下主要是重放音乐中以低频为主的打击乐器,例如大鼓、定音鼓,还有钢琴、大提琴、大号等少数存在极低频率的乐器,这一部分如果有则好,没有对音乐欣赏的影响也不是很大。这一部分要重放好是不容易的,对器材的要求也较高。许多高级的器材,为了表现好80(或80左右)Hz以上的频段的音乐,宁愿将80(或80左右)Hz以下的频率干脆切除掉,以免重放不好,反而影响主要频段的效果。极低频20Hz为人耳听觉下限,可测试您的器材低频重放下限,低频中的25Hz、31.5Hz、Hz、40Hz、50Hz和63Hz是许多音箱的重放下限,如果您的音箱在这些频率中某处声音急剧下降,则表明这个频率就是您的音箱低频重放下限。80-160Hz在80-160Hz频段的声音主要表现音乐的厚实感,音响在这部分重放效果好的话,会感到音乐厚实、有底气。这部分表现得好的话,在80Hz 以下缺乏时,甚至不会感到缺乏低音。如果表现不好,音乐会有沉闷感,甚至是有气无力。是许多低音炮音箱的重放上限,具此可判断您的低音炮音箱频率上限。300-500Hz在300-500Hz频段的声音主要是表现人声的(唱歌、朗诵),这个频段上可以表现人声的厚度和力度,好则人声明亮、清晰,否则单薄、混浊。800Hz800Hz这段一般设备都容易播好,但是要注意不要过多。这段要是过多的话会感到音响的频响变窄,高音缺乏层次,低频丰满度不够。1000Hz1kHz是音响器材测试的标准参考频率,通常在音响器材中给出的参数是在1kHz下测试。1200Hz1.2kHz可以适当多一点,但是不宜超过3dB,可以提高声音的明亮度,但是,过多会是声音发硬。20RR-4000Hz2~4kHz对声音的亮度影响很大,这段声音一般不宜衰减。这段对音乐的层次影响较大,有适当的提升可以提高声音的明亮度和清晰度,但是在4kHz时不能有过多的突出,否则女声的齿音会过重。8000-120RRHz8~12kHz是音乐的高音区,对音响的高频表现感觉最为敏感。适当突出(5dB以下)对音响的的层次和色彩有较大帮助,也会让人感到高音丰富。但是,太多的话会增加背景噪声,例如:系统(声卡、音源)的噪声会被明显地表现出来,同时也会让人感到声音发尖、发毛。如果这段缺乏的话,声音将缺乏感染力和活力。14000Hz14kHz以上为音乐的泛音区,如果缺乏,声音将缺乏感染力和高贵感,例如小提琴将没有“松香味”。这一部分也不宜过多,基本平直或稍有衰减(不超过-3dB)即可。20RR0Hz20kHz为人耳听觉上限,可测试您的器材高频重放上限。16kHz-20kHz可能在一些器材中消失,此时有可能是您的器材无法重放此段频率,如果您是年纪较大者,也有可能是您的听觉衰减所至。正弦波扫频信号20Hz-20kHz正弦波扫频信号是从20Hz到20kHz频率自动平滑改变播放,通过播放此段测试信息可快速判断何处频率存在问题均衡器的调节可分为以下主要几段进行:20Hz--60Hz部分这段低频往往给人很响的感觉,如雷声,是音乐中强劲有力的感觉。如果提升过高,则又会混浊不清,造成清晰度不佳。60Hz--250Hz部分这段频率包括基音、节奏音的主音,它和高中音的比例构成了音色结构的平衡特性;强之则音色丰满,弱之则音色单薄,过强则产生隆隆声。250Hz--2KHz部分它包括大多数乐器的低频泛音和低次谐波。2KHz--4kHz

部分这段频率属中频,如果提升得过高会掩盖说话的识别音,尤其是3kHz提升过高,会引起听觉疲劳。4kHz--5KHz部分这是具有临场感的频段,它影响语言和乐器等声音的清晰度。提升这一频段,使人感觉声源与听者的距离显得稍近了一些;衰减5kHz,就会使声音的距离感变远;如果在5kHz左右提出升6dB,则会使整个混合声音的声功率提升3dB。6kHz--16kHz部分这一频段控制着音色的明亮度,宏亮度和清晰度。-----------------------

----各个频段的音色与音感音色,是一种描述乐器发音品质的术语,由于每种乐器都有自己的频谱分布特征,因而同一种乐器的发音在不同的音区内,起音感虽然不一定一致,但其音色大体一致。表述音色特征的术语一般都与乐器的关系密切。音色术语一般要比音感丰富一些,其间的关联有以下几种情形:沉闷:闷这种音感是同20赫兹左右的频率赋予的,而高于80赫兹时,音感就会偏厚,因此具有沉闷感的音响一般基频很低,而且很少有丰富的泛音成分,具有此音感特征的乐器音源一般都是低音乐器的低音区。沉重:单纯从音感方面来看,沉重感是80赫兹频点处所特有的音感效果,而从音型特征上来看,短促的低音打击音型乐器具有更强烈的重感效果。低沉:低沉常用于形容比沉闷稍丰厚的音响,他的基频可能与沉闷的音响一样,但其高次谐波大多都比沉闷的音响丰富一些。深沉:这是一种带有感情味的形容词,常用于表述具有色彩性的“松荡”的低频响应,其基频比低沉的音响稍高一些。一般具有深沉感的乐器,最典型的就是大提琴和箫的低音区。浑厚:这种音感是频谱较宽的音源所具有的特征,所以浑厚的音感一般都是形容基频较低,频谱较宽的音源。淳厚:淳厚是指具有较高融合性的低频音响,具有淳厚感的典型音源,是钢片琴的低音区。丰满:这是频率在100~250赫兹之间的音源所具有的音感特征,一般发音在此频段内的音源,都必然会有丰富的音感效果。宽厚:丰满的音源如果频谱更宽一些,就会产生宽厚的音感效果。饱满:这是一种叫强劲度的低频音响,,一般加置有“涡轮失真”效果的电贝司,此音感特征非常明显。明亮:一般当乐音的基频高于500赫兹以上时,就会变的明快起来,甚至高到7500赫兹处时,我们也不能说它不明亮,所以音源的明亮感是一种比较通泛的形容词。明亮感在2800赫兹频点处最为明显。响亮:常用于形容带颈度的高明度音响,并且当频谱高出4000赫兹以上时,音源就不具有此音感特征了。宏亮:直待有一定融合性的高明亮音响。圆润:指比较柔和的高明亮度音响。柔和:与圆润相比,柔和感更偏于暗闷,是一种相对低明亮度的音响。清脆:频谱集中在4000~8000赫兹之间的音响一般都具有一定的清脆感效果。高亢:指高穿透力的清脆音响,有此音感特征的典型乐器就是唢呐。尖锐:频谱集中在6800赫兹左右的音响一般都尖锐刺耳的。尖厉:尖锐的音响如果还带有类似失真的嘈杂感,即可产生尖厉的音感效果。纤细:频谱在8000赫兹以上的音乐,一般都具有纤细的音感效果。融合:一般不易突出的柔和音响,都具有一定的融合感。当然,所有的音源都可以用融合或或不融合的程度衡量。在乐器中,一般认为中提琴、大提琴的融合感最好。干涩:这是融合感的反义词,一般和谐泛音缺乏、不和谐泛音突出的高频段音响,都具有某种程度的干涩,在乐器当中,他主要是由于极高音区缺乏共鸣所造成的。坚实:600赫兹左右的窄频带音响,以及发音短促的音型,都具有某种检视的音感效果。空洞:指带有“染色”效果的暗闷音响,此音感特征常常常常被人们用于形容大木鱼的音色。温暖:这是一种形容乐音色彩性的词,他一般与音响的“染色度”成正比,如:排钟,就具有次种音感。粗犷:低频音响如果带有类似过载失真的效果,即可形成粗犷的音感。粗糙:粗糙感是一种略带沙音的粗犷音响,一般小号、圆号在吹奏低音区时,都有此音感特征。沙哑:特制带有明显“气流沙音”的虚浮声响效果。苍劲:这是一种带有感情味的形容词,一般是指较低频段内的沙哑音响,如大管的低音区等。紧张:这是乐音内含有某些特别的不和谐泛音成分的结果。力度感:力度感在低频段特指200~500盒子频段内的音响,如:大鼓、大胡的低音区,力度感就较好。在中、高频段,力度感是指高穿透力、高突出性的不柔和音响,一般高音铜管乐器的中、高音区,都具有良好的力度感效果。穿透力:指高突出性、

高明亮度的音响,穿透力在4500赫兹附近较为明显。光彩性:指有一定突出感的高圆润度音响。悲凉:悲凉与温暖互为反义,它也是一种带感情味的次。具有此音感特征的典型乐器音源,就是中音双簧管的中音区。阴森:高紧张度的低频段音响,即可形成阴森的音感效果。发扁:这是2500赫兹处所特有的音响效果。在此频点附近的音乐,一般都明显有“发扁”的感觉。如:板胡、二胡等,次种音感特征十分明显。发暗:如果乐音中缺乏6000赫兹以上的频谱成分,一般都可以使起发音变“暗”。发虚:这是乐器在发较高音阶时,杂音增多所引起的,这种杂音通常类似于气流沙声。极高频:16K-20K色彩提升有神秘感;12K-16K 高频泛音,光彩;10K-12K高频泛音,光泽;高频和高频低段:8K-10KS音;6K-8K 明亮度、透明度,提升齿音重、降落声音黯淡;5K-6K语言的清晰度,提升声音锋利、易疲劳;中频上段:4K-5K乐器表面响度,提升乐器距离近、降落乐器距离远;4K穿透力,提升咳音;2K-3K对明亮度最敏感,提升声音硬,不自然中频:1K-2K通透感、顺畅感,提升有跳跃感、降落松散;800力度,提升喉音重;500-1K 人声基音、声音轮廓,提升语音前凸、降落语音收缩感;300-500语音主要音区,提升语音单调、降落语音空洞;中频低段:150-300声音力度、男声力度,提升声音硬、无特色,降落:软、飘;低频:100-150丰满度,提升浑浊、降落单薄;60-100浑厚感,提升轰鸣(轰)、降落无力;20-60空间感,提升低频共振(嗡)、降落空虚;低频上段80-160;中低频40-80;低频下段20-40;超低频32-~。--------------------各频段声音的作用人耳对声音频率的感觉是从最低的20Hz到最高的20KHz,而人的语音频率范围则集中在

80Hz~12kHz之间,不同频段的声音对人的感受是不同的。1.20Hz--60Hz部分。这一段提升能给音乐强有力的感觉,给人很响的感觉,如雷声。如果提升过高,则又会混浊不清,造成清晰度不佳,特别是低频响应差和低频过重的音响设备。

2.60Hz--250Hz部分。这段是音乐的低频结构,它们包含了节奏部分的基础音,包括基音、节奏音的主音。它和高中音的比例构成了音色结构的平衡特性。提升这一段可使声音丰满,过度提升会发出隆隆声,衰减此频段和高中音段会使声音单薄。

3.250Hz--4KHz部分。这段包含了大多数乐器的低频谐波,同时影响人声和乐器等声音的清晰度,调整时要配合前面低音的设置,否则音质会变的很沉闷。如果提升过多会使声音像电话里的声音;如把600Hz和1kHz过度提升会使声音像喇叭的声音;如把3KHz提升过多会掩蔽说话的识别音,即口齿不清,并使唇音“m、b、v”难以分辨;如把1kHz和3kHz过分提升会使声音具有金属感。由于人耳对这一频段比较敏感,通常不调节这一段,过分提升这一段会使听觉疲劳。

4.4kHz--5KHz部分。这是影响临场感(距离感)的频段。提升这一频段,使人感觉声源与听者的距离显得稍近了一些;衰减则就会使声音的距离感变远;如果在5KHz左右提升6dB,则会使整个混合声音的声功率提升3dB。

5.6kHz--16kHz 部分。这一频段控制着音色的明亮度,宏亮度和清晰度。一般来说提升这部分使声音宏亮,但不清晰,还可能会引起齿音过重;衰减这部分使声音变得清晰,可音质又略显单薄。该频段适合还原人声。下边列出几种常见EQ组合的特点。●POP:流行乐,它要求兼顾人声和器乐,组合比较平均,所以EQ曲线的波动不是很大。●ROCK:摇滚乐,它的高低两端提升很大,低音让音乐强劲有力,节奏感很强,高音部分清晰甚至刺耳。●JAZZ:爵士乐,和POP相比,它提升了3-5KHz 部分,增强临场感。●Classical:古典乐,它提升的也是高低两部分,主要突出乐器的表现。●Vocal:人声,人的嗓子发出的声音的频率范围比较窄,主要集中在中频部分。此外需要说明的是:每个人对不同频率的声音感觉是不一样的,

音响回放设备的频率响应也不同,人的听门曲线也只是根据统计数据画出,所以别人听起来很自然的声音自己可能会觉得不舒服,均衡器的调节需要根据自己的听感特点和所使用的播放设备进行个性化的调整。

频率段

(单位:

Hz)

听感影响代表乐器

16k-20k 这段频率可能很多人都听不到,因此,听不到此段

频率并不意味着器材无法回放,当然也不代表您的

听力不够好,只有很少人可以听到20kHz。这段频

率可以影响高频的亮度,以及整体的空间感,这段

频率过少会让人觉得有点闷,太多则会产生飘忽

感,容易产生听觉疲劳。

电子合声、古筝

钢琴等乐器的

泛音

12k-16k 12k-16k这段频率能够影响整体的色彩感,所谓小

提琴的“松香味”就是由此段频率决定的,这段频

率过于黯淡会导致乐器失去个性,过多则会产生毛

刺感,后期处理的时候,往往会通过激励器来美化

这段频率。

镲、铃、铃鼓、

沙锤、铜刷、三

角铁等打击乐

器的高频泛音

8k-12k 8~12kHz是音乐的高音区,对音响的高频表现感觉

最为敏感。适当突出(5dB以下)对音响的的层次

和色彩有较大帮助,也会让人感到高音丰富。但是,

太多的话会增加背景噪声,例如:系统(声卡、音

源)的噪声会被明显地表现出来,同时也会让人感

到声音发尖、发毛。如果这段缺乏的话,声音将缺

乏感染力和活力。

长笛、双簧管、

小号、短笛等高

音管乐器

4k-8k 这段频率最影响语音的清晰度、明亮度、如果这频

率成分缺少,音色则变得平平淡淡;如果这段频率

成分过多,音色则变得尖锐,人身可能出现齿音。

这段频率通常通过压限器来美化。

部分女声、以及

大部分吹奏类

乐器

2k-4k 这个频率的穿透力很强。人耳耳腔的谐振频率是

1-4KHz所以人耳对这个频率也是非常敏感的。如果

空虚频率成分过少,听觉能力会变差,语音显得模

糊不清了。如果这个频率成分过强了,则会产生咳

声的感觉。2~4kHz对声音的亮度影响很大,这段

声音一般不宜衰减。这段对音乐的层次影响较大,

有适当的提升可以提高声音的明亮度和清晰度,但

是在4kHz时不能有过多的突出,否则女声的齿音

会过重。

部分女声、以及

大部分吹奏类

乐器

1.2k 1.2kHz可以适当多一点,但是不宜超过3dB,可以提高声音的明亮度,但是,过多会使声音发硬。

1k 1kHz是音响器材测试的标准参考频率,通常在音响器材中给出的参数是在1kHz下测试。这是人耳最为敏感的频率。

800 这个频率幅度影响音色的力度。如果这个频率丰

满,音色会显得强劲有力;如果这个频率不足,音

色将会显得松弛,也就是800Hz以下的成分特性表

现突出了,低频成分就明显;而如果这个频率过多

了,则会产生喉音感。如果喉音过多了,则会失掉

语音的个性,适当的喉音则可以增加性感,因此,

音响师把这个频率称为"危险频率",要谨慎使用。

人声、部分打击

乐器

300-500 在300-500Hz频段的声音主要是表现人声的(唱

歌、朗诵),这个频段上可以表现人声的厚度和力

度,好则人声明亮、清晰,否则单薄、混浊。

人声

150-300 这段频率影响声音的力度,尤其是男声声音的力度。这段频率是男声声音的低频基音频率,同时也是乐音中和弦的根音频率。在80-160Hz频段的声音主要表现音乐的厚实感,音响在这部分重放效果好的话,会感到音乐厚实、有底气。这部分表现得好的话,在80Hz以下缺乏时,甚至不会感到缺乏低音。如果表现不好,音乐会有沉闷感,甚至是有气无力。是许多低音炮音箱的重放上限,具此可判断您的低音炮音箱频率上限

各种声音的频率范围

各种声音的频率范围,制定你喜欢的EQ 下表是各种声音的频率范围,可据此调节各频段的表现度,制定你喜欢的EQ。音乐本来就该是丰富多彩的,也会因人而异,所以不会有一个放之四海而皆准的EQ存在的。 乐器频率表 小提琴200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。 中提琴150Hz~300Hz影响音色的力度;3~6KHz影响音色表现力。 大提琴100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。 贝斯提琴50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。 长笛250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。 黑管150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。 双簧管300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz提升使音色明亮华丽。 大管100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。 小号150Hz~250Hz影响音色的丰满度;5~7.5KHz是明亮清脆感频带。 圆号60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz明显增强。 长号100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。 大号30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。 钢琴27.5~4.86KHz是音域频段。音色随频率增加而变的单薄;20Hz~50Hz是共振峰频率。 竖琴32.7Hz~3.136KHz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。 萨克斯管600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。 萨克斯管bB 100Hz~300Hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加细腻,增强音色的表现力。 吉它100Hz~300Hz提升增加音色的丰满度;2~5KHz提升增强音色的表现力。 低音吉它60Hz~100Hz低音丰满;60Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。 电吉它240Hz是丰满度频率;2.5KHz是明亮度频率3~4KHz拨弹乐器的性格表现的更充分。

可实现单音频信号频率可调功能的信号源设计方案

可实现单音频信号频率可调功能的信号源设计方案 在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速度最快。若采用相应频段内的窄带脉冲作为激励信号,则可激励出L(O,2)模态占 主导的超声导波,这样可最大限度地避免超声导波的频散现象带来的不利影响。利用高速单片机,数模转换器等设计了专门用于激励超声导波的窄带激励信号源,该信号源可实现汉宁(Hanning)窗的宽度可调,单音频信号频率可调的功能,提供了一种用于激励超声导波的激励信号源的设计方法。 1 系统总体结构 在进行超声导波管道检测时,一般选用汉宁窗调制单音频的窄带信号脉冲作为激励信号源,即选的激励函数为 其中,f 为单音频信号频率,n 为汉宁窗调制的单音频的周期数。 根据超声导波在管道中的传播特性,对于不同材料及尺寸的管道,所需的超声导波窄带激励信号的频率及周期数不尽相同。利用高速单片机与数模转换器构成信号发生器,实现汉宁窗调制下的单音频信号的频率可调及汉宁窗宽度可调的功能,由数模转换器输出的信号经过差动放大、低通滤波等处理后,可产

声音频率解说.

什么是高频,中频,低频 大家知道,声音是由振动产生的。所谓的声音频率,就是发声源的振动频率。 频率的单位是赫兹(HERZ,以证实电磁波存在的德国物理学家赫兹的名字命名),也就是1秒内振动的次数。 大自然及人类可能制造出的声音,从1赫兹,到几十万赫兹,范围跨度极大,但并不是所有的声波振动,都是人耳能听到的。 人耳的可闻音域范围,是20赫兹到20000赫兹。 20赫兹以下的声波,称为“次声波”,能量很强烈时,身体可以感觉到(比如地震的时候),但耳朵是听不到的。能量极强的次声波甚至可以杀人。 高于20000赫兹的称为“超声波”,人耳也听不到,但很多动物,如狗,蝙蝠,可以听到。 人耳对高频的感知力会随年龄增长而衰减,所以幼年时几乎人人能听到2万赫兹的声音,但中年以后,很多人就只能听到15000赫兹甚至更低了,听不见极高频了。 国外甚至有学生发明了一种以极高频讯号为铃声的手机,因为这种手机响铃时,只有年轻的学生能听到,年龄大的老师,已经听不到了。 在人耳可闻的这个20-20000赫兹的音域范围内,大致来说,200赫兹以下,就是我们一般所说的“低频”。而再细分的话,50赫兹以下,是我们一般称为“极低频”的频段。 这个极低频,对于喇叭系统而言,是非常昂贵的。因为小喇叭一般都无法播出这么低的低频,只有大喇叭,而且是优质的,昂贵的大喇叭,才能较好地重播出50赫兹以下的音乐信号。 对于耳机而言,播出50赫兹以下的极低频,不费吹灰之力,你看看任何耳塞或耳机的频响指标,都会延伸到50赫兹以下。 然而,BUT,我要转折一下,耳机播出来的极低频,是不够真实的。关键原因,是因为50赫兹以下的极低频,其实人是靠耳朵和身体共同感知的。也就是所谓“打心口”的低音,那就是极低频了。 耳机只能把信号作用于人的耳膜,无法对人身体产生任何效果,所以耳机里听到的极低频,是不完整的,不够真实的。任何耳机都是如此,哪

音频信号分析与处理

实验三音频信号的分析与处理1 一、实验目的 1.掌握音频信号的采集以及运用Matlab软件实现音频回放的方 法; 2.掌握运用Matlab实现对音频信号的时域、频谱分析方法; 3.掌握运用Matlab设计RC滤波系统的方法; 4.掌握运用Matlab实现对加干扰后的音频信号的进行滤波处理 的方法; 5.锻炼学生运用所学知识独立分析问题解决问题的能力,培养学 生创新能力。 二、实验性质 设计性实验 三、实验任务 1.音频信号的采集 音频信号的采集可以通过Windows自带的录音机也可以用专用的录制软件录制一段音频信号(尽量保证无噪音、干扰小),也可以直接复制一段音频信号,但必须保证音频信号保存为.wav的文件。 2.音频信号的时域、频域分析 运用Matlab软件实现对音频信号的打开操作、时域分析和频域分析,并画出相应的图形(要求图形有标题),并打印在实验报告中(注意:把打印好的图形剪裁下来,粘贴到实验报告纸上)。 3.引入干扰信号 在原有的音频信号上,叠加一个频率为100KHz的正弦波干扰信号(幅度自定,可根据音频信号的情况而定)。 4.滤波系统的设计 运用Matlab实现RC滤波系统,要求加入干扰的音频信号经过RC滤波系统后,能够滤除100KHz的干扰信号,同时保留原有的音频信号,要求绘制出RC滤波系统的冲激响应波形,并分析其频谱。

% 音频信号分析与处理 %% 打开和读取音频文件 clear all; % 清除工作区缓存 [y, Fs] = audioread('jyly.wav'); % 读取音频文件 VoiceWav = y(300000 : 400000, 1); % 截取音频中的一段波形 clear y; % 清除缓存 hAudio = audioplayer(VoiceWav, Fs); % 将音频文件载入audioplayer SampleRate = get(hAudio, 'SampleRate'); % 获取音频文件的采样率KHz T = 1/SampleRate; % 计算每个点的时间,即采样周期SampLen = size(VoiceWav,1); % 单声道采样长度 %% 绘制时域分析图 hFig1 = figure('Units', 'normalized', 'Position', [0 0.05 0.49 0.85]); t = T: T: (SampLen* T); subplot(2, 1, 1); % 绘制音频波形 plot(t, VoiceWav); % 绘制波形 title('音频时域波形图'); axis([0, 2.3, -0.5, 0.5]); xlabel('时间(s)'); ylabel('幅值(V)'); % 显示标题 %% 傅里叶变换 subplot(2, 1, 2); % 绘制波形 myfft(VoiceWav, SampleRate, 'plot'); % 傅里叶变换 title('单声道频谱振幅'); % 显示标题 xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); play(hAudio); % 播放添加噪声前的声音 pause(3); %% 引入100KHz的噪声干扰 t = (0: SampLen-1)* T; noise = sin(2 * pi * 10000 * t); % 噪声频率100Khz,幅值-1V到+1V hFig2 = figure('Units', 'normalized', 'Position', [0.5 0.05 0.5 0.85]); subplot(2, 1, 1); % 绘制波形 plot(t(1: 1000), noise(1: 1000)); title('100KHz噪声信号'); % 显示标题 noiseVoice = VoiceWav+ noise'; % 将噪声加到声音里面 hAudio = audioplayer(noiseVoice, Fs); % 将音频文件载入audioplayer subplot(2, 1, 2); % 绘制波形 [fftNoiseVoice, f] = myfft(noiseVoice, SampleRate, 'plot'); title('音乐和噪声频谱'); % 显示标题 play(hAudio); % 播放添加噪声后的声音 pause(3);

人耳对不同频率声音的感受

人耳对不同频率声音得感受 听觉就是个体对声音物理特征得反应?也就是人们接受外界信息得主要得通道。通过听觉,人们可以获得由声音所传递得各式各样信息。当然,声音也给人们带来烦恼”例如噪音。至于噪音能引起多大得烦恼「既取决于声音得性质,也取决于听者得主观态度。@ 同时,人能感受得声音频率有一定得范圉。大多数人能够听到得频率范 为它们已低于人类听觉得下限。动物得听觉范H通常与人不同。一些动物对高频声波反应灵敏,有些动物对低频声波有很好得反应。 那么,声音每一段得频率都有什么特点?我们对其得感觉又有什么不同呢?下面,笔者就为大家详细介绍各频率对人耳剌激得区别。 I 16K~20KHz 频率这段频率范围实际上对于人耳得听觉器官来说,已经听不到了,因为人耳听觉得最高频率就是15、1 KHz。但就是,人可以通过人体与头骨、 颅骨将感受到得16 ~ 20KHZ频率得声波传递给大脑得听觉脑区,因而 感受到这个声波得存在。 这段频率影响音色得韵味、色彩、感情味。如果音响系统得频率响应范围达不到这个频率范围,那么音色得韵味将会失落;而如果这段频率过强,则给人一种宇宙声得感觉,一种幻觉,一种神秘莫测得感觉,使人有—种不稳定得感觉。因为这些频率大多数就是基音得不谐与音频率, 所以会产生一种不安定得感受。这段频率在音色当中强度很小,但就是很重要,就是音色得表现力部分,也就是常常被人们忽略得部分,甚至有些人根本感觉不到它得存在。

I 12K~16KHz 频率这就是人耳可以听到得高频率声波,就是音色最富于表现力得部分,就是一些高音乐器与高音打击乐器得高频泛音频段,例如镖、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器得高频泛音,可给人一种"全光四射"得感觉,强烈地表现了各种乐器得个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强, 音色会产生"毛刺"般尖噪、刺耳得高频噪声,对此频段应给予一定得适当得衰减。 I 10K~12KHz 频率这就是高音木管乐器与高音铜管乐器得高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器得全属声非常强烈。如果这段频率缺乏, 则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳得感觉。 If I 8K~10KHz 频率这段频率s音非常明显,影响音色得清晰度与透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。 If I 6K~8KHz 频率这段频率影响音色得明亮度,这就是人耳听觉敏感得频率,影响音色清晰度。如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿音严重。 I 5K~6KHz频率 这段频率最影响语音得清晰度、可《度。如果这段频率成分不足,则音色显得含糊不清;如果此段频率成分过强,则音色变得锋利,易使人产生听觉上得疲劳感。

音频信号频率专业分析说明

音频信号频率专业分析说明 <80Hz 80Hz以下主要是重放音乐中以低频为主的打击乐器,例如大鼓、定音鼓,还有钢琴、大提琴、大号等少数存在极低频率的乐器,这一部分如果有则好,没有对音乐欣赏的影响也不是很大。这一部分要重放好是不容易的,对器材的要求也较高。许多高级的器材,为了表现好80(或80左右)Hz以上的频段的音乐,宁愿将80(或80左右)Hz以下的频率干脆切除掉,以免重放不好,反而影响主要频段的效果。极低频20Hz为人耳听觉下限,可测试您的器材低频重放下限,低频中的25Hz、31.5Hz、Hz、40Hz、50Hz和63Hz 是许多音箱的重放下限,如果您的音箱在这些频率中某处声音急剧下降,则表明这个频率就是您的音箱低频重放下限。 80-160Hz 在80-160Hz频段的声音主要表现音乐的厚实感,音响在这部分重放效果好的话,会感到音乐厚实、有底气。这部分表现得好的话,在80Hz以下缺乏时,甚至不会感到缺乏低音。如果表现不好,音乐会有沉闷感,甚至是有气无力。是许多低音炮音箱的重放上限,具此可判断您的低音炮音箱频率上限。 300-500Hz 在300-500Hz频段的声音主要是表现人声的(唱歌、朗诵),这个频段上可以表现人声的厚度和力度,好则人声明亮、清晰,否则单薄、混浊。 800Hz 800Hz这段一般设备都容易播好,但是要注意不要过多。这段要是过多的话会感到音响的频响变窄,高音缺乏层次,低频丰满度不够。

1000Hz 1 kHz是音响器材测试的标准参考频率,通常在音响器材中给出的参数是在1 kHz下测试。 1200Hz 1.2kHz可以适当多一点,但是不宜超过3dB,可以提高声音的明亮度,但是,过多会是声音发硬。 2000-4000Hz 2~4kHz对声音的亮度影响很大,这段声音一般不宜衰减。这段对音乐的层次影响较大,有适当的提升可以提高声音的明亮度和清晰度,但是在4kHz时不能有过多的突出,否则女声的齿音会过重。 8000-12000Hz 8~12kHz是音乐的高音区,对音响的高频表现感觉最为敏感。适当突出(5dB以下)对音响的的层次和色彩有较大帮助,也会让人感到高音丰富。但是,太多的话会增加背景噪声,例如:系统(声卡、音源)的噪声会被明显地表现出来,同时也会让人感到声音发尖、发毛。如果这段缺乏的话,声音将缺乏感染力和活力。 14000Hz 14kHz以上为音乐的泛音区,如果缺乏,声音将缺乏感染力和高贵感,例如小提琴将没有“松香味”。这一部分也不宜过多,基本平直或稍有衰减(不超过-3dB)即可。 20000Hz

不同的声音

《声音的变化》的教学设计 (教科版四年级上册第三单元第3课) 教学背景分析: 在第1课“听听音叉发出的声音”的活动中,学生们已经初步感受到了声音的高与低、强与弱的变化。本节课学生将用不同的力拨动他们熟悉的钢尺,探索声音强弱的变化;通过敲击装有多少不同的水的玻璃杯,以及拨动不同松紧的皮筋、粗细不同的琴弦、敲击大小、粗细、长短不同的物体,探索声音高低的不同。学生们通过对听到的不同声音的描述,将对声音有进一步的认识。 教学目标: 知识与能力: 1、音量是由物体振动的幅度决定的,振动幅度越大,声音就越强;振动幅度越小,声音就越弱。音高(调)是由物体振动的频率决定的,振动的频率越快,音调就越高;振动的频率越慢,音调就越低。 2、使物体发出强弱和高低不同的声音,对听到声音的不同进行描述,对物体在发出不同声音时的振动状态进行描述,把物体的振动状态和发出的不同声音联系起来。 过程与方法: 1、利用钢尺(塑料尺)进行实验,找出声音音量的大小与物体振动的关系; 2、利用四个装有不同水量的杯子进行试验,找出声音音调的高低与物体振动的关系。 情感、态度、价值观: 通过本课的学习形成善于观察,并把事物的特点和性质相联系的习惯。 教学重点: 1、声音音量的大小与物体振动的幅度有关;声音音调的高低与物体振动的快慢有关。 2、设计实验探究尺子长度和音调的关系。 教学难点: 声音音调的高低取决于在一定时间里振动的次数。 教学准备:

为每组准备:1把钢尺或塑料尺、4个同样的杯子里面装有不同量的水、1张“尺子声音高低的实验记录单”、1块钉两颗钉子的木板、1根橡皮筋、长短不同的3个铁钉、粗细不同的3根钢管、粗细相同长短不同的3根铁管、1把六弦琴。 动画:尺子振动 板书设计: 声音的强弱与高低 音量大振动幅度大,声音高振动频率 快, 音量小振动幅度小。声音低振动幅度 慢。 教学过程设计: 一、引入 1、谁会敲鼓?听一听鼓发出的不同的声音。 2、提问:这些鼓发出的声音有哪些不同? 3、声音的强弱可以用音量来描述。 4、出示一把钢尺(或塑料尺),提问:怎样使它发出声音?(提醒学生拨动尺子时要避免尺子和桌面撞击。) 5、怎样让尺子发出音量不同的声音? 二、观察比较声音强弱的变化 1、出示钢尺(塑料尺)进行实验的要求: 用你们的方法进行研究,观察钢尺上下振动的幅度有多大,发出的声音有多强,并用振动幅度大或小、声音强或弱作记录。 再用力拨动钢尺,与前面的实验进行比较,尺上下振动的幅度和发出的声音有什么相同和不同?并记录下来。 重复做上面的实验3-4次,体会物体振动时,振动幅度的大小与声音强弱之间是什么关系,并能准确地进行描述。

音频测试参数解析

Frequency Response频率响应 音响系统的频率特性常用分贝刻度的纵坐标表示功率和用对数刻度的横坐标表 示频率的频率响应曲线来描述。 频率响应是对MP3播放器的数模/模数转换器频率响应能力的一个评价标准。好的频率响应,是在每一个频率点都能输出稳定足够的信号,不同频率点 彼此之间的信号大小均一样。然而 在低频与高频部分,信号的重建比较困难,所以在这两个频段通常都会有衰减的现象。输出品质越好的装置,频率响应曲线就越平直,反之不但在高低频处衰减得很快,在一般频段,也可能呈现抖动的现象。 频率响应是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频 率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率 的相关联的变化关系(变化量)称为频率响应,频率响应范围是最低有效声音频率到 最高有效声音频率之间的范围,单位为赫兹(Hz) THD+N 总谐波失真+噪声

THD+N是英文Total Hormonic Distortion +Noise 的缩写译成中文是“总谐波失真加噪声”。它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。 实际的音频功率放大器有各种谐波造成的失真及由器件内或外部造成的噪声,它有一定的THD+N的值。这个值一般在0.00n%-10%之间(n=1~9)。 THD+N表示失真+噪声,因此THD+N自然越小越好。但这个指标是在一定条件下测试的。同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。 一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般为10-4;输出功率在1~2W,其THD+N更大些,一般为0.1~0.5%。 THD+N这一指标大小与音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。 这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。若FIN改成20Hz-20kHz,,其他条件不变,其THD+N变为小于0.5%。 输出功率在100mW左右的音频功率放大器常用THD+N=0.1%作为额定输出功率的条件。例如,某立体声耳机的音频功率放大器,在THD+N=0.1%,输出功率为80mW。这80mW可看作该音频功放的额定输出功率。 输出功率达几百毫瓦的常用THD+N=1%为条件。 如某音频功率放大器在Vcc=5V、THD+N=1%时可输出330mW。这330mW也可看作是在Vcc =5V时的额定输出功率。 从上面可以看出;这里的THD+N=0.1%、1%的值仅仅作为输出额定功率的一个条件。实际应用时比额定输出功率要小,其THD+N的值也要小得多。例如,Vcc=5V,额定输出功率为330mW时,其条件是THD+N=1%。若同样在Vcc=5V,输出功率降为120mW时,其THD+N的典型值仅为0.02%。失真是指音响系统对音源信号进行重放后,使原音源信号的某些部分(波形、频率等等)发生了变化。音响系统的失真主要有以下几种: a.谐波失真:所谓谐波失真是指音响系统重放后的声音比原有信号源多出许多额外的谐波成分。此额外的谐波成分信号是信号源频率的倍频或分频,它是由负反馈网络或放大器的非线性特性引起的。高保真音响系统的谐波失真应小于1%。 b.互调失真:互调失真也是一种非线性失真,它是两个以上的频率分量按一定比例混合,各个频率信号之间互相调制,通过放音设备后产生新增加的非线性信号,该信号包括各个信号之间的和及差的信号。 c.瞬态失真:瞬态失真又称瞬态响应,它的产生主要是当较大的瞬态信号突然加到放大器时由于放大器的反映较慢,从而使信号产生失真。

乐器及人声重要频率范围表及处理方法

乐器及人声重要频率范围表 小提琴200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。 大提琴100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。 贝斯提琴50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。 长笛250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。 黑管150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。双簧管300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz提升使音色明亮华丽。大管100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。 小号150Hz~250Hz影响音色的丰满度;5~7.5KHz是明亮清脆感频带。 圆号60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz 明显增强。 长号100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。 大号30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。 钢琴27.5~4.86KHz是音域频段。音色随频率增加而变的单薄;

20Hz~50Hz是共振峰频率。 竖琴32.7Hz~3.136KHz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。 萨克斯管600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。 萨克斯管bB 100Hz~300Hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加细腻,增强音色的表现力。 吉它100Hz~300Hz提升增加音色的丰满度;2~5KHz提升增强音色的表现力。 低音吉它60Hz~100Hz低音丰满;60Hz~1KHz影响音色的力度; 2.5KHz是拨弦声频。 电吉它240Hz是丰满度频率;2.5KHz是明亮度频率3~4KHz拨弹乐器的性格表现的更充分。 电贝司80Hz~240Hz是丰满度频率;600Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。 手鼓200Hz~240Hz共鸣声频;5KHz影响临场感。 小军鼓(响弦鼓)240Hz影响饱满度;2KHz影响力度(响度);5KHz 是响弦音频(泛音区) 通通鼓360Hz影响丰满度;8KHz为硬度频率;泛音可达10~15KHz 低音鼓60Hz~100Hz为低音力度频率;2.5KHz是敲击声频率;8KHz是鼓皮泛音声频。 地鼓(大鼓)60Hz~150Hz是力度音频,影响音色的丰满度;5~6KHz

频率段对声音的影响

频率段 (单位:Hz) 听感影响代表乐器 16k-20k 这段频率可能很多人都听不到,因此,听不到此段频率并不意味着器材无法回放,当然也不代表您的听力 不够好,只有很少人可以听到20kHz。这段频率可以影响高频的亮度,以及整体的空间感,这段频率过 少会让人觉得有点闷,太多则会产生飘忽感,容易产生听觉疲劳。 电子合声、古筝钢琴等乐器的 泛音 12k-16k 12k-16k 这段频率能够影响整体的色彩感,所谓小提琴的“松香味”就是由此段频率决定的,这段频率过 于黯淡会导致乐器失去个性,过多则会产生毛刺感,后期处理的时候,往往会通过激励器来美化这段频率。 镲、铃、铃鼓、沙锤、铜刷、 三角铁等打击乐器的高频泛音 8k-12k 8~12kHz是音乐的高音区,对音响的高频表现感觉最为敏感。适当突出(5dB以下)对音响的的层次 和色彩有较大帮助,也会让人感到高音丰富。但是,太多的话会增加背景噪声,例如:系统(声卡、音源) 的噪声会被明显地表现出来,同时也会让人感到声音发尖、发毛。如果这段缺乏的话,声音将缺乏感染力 和活力。 长笛、双簧管、小号、短笛等 高音管乐器 4k-8k 这段频率最影响语音的清晰度、明亮度、如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐,人身可能出现齿音。这段频率通常通过压限器来美化。部分女声、以及大部分吹奏类乐器 2k-4k 这个频率的穿透力很强。人耳耳腔的谐振频率是1-4KHz所以人耳对这个频率也是非常敏感的。如果空 虚频率成分过少,听觉能力会变差,语音显得模糊不清了。如果这个频率成分过强了,则会产生咳声的感 觉。2~4kHz对声音的亮度影响很大,这段声音一般不宜衰减。这段对音乐的层次影响较大,有适当的 提升可以提高声音的明亮度和清晰度,但是在4kHz时不能有过多的突出,否则女声的齿音会过重。 部分女声、以及大部分吹奏类 乐器 1.2k 1.2kHz可以适当多一点,但是不宜超过3dB,可以提高声音的明亮度,但是,过多会使声音发硬。 1k 1 kHz是音响器材测试的标准参考频率,通常在音响器材中给出的参数是在1 kHz下测试。这是人耳最为敏感的频率。

声音频率具体修改方法

许多情况下,一种乐器单独听起来很悦耳,但仍需进行均衡调节使之频响与其他乐器没有抵触、突出最亮丽的部分,从而融入到作品中去,这就是均衡调节的主要目的。 下面让我们看一下常用乐器及人声均衡调节的一些诀窍: 1.底鼓(Kick Drum):底鼓是一首歌曲里最重要的部分之一,因为它推动着节奏向前进行。这里我们讨论如何处理常见的三种底鼓: 第一种我称之为“80年代蓬头底鼓”,你一定熟悉的:强而有力、富含中频、含有重击的"砰"声,想得到这种比较怀旧的底鼓声音,可以先过滤掉60Hz以下的频率,然后根据情况在78-84Hz提升3到 6dB(Q值大约为1),使之听起来象是敲在你的胸膛上。接下来在1.5-2.5kHz提升大约6dB来增加"砰"声(Q值在1.5-2.5比较适合),最后在120Hz降大约4dB(Q值1.0)。参数可以反复调节直至听起来象"White Lion"的作品。 第二种是当今最流行的"Bonham"摇滚底鼓,我通常在120-240Hz提升4dB或更多来得到这种声音,还需要过滤掉1.5kHz以上的所有频率,有时候可能需要在80Hz略降低1-2dB、在60略提升2-3dB。 还有一种现在常用的底鼓:比较空、有摩擦声,想得到这种声音,你可以过滤掉100Hz以下的所有声音,在125Hz提升大约3dB,在250-350Hz提升大约4dB。然后过滤掉2kHz以上的所有频率。 2.军鼓:目前有两种使用最广泛的军鼓类型:一种紧凑、有力,另一种松散、比较长(通常用于ballads 风格的歌曲) 首先,任何军鼓都不需要150Hz以下的声音,所以把它们过滤掉。军鼓的中心频率通常在1kHz附近数百Hz的频段内,所以在这一频段提升3-6dB通常会非常有益。 对于紧凑型军鼓,你可以尝试分别提升中高频(5kHz附近)、部分高频(8-9kHz),提升量可以从3dB 开始逐渐上升,左右变化一下提升的频点直到得到理想的效果。过滤掉250Hz以下、11kHz以上的频率会使这种军鼓听起来很舒服。 对于松散型军鼓,需要在低端(250Hz附近)进行一些提升,我通常提升6dB。高频不用象紧凑型军鼓那样大幅提升,但在7kHz附近略作提升通常会有益处,再往上的频段可以过滤掉。关键是中频,先把提升的频点在800Hz-2kHz之间移动,找到那个能引起共鸣的频点,然后调整一下提升的幅度和Q 值。对于这种军鼓,往往需要加上启动时间(attack time)较长的压缩、较重的混响来与之配合。 3.钹(cymbal):对于这些富含高频的鼓件,可以降低4kHz以下的频率,根据情况提升高频区(10-14kHz)大约3dB。 4.沙锤(shaker), 手铃(tambourine), 手鼓(conga)、拍手(hand clap)等:沙锤(shaker)和手铃(tambourine)很相似,要明亮并且贯穿高频区,对于沙锤,我通常过滤掉2kHz以下的所有频率,略提升高频,比如在9kHz提升6dB;手铃要略带叮当声,所以我过滤掉800Hz以下的频率,在1.5或2kHz 提升4dB,在7kHz略作提升。 对于手鼓(conga),我通常用扫频的办法找到那个引起共鸣的频点,根据情况略作提升或降低。需要注意的是不能提升过多,尤其是共鸣频点较低的时候,可能与鼓和贝斯形成干扰。为了突出conga 的冲击效果,我通常在中频(5kHz附近)略作提升,比如提升6dB。 对于拍手声,可以通过提升中低频使之厚实,通常在250Hz提升2dB(Q值1.5)。同样为了加强冲击力,可以提升中频(在1.5kHz附近提升约4dB)和高频(在8kHz附近提升2-3dB)。 5.钢琴:如果钢琴是主要乐器,只与人声或少量陪衬乐器构成音乐,这时可不必做太多调整,如果没有贝斯,我通常会略微提升低频(140Hz附近),另外可以在高频区(8.5kHz附近)略作提升,比如3dB。如果钢琴与其他7-8种乐器一起构成非常丰满的音乐,则需要对钢琴做一些衰减的均衡处理。由于钢琴的弹奏多集中在中音区,因此你可能需要在中频区(3或4kHz)略作衰减使之听起来不那么"honky"。过滤掉140Hz以下的频率,因为这段频率毫无疑问会与底鼓和贝斯形成干扰。在8kHz附近略作提升可以使高音键听起来更明亮。另外尽量使中频到高频的过渡自然些。 6.电贝斯:电贝斯的种类很多,处理的方法也不一样。我最喜欢的是这种贝斯:丰满、厚重、每个音符都很突出。对于这种贝斯我通常这样处理:过滤掉100Hz以下的所有频段,降低520Hz以上的频

各种声音的频率范围

下表是各种声音的频率范围,可据此调节各频段的表现度,制定你喜欢的EQ。音乐本来就该是丰富多彩的,也会因人而异,所以不会有一个放之四海而皆准的EQ存在的。 乐器频率表 小提琴 200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。 中提琴 150Hz~300Hz影响音色的力度;3~6KHz影响音色表现力。 大提琴 100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。 贝斯提琴 50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。 长笛 250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。 黑管 150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。 双簧管 300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz提升使音色明亮华丽。 大管 100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。 小号 150Hz~250Hz影响音色的丰满度;5~是明亮清脆感频带。 圆号 60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz明显增强。 长号 100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。 大号 30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。 钢琴 ~是音域频段。音色随频率增加而变的单薄;20Hz~50Hz是共振峰频率。 竖琴 ~是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。 萨克斯管 600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。

声音的三要素

声音得三要素例题解析 一、声音得三要素------音调、响度、音色 1、音调:声音得高低称为音调。音调取决于声源振动得频率。 物体在1秒内振动得次数叫频率。其单位就是赫兹,简称赫,符号为Hz。物体振动得越快,频率越大。音调跟发声体振动得频率关系就是:频率越大,音调越高;频率越小,音调越低。 例1、(天津中考题)一物体在1min内振动了180000次,则该物体振动得频率为 _______Hz。声音能传递信息,往保温瓶里灌开水得过程中,听声音就能判断壶里水位得高低,因为随着水位得不断升高,音调逐渐_________。 解析:频率得单位就是赫兹(Hz),1 Hz表示1秒内振动1次。则物体振动得频率为180000/60s=3000 Hz。往保温瓶里灌开水时,声音得声源就是水面上方得空气柱。随着水位得不断升高,空气柱变短,振动加快,频率变大,听到得声音越来越尖锐高亢,音调逐渐升高。 答案:3000 升高 点拨:声源振动得频率与声源本身得材料、形状等诸多因素有关。如弦乐器主要靠改变弦得长短、粗细、松紧来改变音调,弦越短、越细、越紧,振动越快,音调越高;而管乐器主要靠改变空气柱得长短来改变音调,空气柱越短,振动越快,音调越高。 2、响度:人耳对声音强弱得主观感觉称为响度。响度跟声源得振幅以及人距离声源得远近有关。 物体在振动时偏离原来位置得最大距离叫振幅。实验表明:音叉叉股、橡皮筋得振幅越大,人们听到得声音越大。响度与振幅得关系就是:振幅越大,响度越大;振幅越小,响度越小。响度还跟距离发声体得远近有关系。声音就是从发声体向四面八方传播得,越到远处越分散,所以人们距发声体越远,听到得声音越小。如果能够想办法减小声音得分散,就可以使声音响度更大些。如听诊器就就是利用这个原理来增大响度得。 例2、(大连中考题)在操场上上体育课,体育老师发出得口令,近处得学 学生听到了,而远处得学生没有听清楚,其原因就是:() A、远处学生听到得声音响度小 B、老师发出得声音音色不好 C、老师发出得声音频率低 D、远处学生听到得声音振动幅度大 解析:老师发出得声音传得越远,声音得能量越分散,振幅越小,响度变小,因此远处得学生听不清楚。 答案:A 点拨:声音在向远处传递得过程中,其音调(频率)与音色不变,而响度(振幅)会变小。 3、音色:声音得品质称为音色。音色主要与发声体得材料、结构、发声方式等因素有关。不同得发声体发出得声音音色一般不同。 胡琴、钢琴、吉她、笛子等乐器发出得声音,即使音调、响度都相同,我们也可以分辨出来,可见乐音除了音调与响度这两个特征外,另外还有一个特征,这第三个特征叫做音色。我们能够分辨出各种不同乐器得声音,就就是由于它们得音色不同。人得声音得音色也因人而异,所以我们闭着眼也能听出就是哪位熟人在讲话。 例3、(佛山中考题)电子琴能模仿各种乐器发出得声音,在技术上要解决得关键就是能模仿各种乐器发出声音得() A、音调 B、音色 C、响度 D、音色与音调 解析:不同得乐器可以演奏同一首乐曲,发出得声音音调与响度可以相同,但就是我们仍能从它们得音色上加以区分。因此,关键就是模仿音色。 答案:B

各种乐器频率参考

1.地鼓(Kick Drum):地鼓是一首歌曲里最重要的部分之一,因为它推动着节奏向前进行。这里我们讨论如何处理常见的三种地鼓: 第一种我称之为“80年代蓬头地鼓”,你一定熟悉的:强而有力、富含中频、含有重击的“砰“声,想得到这种比较怀旧的地鼓声音,可以先过滤掉60Hz以下的频率,然后根据情况在 78-84Hz提升3到6dB(Q值大约为1),使之听起来象是敲在你的胸膛上。接下来在提升大约6dB 来增加“砰“声(Q值在比较适合),最后在120Hz降大约4dB(Q值。 第二种是当今最流行的“Bonham“摇滚地鼓,我通常在120-240Hz提升4dB或更多来得到这种声音,还需要过滤掉以上的所有频率,有时候可能需要在80Hz略降低1-2dB、在60略提升 2-3dB。 还有一种现在常用的地鼓:比较空、有摩擦声,想得到这种声音,你可以过滤掉100Hz以下的所有声音,在125Hz提升大约3dB,在250-350Hz提升大约4dB。然后过滤掉2kHz以上的所有频率。 2.军鼓(Snare drums):目前有两种使用最广泛的军鼓类型:一种紧凑、有力,另一种松散、比较长(通常用于ballads风格的歌曲) 首先,任何军鼓都不需要150Hz以下的声音,所以把它们过滤掉。军鼓的中心频率通常在1kHz 附近数百Hz的频段内,所以在这一频段提升3-6dB通常会非常有益。 对于紧凑型军鼓,你可以尝试分别提升中高频(5kHz附近)、部分高频(8-9kHz),提升量可以从3dB开始逐渐上升,左右变化一下提升的频点直到得到理想的效果。过滤掉250Hz以下、11kHz 以上的频率会使这种军鼓听起来很舒服。 对于松散型军鼓,需要在低端(250Hz附近)进行一些提升,我通常提升6dB。高频不用象紧凑型军鼓那样大幅提升,但在7kHz附近略作提升通常会有益处,再往上的频段可以过滤掉。关键是中频,先把提升的频点在800Hz-2kHz之间移动,找到那个能引起共鸣的频点,然后调整一下提升的幅度和Q值。对于这种军鼓,往往需要加上启动时间(attack time)较长的压缩、较重的混响来与之配合。 3.钹(cymbal):对于这些富含高频的鼓件,可以降低4kHz以下的频率,根据情况提升高频区(10-14kHz)大约3dB。

音频客观测量指标概念(全)

音频客观测量指标概念 音频指标简介及测试原理方法 音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。两者差别越小那么性能越好,而且在一般情况下声音经过某一个通道或某一系统后,一般都有对原信号的放大和衰减。 信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷 1、信噪比SNR(Signal to Noise Ratio):(1)简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB 以上。音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号强度的比值 (2)计算方法:信噪比的计量单位是dB,其计算方法是10LG(PS/PN),其中Ps和Pn 分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。 (3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了. 或者是10LG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率 计权:这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到. 这样就引入了权的概念。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。 2 、频响范围:(1)频率响应是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应。 (2)测试方法:要求输入信号幅值为一个固定值(要在动态范围之内,音响设备我们可以取100mv)。当输入信号为正常频率时(不能有失真,可以定位1KZ),记录这个时候的输出电压的大小V1。然后开始逐渐降低输入信号的频率,当降低到一定程度时,输出信号的幅值会开始减小。继续降低频率,直到输出电压为0.707V1时,记下此时的频率F1,那么该频率就是此通道的最低响应频率。

(完整版)什么频率的声音听起来才最舒服

什么频率的声音听起来才最舒服? 听觉是个体对声音物理特征的反应,也是人们接受外界信息的主要的通道。通过听觉,人们可以获得由声音所传递的各式各样信息。当然,声音也给人们带来烦恼,例如噪音。至于噪音能引起多大的烦恼,既取决于声音的性质,也取决于听者的主观态度。 同时,人能感受的声音频率有一定的范围。大多数人能够听到的频率范围从20Hz到20000Hz。我们把高于20000Hz的声音叫做超声波,因为它们已超过人类听觉的上限;把低于20Hz的声音叫做次声波,因为它们已低于人类听觉的下限。动物的听觉范围通常和人不同。一些动物对高频声波反应灵敏,有些动物对低频声波有很好的反应。 那么,声音每一段的频率都有什么特点?我们对其的感觉又有什么不同呢?下面,笔者就为大家详细介绍各频率对人耳刺激的区别。 ▌16K~20KHz频率 这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16~20KHz频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。 这段频率影响音色的韵味、色彩、感情味。如果音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果这段频率过强,则给人一种宇宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生

一种不安定的感受。这段频率在音色当中强度很小,但是很重要,是音色的表现力部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。 ▌12K~16KHz频率 这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种“金光四射”的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生“毛刺”般尖噪、刺耳的高频噪声,对此频段应给予一定的适当的衰减。 ▌10K~12KHz频率 这是高音木管乐器和高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。 ▌8K~10KHz频率 这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。 ▌6K~8KHz频率 这段频率影响音色的明亮度,这是人耳听觉敏感的频率,影响音色清晰度。 如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿音严重。

相关主题
文本预览
相关文档 最新文档