当前位置:文档之家› 高考题精解分析:29回旋加速器

高考题精解分析:29回旋加速器

高考题精解分析:29回旋加速器
高考题精解分析:29回旋加速器

高中物理学习材料

(灿若寒星**整理制作)

高频考点:回旋加速器

动态发布:2008广东物理卷第4题、2009年江苏物理第14题、2011天津理综物理第12题

命题规律:回旋加速器是教材中介绍的带电粒子在电磁场中的运动的实例,也是近代物理的重要实验装置,是高考考查的重点和热点,考查回旋加速器的试题可能为选择题,也可能为计算题,计算题常常以压轴题出现,综合性强、难度大、分值高、区分度大。

命题分析

考查方式一定性考查回旋加速器

【命题分析】定性考查回旋加速器一般以选择题出现,难度一般不大。

例1(2008广东物理卷第4题)1930年劳伦斯制成了世界上第一台回旋加速器,

其原理如图1所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是

A.离子由加速器的中心附近进入加速器

B.离子由加速器的边缘进入加速器

C.离子从磁场中获得能量

D.离子从电场中获得能量

【解析】根据回旋加速器的原理可知,离子由加速器的中心附近进入加速器,选项A正确B错误;离子从电场中获得能量,选项C错误D正确。

【标准答案】AD

考查方式二定量考查回旋加速器

【命题分析】定量考查回旋加速器一般以计算题出现,难度一般较大。

例2(2009年江苏物理第14题)1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图2所示,置于高真空中

的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直.A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.

(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比;

(2)求粒子从静止开始加速到出口处所需的时间t ;

(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E km .

【标准解答】:(1)设粒子第1次经过狭缝后的半径为r 1,速度为v 1,

qU=12mv 12

,qv 1B=m 211

v r

联立解得:112mU

r B q

=

当Bm f ≥m f 时,粒子的

最大动能由f m 决定,2m m v f R π=

解得 222

2km m E mf R π=.

考查方式三 与其它知识综合定量考查回旋加速器

【命题分析】回旋加速器在核科学、核技术、核医学等高新技术领域有广泛应用,与其它知识综合定量考查回旋加

速器可体现高考理综的综合性。试题一般作为压轴题,分值高,难度较大。

例3.(2011天津理综物理第12题)回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力

地推动了现代科学技术的发展。

(1)当今医学影像诊断设备PET/CT 堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射正电子的同

位素碳11作示踪原子。碳11是由小型回旋加速器输出的高速质子轰击氮14获得,同时还产生另一粒子,试写出核反应方程。若碳11的半衰期t 为20min ,经2.0h 剩余碳11的质量占原来的百分之几?(结果取2位有效数字)

(2)回旋加速器的原理如图,D 1和D 2是两个中空的半径为R 的半圆金属盒,它们接在电压一定、频率为f 的

交流电源上,位于D 1圆心处的质子源A 能不断产生质子(初速度可忽略,重力不计),它们在两盒之间被电场加速,D 1、D 2置于盒面垂直的磁感应强度为B 的匀强磁场中。若质子束从回旋加速器输出时的平均功率为P ,求输出时质子束的等效电流I 与P 、 B 、R 、f 的关系式(忽略质子在电场中的运动时间,其最大速度远小于光速)。

(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r 的增大,同一盒中相邻轨道的半径之差△r 是装

置大、减小还是不变?

【标准解答】:

(1)核反应方程为

He C H N 4

21161114

7

+→+

设碳11原有质量为m 0,经过t 1=2.0h 剩余的质量为m r ,根据半衰其定义有

%6.1212120

120201

≈??

? ??=??? ??=t r m m

(2)设质子质量为m ,电荷量为q ,质子离子加速器时速度大小为v ,由牛顿第二定律知

若以单个质子为研

究对象解答过程正确的同样得分。

(3)方法一

设*)(N k k ∈为同一盒中质子运动轨道半径的序数,相邻的轨道半径分别为k r 、

k k k k k k r r r r r r -=?>+++111),(,在相应轨道上质子对应的速度大小分别为k v 、,1+k v D 1、D 2之间的电压为U ,由动能定理知

22

212

121k k mv mv qU -=

+ ⑨

由洛伦兹力充当质子做圆周运动的向心力, 知qB

mv r k

k =

,则 2)(222122k k r r m

B q qU -=

+

整理得)

(412k k k r r qB mU

r +=

?+

因U 、q 、m 、B 均为定值,令,42

qB

mU

C =

由上式得

1

k k k C

r r r +?=

+

相邻轨道半径1k r +、2k r +之差

121k k k r r r +++?=-

同理

112

k k k C

r r r +++?=

+

因为2k k r r +>,比较k r ?、1k r +?得

1k r +?

11 说明随轨道半径r 的增大,同一盒中相邻轨道的半径之差△r 减小。 方法二:

设*

()k k N ∈为同一盒中质子运动轨道半径的序数,相邻的轨道半径分别为r k 、

11()k k k r r r ++>,1k k k r r r -?=-,在相应轨道上质子对应的速度大小分别为k v 、1k v +,D 1、D 2之间的电压为U 。

由洛化兹力充当质子做圆周运动的向心力,知k

k mv r qB

=

,故 11

k k k k r v

r v ++= ○

12 由动能定理知,质子每加速一次,其动能增量

K E qU ?= ○

13 以质子在D 2盒中运动为例,第k 次进入D 2时,被电场加速(21)k -次,速度大小为

21

1

122(21)()

k k k k r r k r r ++++?=

++ 由于2k k r r +>,比较k r ?、1k r +?得

1k r +?

15 说明随轨道半径r 的增大,同一盒中相邻轨道的半径之差△r 减小。用同样的方法也可得到质子在D 1盒中运动时具有相同的结论。

最新高考物理速度选择器和回旋加速器解题技巧及练习题

最新高考物理速度选择器和回旋加速器解题技巧及练习题 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

高中物理回旋加速器

高中物理回旋加速器 一.选择题(共4小题) 1.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来加速带电粒子 D.带电粒子在D形盒中运动时,磁场力使带电粒子速度增大 2.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来使带电粒子做圆周运动 D.带电粒子在D形盒中运动时,磁场力使带电粒子加速 3.关于回旋加速器的说法正确的是() A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的 B.回旋加速器是通过多次电场加速使带电粒子获得高能量的 C.粒子在回旋加速器中不断被加速,故在磁场中做圆周运动一周所用时间越来越小D.若加速电压提高到4倍,其它条件不变,则粒子获得的最大速度就提高到2倍4.回旋加速器由下列哪一位物理学家发明() A.洛伦兹B.奥斯特C.劳伦斯D.安培 二.填空题(共1小题) 5.回旋加速器的D型金属盒半径为R,两D型盒间电压为U,电场视为匀强电场,用来加速质量为m,电荷量为q的质子,使质子由静止加速到能量为E后,由小孔射出.(设质子每次经过电场加速后增加相同的能量)求: (1)加速器中匀强磁场B的大小. (2)加速到上述能量所需的回旋次数. (3)加速到上述能量所需时间.(不计经过电场的时间)

三.解答题(共1小题) 6.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速. (1)求该回旋加速器所加交变电场的频率; (2)求粒子离开回旋加速器时获得的动能; (3)有同学想自利用该回旋加速器直接对质量为m、电量为2q的粒子加速.能行吗?行,说明理由;不行,提出改进方案.

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析 一、速度选择器和回旋加速器 1.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。 (1)求匀强磁场的磁感应强度的大小和方向; (2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α 粒子的比荷 q m ; (3) 若把匀强磁场撤去,α粒子的比荷 q m 不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。 【答案】(1)0E v ,方向垂直纸面向里(2)03BR (3)3v 0 【解析】 【详解】 (1)由题可知电场力与洛伦兹力平衡,即 qE =Bqv 0 解得 B = E v 由左手定则可知磁感应强度的方向垂直纸面向里。 (2)粒子在磁场中的运动轨迹如图所示, 设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得 Bqv 0=m 20 v r

由几何关系可知 r=3R,联立得 q m =0 3BR (3)粒子从P到N做类平抛运动,根据几何关系可得 x=3 2 R=vt y= 3 2 R= 1 2 × qE m t2 又 qE=Bqv0联立解得 v=3 2 3 Bqv R m = 3 v0 2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U; (2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R=0 tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】

回旋加速器原理和考点分析

回旋加速器原理和考点分析 作者:丑佳丽 黑龙江省铁力职业教育中心学校 【内容摘要】 回旋加速器的原理和意义,并利用原理解决相关问题。增大加速电压或微粒的核质比增大,能使一个带电粒子获得很大的速度(能量), 但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U.回旋加速器是产生大量高能量的带电粒子的实验设备.交变电压的周期与带电粒子做匀速圆周运动的周期相等。高频交流电源的周期与带电粒子在D 形盒中运动的周期相同是加速条件。回旋加速器的优点是体积小,缺点是粒子的能量不会很高。高频考点:回旋加速器中的D 形金属盒,它的作用是静电屏蔽。带电粒子从电场中获得能量。 做题过程中注意应用公式推导和运算。 【关键词】 带电粒子 加速 回旋加速器 一、如何能使带电粒子在较小的范围内实现多级加速 1.如何使一个带电的微粒获得速度(能量) 由动能定理K E W ?= 221mv qU = m qU v 2= 2.如何使一个带电粒子获得很大的速度(能量) 拓展:如: ①增大加速电压;②使微粒的核质比增大,等等。 3.带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法 4.实际所加的电压,能不能使带电粒子达到所需要的能量(不能)怎么办 多级加速::带电粒子增加的动能为 ) (2 121321212 02n n U U U U q qU qU qU qU mv mv E ++++=+++==-= ? 分析:方法可行,但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。 二、 回旋加速器的原理和考点 回旋加速器 图1 图2 图3

感应加速器的原理和技术

感应加速器的原理和技术 张伦 (国防科大三院三队,长沙,410072) 摘要:简要分析了回旋加速器存在的缺陷,说明了感应加速器的原理,并对相关技术进行了初步的探究。 关键词:感应加速器 1 问题的提出 目前,粒子加速器按照粒子加速过程中路径的不同可分为直线型和曲线形,在中学的学习中,我们简要的了解了直线型加速器和劳伦兹回旋加速器的相关原理。劳伦兹加速器能够实现在小范围内利用较低电压加速粒子的目的,减少了加速器的建造成本和体积,但是劳伦兹加速器在粒子加速上有不可避免的自身缺陷: 最初发明回旋加速器的思想是:粒子在无场的D 型盒内转半个周期的时间,必须严格等于D 型间隙的加速场变化半个周期的时间。可是实际上,考虑高速情况下粒子质量的相对论效应,粒子在磁场中的旋转周期是随着粒子能量的增长而增长的。[1] ZeB m T c π2= (1) 2/120)1(β-=m m ~质量相对论效应 (2) 另一方面由于磁感应强度B 沿着半径增大而减小,两者更加大了在粒子加速过程中旋转周期c T 与加速电场周期间的差距。从而使粒子 不能与加速电场“谐振”而导致在电场中减速,限制了最大速度。

2 解决原理 由电磁感应定律可知:随时间变化的磁感应强度B 会感生涡旋电场,其大小和分布由下式决定: t B E ??-=?? (3) 在电子感应加速器中,通常采用轴对称分布的磁场,因此涡旋电场的形状是闭合的圆环,电场的方向则与磁感应强度增长的所组成的右手螺旋系统方向相反。由于涡旋电场的性质,进入到电场区并符合一定初始条件的粒子,有可能被这样的涡旋电场连续的加速而获得较大的速度,并且在这个过程中不受粒子质量相对论效应的影响。这样就克服了回旋加速器的速度限制。 3、感应加速器原理和技术 3.1沿恒定轨道加速电子的条件 在轨道附近的环形狭窄区域,设置了迫使电子做圆周运动的导引磁场,为了使电子在加速过程中沿一个恒定的轨道运动,必须是导引磁场强度)(0 t B R 随时间的增长率与粒子动量)(t P 的增长率之间保持平衡,由此决定粒子加速过程中运动的平衡轨道[2],下面我们探究两者之间关系: 粒子在磁场中作圆周运动,洛伦兹力提供向心力,满足 )()()(020 2t B t ev R t mv R = (4) 即 ) ()(00t eB t P R R = (5)

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R= tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T 解得t= m Bq θ (3)由几何关系可知:r tan 2 θ =R 解得圆形磁场区域的半径R=0 tan 2 mv qB θ 3.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方

高中物理速度选择器和回旋加速器解题技巧分析及练习题

高中物理速度选择器和回旋加速器解题技巧分析及练习题 一、速度选择器和回旋加速器 1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。 【答案】(1)500m/s v =;(2)10 4.010kg m -=? 【解析】 【分析】 【详解】 (1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有 qE qvB = 解得带电粒子的速度大小 100m/s 500m/s 0.2 E v B = == (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有 2 v qvB m R = 而粒子偏转90°,由几何关系可知 0.5m R L == 联立可得带电粒子的质量 6102100.20.5kg 4.010kg 500 qBL m v --???===? 2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,

在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力. (1)求两极板间电压U 的大小 (2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围. 【答案】(1)20mv q (2)002121 22 v v v -+≤≤ 【解析】 试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度. (1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有: 212 R at = ,02R v t =,2qU a Rm = 解得:2 mv U q = (2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R = 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图: 由几何关系有:2r r R = 由洛伦兹力提供向心力有:2 11v qv B m r =

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高中物理速度选择器和回旋加速器专项练习及解析

高中物理速度选择器和回旋加速器专项练习及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+

高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理速度选择器和回旋加速器解题技巧讲解及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

电子感应加速器在工业中材料无损检验中的应用

电子感应加速器在工业中材料无损检验中的应用 院系:核科学技术学院 专业:辐射防护与环境工程 指导老师:曹锦佳 学生:黎国全 学号:20114180130

摘要 无损检验在工业生产中是一个非常重要的环节。而利用加速器产生x 射线、中子(以下我们简称辐射探伤)等又是工业中常常使用的且行之有效的方法之一。由于传统的x 光机、 Co-60探伤机的能量低,远远满足不了工业无损检验的需要。教材中主要介绍了电子直线、电子回旋和电子感应加速器。根据我本学期所学《加速器物理基础》课程和结合多方面了解到关于加速器的知识。本文只介绍电子感应加速器在无损检验中的应用。主要调查研究加速器探伤与传统探伤法的优势。资料显示,运用电子感应加速器探伤技术方法主要有三种,辐射照相、辐射测量、图相显现。最后我将简要介绍辐射照相技术的原理和操作步骤。 关键词 加速器、辐射探伤、 一、电子感应加速器工作原理 感应型加速器的基本原理是用随时间变化的磁通量产生涡旋电场来加速带电粒子。由电磁感应定律可知:如果磁感应强度随时间变化,就会感生出涡旋电场。涡旋电场的分布和大小分别由磁感应强度的空间分布及其随时间变化的速率决定。 ▽t B E ??-=? 【6】 符合一定条件的电子,被涡旋电场连续地加速,经过多次的累积得到较高的能量。如果在整个加速过程中,电子能绕涡旋电场运动达

到百万圈,那么即使每圈获得数十eV ,但最终叠加后能达到数十MeV 。 设计的加速器为保证电子能加速到预定能量,必须对加速器磁通提出相应的要求。由 <<加速器物理基础>>教材中推论出加速磁通变化量与电子能量的增加量的关系式: p r W c r ??≡??≈?ππφ22【5】 二、传统探伤方法的一些主要缺点 我这里主要论述的几种工业上常用的探伤方法,以此对比说明电磁感应加速器探伤的优势。 目前工业上使用的探伤方法有:磁力、超声波、X 光机、Co-60 γ源。其中磁力探伤【3】方法不能区别缺损性质,只局限于检查表层外伤,厚度超过20mm 时无效。而超声波探伤检查厚度虽然大,但是毫米以下的工件无法检查。而且检查时对工件表面的光洁度要求较高(华中工学院俞加文调查各家工厂资料显示光洁度要求达到w4)。不能检查复杂工件的缺损形状。且与波平行的裂纹无法探测到。X 光机的主要问题在于需要消耗大量的软片和化学药品,操作流程也很复杂。Co-60源的探伤技术没有太大的缺点,但是其防护要求高。我从国外很多资料调查到,不少国外工人因为对Co-60源的防护不当,例如Co-60源意外丢失,误伤到工人及其家人。其状况掺不忍睹。

高中物理速度选择器和回旋加速器试题经典及解析

高中物理速度选择器和回旋加速器试题经典及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

电子加速器及其应用领域_梁宏斌

2012年3月(上) 科技创新科技创新与应用电子加速器及其应用领域 梁宏斌张玉宝王强斯琴图雅 (黑龙江省科学院技术物理研究所,黑龙江哈尔滨150086) 1国外电子加速器发展 英国科学家柯克罗夫特和爱尔兰科学家沃尔顿在1932年建成世界上第一台直流加速器—— —直流高压加速器。1933年美国科学家范德格拉夫发明了静电加速器。这两种加速器都属直流高压型,能量最高只能到10MeV。1932年美国科学家劳伦斯建成了回旋加速器,通过它获得了人工放射性同位素。1952年柯隆李温斯顿和史耐德发表了强聚焦原理的论文,使加速器能够获得更高的能量。之后,强聚焦原理在环形或直线加速器中被普遍采用。1940年世界上第一个电子感应加速器诞生,其能量可以达到100MeV。1960年陶歇克首次提出了采取两束加速粒子对撞的方式,用于高能反应或新粒子的产生,并通过对掩机上的实验验证了这一原理。 至今全世界已建成1300多台电子辐照加速器。美国、俄罗斯、日本、法国、比利时等多个国家能够生产电子辐照加速器。国外辐射加工产业的电子辐照加速器发展呈现如下特点:(1)电子辐照加速器装置在数量上大幅度增加的同时,产品质量在不断提高,结构紧凑,易操作,维修方便,并且长期运行稳定性、可靠性及智能化水平等有明显提高;(2)电子辐照加速器向低能段和高能段延伸,地那米电子加速器从500kV 至5.5MeV、60-100mA;梅花瓣型电子加速器能量10MeV、功率500-700kW已进入市场;(3)新型电子辐照加速器研发成功。法国帕莱索技术研究所研发成功桌面型电子加速器;美国RPC公司研制成功的"宽束机"全新型多灯丝电子帘加速器;俄罗斯成功地研发出EA10/10型环形电子加速器,其能量5-10MeV,电子束流5-10mA,束功率25-100kW可调。 2我国电子加速器的发展 我国目前主要的电子加速器研制生产单位超过10家,电子加速器生产有了长足的进步。 上海应用物理研究所,主要产品有以下几类:1)EBS-300-15电子帘加速器。能量0.3MeV,束流50mA,应用于橡胶硫化和表面固化等领域。 2)DGB-0.8烟气脱硫脱硝电子加速器,最高能量0.8MeV,束流300mA,扫描宽度2000mm,应用于水处理和燃煤烟气脱硫脱硝。3)高频高压加速器。能量1.5-5.0MeV,束流20~40mA,扫描宽度900~1200mm,广泛应用于电线电缆和热缩材料辐射交联,以及食品保鲜、医疗用品消毒、海关检疫等领域。 江苏达胜加速器制造有限公司,其生产的高频高压加速器,能量范围1.5-4.0MeV,束流30-60mA,主要应用于电线电缆、热缩材料、发泡片材、电子元件等领域。 中国原子能科学研究院,主要产品有以下3种:1)自屏蔽式电子束灭菌加速器。能量为2-2.5MeV,平均束功率大于1.0Kw,具有自屏蔽、体积小、重量轻、生动化程度高、工作稳定的特点。能将邮件中的生物细菌灭杀,还可用于医疗用品的辐射消毒灭菌和食品保鲜等方面。2)工业无损探伤加速器。工业无损探伤直线电子加速器,能量2-9MeV,经转换成x射线后探伤范围达38-380mm,广泛应用于工业无损探伤。3)高能大功率电子加速器。最高能量达10MeV,功率达到15kw。可广泛应用于医疗用品消毒、食品保鲜、海关检疫等领域。 无锡爱邦辐射技术有限公司2004年组建爱邦加速器研究所,开始研发市场需求的新型高频高压电子加速器。现有0.5MeV、0.8MeV、1.0MeV、1.5MeV、2.0MeV、2.5MeV、3.0MeV、4.0MeV等九种型号的高频高压电子加速器。 3电子加速器的应用 3.1辐射交联,辐射交联已经作为一项产业化技术被广泛用于电线电缆及汽车、家电、飞机、航天等电子设备线路。由于经过电子射线辐照后,电线电缆的外皮材料聚乙烯或聚氯乙烯发生交联反应,从而使材料的绝缘性、耐热性、抗化学腐蚀、抗老化及机械强度等都得到明显改善。辐射交联技术应用的另一种重要产品是热收缩材料。它是通过电子射线辐射交联聚乙烯等高分子材料,然后加热后扩张,再经过冷却定型,当重新加热到熔点以上时,热缩材料又新收缩到未扩张前状态,利用它这种可收缩的形状记忆特性来做电线电缆接头以及管道防腐。 3.2辐射固化,辐射固化与传统的化学固化比较,具有无污染、能耗低、速度快、品质均一等优点。而且辐射固化不使用化学溶剂不会造成污染,是一种环保型固化方法。目前辐射固化应用比较成熟的领域有纸张、磁带、陶瓷、金属等产品的表面处理。 3.3辐射硫化,天然胶乳或橡胶在电子射线作用下可发生交联反应,这一过程与橡胶硫化的过程相类似,也称作辐射硫化。在辐射硫化的过程中不需要添加硫化剂和促进剂等加工助剂,同时与传统的化学热硫化方法相比较,避免了交联剂在橡胶基材内部分布不均导致的交联不均匀,同时也避免了温度梯度影响导致的材料性能下降。 3.4辐射降解,高分子聚合物在高能电子作用下,其分子结构发生主链断裂,称为辐射降解。与辐射交联一样辐射降解同样具有工业应用价值,如辐射降解型废塑料的处理和橡胶的辐射再生利用。聚四氟乙烯废料及加工后的边角料经辐射降解处理后,再经粉碎得到的超细粉可用作各种润滑剂及耐磨改进剂使用。 3.5辐射接枝改性,辐射接枝技术是应用广泛的一种高分子粉碎改性方法。通过辐射接枝能够研制出各种性能优异的新型高分子材料,或通过辐射改性改善原有材料的性能。辐射接枝是通过射线辐照引发,不需要向体系添加引发剂,因此接枝聚合物非常纯,完全医用高分子材料的要求。聚乙烯以及聚丙烯类高分子材料性能优良、价格低廉,经过辐射接枝改性后,就可以得到如离子交换树脂、共混增容剂等更有价值的新材料。聚乙烯表面通过辐射接枝上极性分子,可以改善其表面亲水性,使材料在粘接、印刷及涂装过程中的加工性能得到改善。在天然纤维或丝绸上接枝丙烯酰胺或丙烯类单体,可有效改善织物的表面性能,提高其抗皱性。天然橡胶通过接枝改性,再制备粉末橡胶的研究已取得一定进展进展,改性后的粉末橡胶可作为增韧剂和增容剂,用于工程塑料的增韧等方面。 4结束语 21世纪,纳米材料的制备和开发应用已成为材料研究的热点,辐射技术同样可用于纳米材料的制备。它具有合成工艺简单,可在常温常压下操作,成本低廉等优势。我国开发成功的γ辐射合成法,可用于制备纳米氧化物、纳米合金、纳米金属及纳米复合材料等。其中,纳米复合材料是一种新型功能材料,它在非线性光学材料、导电复合材料、屏蔽材料及抗电磁干扰等方面极具潜力。在市场经济快速发展的今天,利用辐射技术,有望为人类开发出更多性能优异的新材料。 参考文献 [1]我国电线电缆辐射加工应用现状及发展趋势[J].电线电缆,2004(1). [2]我国电子加速器辐照装备发展现状与技术评估[C].2009年全国辐射交联线缆及加速器装置发展研讨会.2009. [3]辐射交联高分子材料的进展[C].2005全国辐照交联线缆产业发展问题研讨会,2005. 摘要:我国的电子加速器制造和使用,近年来有了快速发展,目前生产制造企业多达十几家。电子加速器广泛应用于热缩材料、电线电缆、发泡材料、有机PTC材料的辐射交联和辐射接枝;中药、医疗用品、食品、粮食等的辐照消毒、灭菌、杀虫、保鲜;海关检疫、表面固化、水处理、燃煤烟气脱硫脱等各个领域。 关键词:辐射加工;电子加速器;应用 放射事故的发生。本系统中设有多种防护措施,针对辐照装置可能出现的事故情况,设置了多种独立防护措施,并且每种防护措施的触发装带动另一种措施触发,使系统具有联动性。此系统的设计体现了“纵深防御、冗余性、多样性、独立性”的安全设计原则,大大地降低了放射事故发生的概率。 参考文献 [1]殷炳来,段晨旭,王继祥,等.辐照工场电气控制系统中安全措施的实现[J].山东科学.2001,(1):63-66 [2]邱公伟.可编程控制器网络通信及应用[M].北京:清华大学出版社,1999:20-30. [3]GB17279-1998,水池贮源型γ辐照装置设计安全准则[S]. 3 --

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题 一、速度选择器和回旋加速器 1.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q m =3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。求: (1)粒子初速度v 0的大小; (2)圆形匀强磁场区域的磁感应强度B 2的大小; (3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。 【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。 【解析】 【详解】 (1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡 qv 0B 1=Eq 带电粒子初速度 v 0=5×104m/s (2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力 20 02v qv B m r = 轨迹如图所示:

由几何关系,带电粒子做圆周运动的半径为 4 0.8m tan 373 R r R = ==? 联立解得: B 2=0.02T (3)带电粒子在电场中做类平抛运动 水平方向 0L v t =? 竖直方向 212 y at = 由牛顿第二定律 qE ma = 粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示: 由几何关系 ,利用三角形相似,有: 22 ()22 L y y R d +=+ 解得

高中物理速度选择器和回旋加速器解题技巧及练习题及解析

高中物理速度选择器和回旋加速器解题技巧及练习题及解析 一、速度选择器和回旋加速器 1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求: (1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小; (3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。(不计重力)。粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。 【答案】(1)0mv qB (2)E B (302v ,02R h +(4)2 2000724 M x R R R h h =++-【解析】 【详解】 (1)若只有磁场,粒子做圆周运动有:2 00 qB m R =v v 解得粒子做圆周运动的半径0 0m R qB ν= (2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B = (3)只有电场时,粒子做类平抛,有: 00y qE ma R v a t v t === 解得:0y v v =

所以粒子速度大小为:22 002y v v v v =+= 粒子与x 轴的距离为:2 0122 R H h at h =+ =+ (4)撤电场加上磁场后,有:2 v qBv m R = 解得:02R R = 粒子运动轨迹如图所示: 圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4 π ,由几何关系得C 点坐标为: 02C x R =, 02 C R y H R h =-=- 过C 作x 轴的垂线,在ΔCDM 中: 02CM R R == 2 C R C D y h ==- 解得:2 2 2 20074 DM CM CD R R h h =-=+-M 点横坐标为:2 2000724 M x R R R h h =+- 2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速

高考物理专题汇编物理速度选择器和回旋加速器(一)及解析

高考物理专题汇编物理速度选择器和回旋加速器(一)及解析 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1)求第二象限中电场强度和磁感应强度的比值 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

(物理)速度选择器和回旋加速器练习全集

(物理)速度选择器和回旋加速器练习全集 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

21 R 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。 【答案】(1)500m/s v =;(2)10 4.010kg m -=? 【解析】 【分析】 【详解】 (1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有 qE qvB = 解得带电粒子的速度大小 100m/s 500m/s 0.2 E v B = == (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有

相关主题
文本预览
相关文档 最新文档