当前位置:文档之家› 专项练习(二) 全等三角形的基本模型

专项练习(二) 全等三角形的基本模型

专项练习(二) 全等三角形的基本模型
专项练习(二) 全等三角形的基本模型

专项练习(二)全等三角形的基本模型?基本模型一平移模型

常见的平移模型:

图2-ZT-1

1.如图2-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=D B.

求证:∠A=∠E.

图2-ZT-2

2.如图2-ZT-3,点A,B,C,D在一条直线上,AB=CD,AE∥BF,CE∥DF.

求证:AE=BF.

图2-ZT-3

?基本模型二轴对称模型

常见的轴对称模型:

图2-ZT-4

3.如图2-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.

图2-ZT-5

4.如图2-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE.

求证:BE=CD.

图2-ZT-6

5.如图2-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.

求证:DE=CF.

图2-ZT-7

6.如图2-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.

图2-ZT-8

?基本模型三旋转模型

常见的旋转模型:

图2-ZT-9

7.如图2-ZT-10,O是线段AB和线段CD的中点.求证:(1)△A OD≌△BOC;

(2)AD∥BC.

图2-ZT-10

8.:如图2-ZT-11,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.

图2-ZT-11

?基本模型四一线三等角模型

图2-ZT-12

9.如图2-ZT-13,B,C,E三点在同一条直线上,AC∥DE,AC =CE,∠ACD=∠B.

(1)求证:BC=DE;

(2)假设∠A=40°,求∠BCD的度数.

图2-ZT-13

?基本模型五综合模型

平移+对称模型:

图2-ZT -14

10.如图2-ZT-15,点B,F,C,E在一条直线上,FB=CE,AB ∥ED,AC∥FD.求证:AC=DF.

图2-ZT-15

平移+旋转模型:

图2-ZT-16

11.:如图2-ZT-17,AB=BC,BD=EC,AB⊥BC,EC⊥BC.求证:AD⊥BE.

图2-ZT-17

详解详析

1.证明:∵BC ∥DE ,∴∠ABC =∠D. 在△ABC 和△EDB 中,?????AB =ED ,∠ABC =∠D ,BC =DB ,

∴△ABC ≌△EDB(SAS),∴∠A =∠

E. 2.证明:∵AE ∥BF ,∴∠A =∠FBD. ∵CE ∥DF ,∴∠ACE =∠D.

∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD. 在△ACE 和△BDF 中,?????∠A =∠FBD ,AC =BD ,∠ACE =∠D ,

∴△ACE ≌△BDF(ASA),∴AE =BF. 3.解:答案不唯一,如∠BAC =∠DAC. 理由:在△ABC 和△ADC 中,?????∠B =∠D ,∠BAC =∠DAC ,AC =AC , ∴△ABC ≌△ADC(AAS).

4.证明:∵BD ⊥AC ,CE ⊥AB ,

∴∠ADB =∠AEC =90°. 在△ADB 和△AEC 中,?????∠ADB =∠AEC ,AD =AE ,

∠A =∠A ,

∴△ADB ≌△AEC(ASA),∴AB =AC.

又AD =AE ,∴AB -AE =AC -AD , 即BE =CD. 5.证明:∵AC =BD ,∴AC +CD =BD +CD , 即AD =BC. 在△AED 和△BFC 中,?????∠A =∠B ,AD =BC ,∠ADE =∠BCF ,

∴△AED ≌△BFC(ASA),∴DE =CF.

6.证明:∵BE ⊥AC ,CD ⊥AB ,

∴∠BEA =∠CDA.

又∵∠A =∠A ,BE =CD ,

∴△ABE ≌△ACD ,∴AB =AC.

7.证明:(1)∵O 是线段AB 和线段CD 的中点, ∴AO =BO ,CO =DO. 在△AOD 和△BOC 中,?????AO =BO ,∠AOD =∠BOC ,OD =OC ,

∴△AOD ≌△BOC(SAS).

(2)∵△AOD ≌△BOC ,

∴∠A =∠B ,∴AD ∥BC.

8.证明:∵AB ⊥AC ,AD ⊥AE , ∴∠BAC =∠DAE =90°,

∴∠BAC -∠DAC =∠DAE -∠DAC , 即∠BAD =∠CAE. 在△ABD 和△ACE 中,?????∠BAD =∠CAE ,AB =AC ,∠ABD =∠ACE ,

∴△ABD ≌△ACE ,∴AD =AE. 9.解:(1)证明:∵AC ∥DE , ∴∠ACB =∠E ,∠ACD =∠D. ∵∠ACD =∠B ,∴∠D =∠B. 在△ABC 和△CDE 中,?????∠ACB =∠E ,∠B =∠D ,

AC =CE , ∴△ABC ≌△CDE(AAS),∴BC =DE.

(2)∵△ABC ≌△CDE ,

∴∠A =∠DCE =40°,

∴∠BCD =180°-40°=140°.

10.证明:∵FB =CE ,

∴FB +FC =CE +FC ,

即BC =EF.

∵AB ∥ED ,AC ∥FD ,

∴∠B =∠E ,∠ACB =∠DFE. 在△ABC 和△DEF 中,?????∠B =∠E ,BC =EF ,∠ACB =∠DFE ,

∴△ABC ≌△DEF(ASA), ∴AC =DF.

11.证明:∵AB ⊥BC ,EC ⊥BC , ∴∠ABD =∠C =90°. 在△ABD 和△BCE 中,?????AB =BC ,∠ABD =∠C ,BD =CE , ∴△ABD ≌△BCE ,∴∠A =∠CBE. ∵∠CBE +∠ABE =90°,

∴∠A+∠ABE=90°,∴AD⊥BE.

全等三角形竞赛试题精选及答案

八年级数学《全等三角形》竞赛试题精选 注: 此卷试题有一定难度,可能每题都不会轻松做下来,你需要提高能力,而且要学会思考难题,这样你才能在考试中得心应手,一定要认真思考,并学会总结,把一类题型掌握透彻,望认真做. 一.选择题与填空题: 1. 如图,已知AB ∥CD,AD ∥BC ,AC 与BD 交于O ,AE ⊥BD 于E ,CF ⊥BD 于F ,那么图中全等的三角形有【 】 A.5对 B.6对 C.7对 D.8对 2. 在△ABC 和A B C '''?中, AB A B ''=,B B '∠=∠,补充件后仍不一定能保证ABC ?≌A B C '''?,则补充的条件是【 】 A.BC B C ''= B.A A '∠=∠ C.AC A C ''= D.C C '∠=∠ 3. 如图,在等边△ABC 中,AD =BE =CF,D 、E 、F 不是中点,连结AE 、BF 、CD,构成 一些三角形.如果三个全等的三角形组成一组,那么图中全等的三角形的组数是【 】 A.3个 B.4个 C.5个 D.6个 4. 若在ABC ?中,∠ABC 的平分线交AC 于D,BC =AB +AD,∠C =300 ,则∠B 的度数 为【 】 A.450 B.600 C.750 D.900 5. 如图,AD 是ΔABC 的中线,E 、F 分别在AB 、AC 上且DE ⊥DF ,则( ) A .BE+CF >EF B.BE+CF=EF C .BE+CF <EF D.EF 与BE+CF 大小关系无法确定 6. (黄冈市中考题)在△ABC 和A B C '''?中, AB A B ''=,B B '∠=∠,补充条件后仍不一定能保证ABC ?≌A B C '''?,则补充的条件是( ) A.BC B C ''= B.A A '∠=∠ C.AC A C ''= D.C C '∠=∠ 7. (2001,北京市初二竞赛题)下面四个命题:①两个三角形有两边及一角对应相等,则这两个三角形全等;② 两个三角形有两角及一边对应相等,则这两个三角形全等; ③两个三角形的三 条边分别对应相等,则这两个三角形全等;④ 两个三角形的三个角分别对应相 等,则这两个三角形全等.其中真命题是( ) A. ② ③ B. ① ③ C. ③ ④ D. ② ④ 8. (第十五届江苏初二竞赛题)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( ) A.10个 B.12个 C.13个 D.14 9. 如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E,给出3个论断:①DE =FE;②AE =CE;③FC ∥AB. 以其中一个论断为结论,其余两个论断为条件,可作出3个命 题.其中正确的命题个数是_______. 10. 如图,如果正方形ABCD 中,CE =MN,∠MCE =350,那么∠ANM 的度数是________. 11. 如图,在ABC ?中,过A 点分别作AD ⊥AB,AE ⊥AC,且使AD =AB,AE =AC,BE 和CD 相交于O,则∠DOE 的度数是_____. 二.证明题: 1. 如图,在ΔABC 中,∠BAC=90°,AB=AC ,BE 平分∠ABC ,CE ⊥BE 。求证:BD=2CE 2. 已知:ΔABC 为等边三角形,点D 、E 、F 分别在AB 、BC 、CA 上,且ΔDEF 也是等边三角形,求证: Δ O F E D C B A C ' B ' A ' F E D C B A A F E D C B N M A E D C B A O E D C B

专题训练(三) 全等三角形的基本模型

专题训练(三)全等三角形的基本模型 ?模型一平移模型 常见的平移模型: 图3-ZT-1 1.如图3-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E. 图3-ZT-2 2.如图3-ZT-3,点A,B,C,D在同一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF. 图3-ZT-3 ?模型二轴对称模型 常见的轴对称模型: 图3-ZT-4 3.如图3-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由. 图3-ZT-5 4.如图3-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 图3-ZT-6 5.如图3-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.求证:DE=CF. 图3-ZT-7 6.如图3-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 图3-ZT-8 ?模型三旋转模型 常见的旋转模型: 图3-ZT-9

7.如图3-ZT-10,已知AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE. 图3-ZT-10 ?模型四一线三等角模型 图3-ZT-11 8.如图3-ZT-12,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B. (1)求证:BC=DE; (2)若∠A=40°,求∠BCD的度数. 图3-ZT-12 ?模型五综合模型 平移+对称模型:平移+旋转模型: 图3-ZT-13 图3-ZT-14 9.如图3-ZT-15,点B,F,C,E在同一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF. 3-ZT-15 10.如图3-ZT-16,AB=BC,BD=CE,AB⊥BC,CE⊥BC.求证:AD⊥BE. 图3-ZT-16 详解详析

全等三角形常见的几何模型图文稿

全等三角形常见的几何 模型 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

1、绕点型(手拉手模型) (1)自旋转:???????,造中心对称遇中点旋全等 遇等腰旋顶角,造旋转,造等腰直角 旋遇,造等边三角形 旋遇自旋转构造方法0000 018090906060 (2)共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和 △ BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) A E=DC (3) A E 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) B H 平分∠AHC (7) G F ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) A E=DC (3) A E 与DC 的夹角为60。 (4) A E 与DC 的交点设为H,BH 平分∠AHC 变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC

3、(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CB N,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由. (2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF. (1)如图1,当点D在边BC上时,求证:①BD=CF②AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由; (3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD 之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 例1、如图,正方形ABCD的边长为1,AB,AD上各存在一点P、Q,若△APQ的周长为2, 求PCQ 的度数。

全等三角形培优竞赛题精选

全等三角形证明 1、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 2.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C 3、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

4、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证: AC-AB=2BE 5、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 6、(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. F A E D C B

7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明): 8、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。 求证:AM 是△ABC 的中线。 M F E C B A 9.已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。 O E D C B A

全等三角形地经典模型(一)

作弊? 漫画释义 三角形9级 全等三角形的经典模型(二) 三角形8级 全等三角形的经典模型(一) 三角形7级 倍长中线与截长补短 满分晋级 3 全等三角形的 经典模型(一)

D C B A 45°45° C B A 等腰直角三角形数学模型思路: ⑴利用特殊边特殊角证题(AC=BC 或904545??°,,).如图1; ⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2; ⑶补全为正方形.如图3,4. 图1 图2 图3 图4 思路导航 知识互联网 题型一:等腰直角三角形模型

A B C O M N A B C O M N 【例1】 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点, ⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要 求证明) ⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保 持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明. 【解析】 ⑴OA =OB =OC ⑵连接OA , ∵OA =OC 45∠=∠=BAO C ° AN =CM ∴△ANO ≌△CMO ∴ON =OM ∴∠=∠NOA MOC ∴90∠+∠=∠+∠=?NOA BON MOC BON ∴90∠=?NOM ∴△OMN 是等腰直角三角形 ⑶△ONM 依然为等腰直角三角形, 证明:∵∠BAC =90°,AB =AC ,O 为BC 中点 ∴∠BAO =∠OAC =∠ABC =∠ACB =45°, ∴AO =BO =OC , ∵在△ANO 和△CMO 中, AN CM BAO C AO CO =?? ∠=∠??=? ∴△ANO ≌△CMO (SAS ) ∴ON =OM ,∠AON =∠COM , 又∵∠COM -∠AOM =90°, ∴△OMN 为等腰直角三角形. 【例2】 两个全等的含30o ,60o 角的三角板ADE 和三角板ABC ,如 图所示放置,,,E A C 三点在一条直线上,连接BD ,取BD 的 中点M ,连接ME ,MC .试判断EMC △的形状,并说明理由. 【解析】EMC △是等腰直角三角形. 典题精练 A B C O M N M E D C B A

初中数学三角形全等常用几何模型及构造方法大全(初二)

初二数学三角形全等 常用几何模型及构造方法大全 掌握它轻松搞定全等题! 全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~ 全等变换类型: (一)平移全等:平行等线段(平行四边形) (二)对称全等模型:角平分线或垂直或半角 1:角平分线模型; 2:对称半角模型; (三)旋转全等模型:相邻等线段绕公共顶点旋转 1. 旋转半角模型 2. 自旋转模型 3. 共旋转模型 4. 中点旋转

如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE 分析:将△ACE平移使EC与BD重合。B\D,上方交点,左右两个三角形,两边和大于第三边!

1:角平分线模型: 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 2:对称半角模型 说明:上图依次是45°、30°、45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折)30+60+90直角三角形对称(翻折) 翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1. 半角:有一个角含1/2角及相邻线段 2. 自旋转:有一对相邻等线段,需要构造旋转全等 3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点) 4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七) 1、旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 2、自旋转模型 构造方法: 遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称

八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案) 一、选择题 1.下列说法正确的是() A.两个等边三角形一定全等 B.腰对应相等的两个等腰三角形全等 C.形状相同的两个三角形全等 D.全等三角形的面积一定相等 【答案】D. 【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误; 全等三角形的面积一定相等,所以D正确, 故选D. 2.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为() A.30° B.50° C.60° D.100° 【答案】D. 【解析】∵△ABC≌△DEF,∠A=50°,∠C=30°, ∴∠F=∠C=30°,∠D=∠A=50°, ∴∠D=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°, 故选D. 3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是() A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE

【答案】D. 【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C, ∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE, 故A、B、C正确; AD的对应边是AE而非DE,所以D错误. 故选D. 4.已知图中的两个三角形全等,则∠1等于() A.72° B.60° C.50° D.58° 【答案】D. 【解析】如图, 由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°. ∵图中的两个三角形全等, ∴∠1=∠2=58°. 故选D. 5.下列说法不正确的是() A.如果两个图形全等,那么它们的形状和大小一定相同 B.图形全等,只与形状、大小有关,而与它们的位置无关 C.全等图形的面积相等,面积相等的两个图形是全等图形 D.全等三角形的对应边相等,对应角相等 【答案】C. 【解析】A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;

全等三角形培优竞赛讲义(二)

全等三角形培优竞赛讲义(二) 【知识点精读】 1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。 2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等; 4. 寻找对应元素的方法 (1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 相等的角是对应角,相等的边是对应边;相等的角所对的边是对应边,相等的边所对的角是对应边;两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。 ①翻折如图(1)?BOC≌?EOD,?BOC可以看成是由?EOD沿直线AO翻折180?得到的; ②旋转如图(2)?COD≌?BOA,?COD可以看成是由?BOA绕着点O旋转180?得到的; ③平移如图(3)?DEF≌?ACB,?DEF可以看成是由?ACB沿CB方向平行移动而得到的。 5. 判定三角形全等的方法: (1)边角边公理、角边角公理、边边边公理、斜边直角边公理 (2)推论:角角边定理 6. 注意问题: (1)在判定两个三角形全等时,至少有一边对应相等; (2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。 全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在

全等三角形常见的几何模型

1绕点型(手拉手模型) 遇600旋60°,造等边三角形 遇90°旋90°,造等腰直角遇等腰旋 顶角,造旋转全等遇中点旋1800,造中 心对称 (2)共旋转(典型的手拉手模型) 例1、在直线ABC的同一侧作两个等边三角形△ (1)△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△ AGB ◎△ DFB (5)△ EGB ◎△ CFB (6)BH 平分/ AHC (7)GF // AC 变式练习2、如果两个等边三角形△ ABD和厶BCE,连接AE与CD,证明: ("△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH平分/ AHC [D山3 Vi壮-U (I) ? 变式练习1、如果两个等边三角形△ABD和厶BCE,连接AE与CD,证明 (1) △ ABE ◎△ DBC (2) AE=DC (3) AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH 平分/ AHC (1自旋转:自旋转构造方法 ABD和厶BCE,连接AE与CD,证明:

3、(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM和厶CBN ,连接AN , BM .分别取BM, AN的中点E, F,连接CE, CF, EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1)中的“以AC , BC为边作等边△ ACM和厶CBN”改为“以AC, BC为腰在AB的同侧作等腰△ ACM和△ CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. B 例4、例题讲解: 1.已知△ ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F 逆时针排列),使/ DAF=60 ° ,连接CF. (1)如图1,当点D在边BC上时,求证:① BD=CF 宓AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、 CD之间存在的数量关系,并说明理由; ⑶如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。 D A D A M x N rt B D 例1、如图,正方形ABCD的边长为1, AB,AD上各存在一点P、0,若厶APQ的周长为2, A P

专项练习(二) 全等三角形的基本模型

专项练习(二)全等三角形的基本模型?基本模型一平移模型 常见的平移模型: 图2-ZT-1 1.如图2-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=D B. 求证:∠A=∠E. 图2-ZT-2 2.如图2-ZT-3,点A,B,C,D在一条直线上,AB=CD,AE∥BF,CE∥DF. 求证:AE=BF. 图2-ZT-3 ?基本模型二轴对称模型 常见的轴对称模型: 图2-ZT-4 3.如图2-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由. 图2-ZT-5 4.如图2-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE. 求证:BE=CD. 图2-ZT-6 5.如图2-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF. 求证:DE=CF. 图2-ZT-7 6.如图2-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 图2-ZT-8

?基本模型三旋转模型 常见的旋转模型: 图2-ZT-9 7.如图2-ZT-10,O是线段AB和线段CD的中点.求证:(1)△A OD≌△BOC; (2)AD∥BC. 图2-ZT-10 8.:如图2-ZT-11,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE. 图2-ZT-11 ?基本模型四一线三等角模型 图2-ZT-12 9.如图2-ZT-13,B,C,E三点在同一条直线上,AC∥DE,AC =CE,∠ACD=∠B. (1)求证:BC=DE; (2)假设∠A=40°,求∠BCD的度数. 图2-ZT-13 ?基本模型五综合模型 平移+对称模型: 图2-ZT -14 10.如图2-ZT-15,点B,F,C,E在一条直线上,FB=CE,AB ∥ED,AC∥FD.求证:AC=DF. 图2-ZT-15 平移+旋转模型: 图2-ZT-16 11.:如图2-ZT-17,AB=BC,BD=EC,AB⊥BC,EC⊥BC.求证:AD⊥BE. 图2-ZT-17 详解详析

全等三角形竞赛试题精选及答案word版本

八年级数学《全等三角形》竞赛试题精选 注:此卷试题有一定难度,可能每题都不会轻松做下来 ,你需要提高能力,而且要学会思考难题,这样你才能在 考试中得心应手,一定要认真思考,并学会总结,把一类题型掌握透彻,望认真做. 1.女口图,已知 AB// CD ,AD// BC, AC 与 BD 交于 0, AE L BD 于 E , CF L BD 于 F , 那 么图中全等的三角形有【 A.5对 B.6 对 C.7 】 对 D.8 对 2. 在厶ABC 和 ABC 中, AB A B , B B ,补充件后仍不一定能保证 AB C 也 ABC ,则补充的条件是【 】 A. BC B C B. A A C. AC AC ?选择题与填空题 △ D. C C 3. 如图,在等边△ ABC 中,AD = BE = CF ,D E 、F 不是中点,连结AE BF 、CD,构成 一些三角形?如果三个全等的三角形组成一组,那么图中全等的三角形的组数 是【 】 A.3个 B.4 个 C.5 个 D.6 个 4. 若在 ABC 中,/ ABC 的平分线交 AC 于 D ,BC = AB+ AD ,/ C = 300,则/ B 的度数 为【 】 0 0 — 0 0 A.45 B.60 C.75 D.90 5. 如图,AD 是厶ABC 的中线,E 、F 分别在 AB AC 上且DEL 。巳则( ) B C A . BE+CF> EF C. BE+C R EF B.BE+CF=EF D.EF 与BE+CF 大小关系无法确定 6.(黄冈市中考题)在厶ABC 和 ABC 中,AB A B ,B B ,补充条件后仍不一定能保证 ABC 也ABC ,则补充的条件是() A. BC BC B. A A C. AC AC D. C C 7. (2001,北京市初二竞赛题)下面四个命题:①两个三角形有两边及一角对应相等 ,则这两个三角形全等;② 两个三角形有两角及一边对应相等 ,则这两个三角形全等;③两个三角形的三 条边分别对应相等,则这两个三角形全等;④ 两个三角形的三个角分别对应相 等,则这两个三角形全等.其中真命题是() A.②③ B. ①③ C. ③④ D. ②④ 8.(第十五届江苏初二竞赛题)已知三角形的每条边长是整数 ,且小于等于 4,这样的

全等三角形证明中的基本模型

把一个图形经过平移、翻折、旋转后,它们的位置虽然变化了,但是形状、大小都没有改变,即平移、翻折、旋转前后的图形全等. 我们把平移、翻折(轴对称)、旋转称为几何变换. 这一讲我们就来学习基本变换下的全等三角形. 常见平移模型 【引例】如图,A E F B 、、、四点在一条直线上,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =. 求证:CF DE = 模块一 平移型全等 知识导航 知识互联网 夯实基础 全等中的基本模型 F E D C B A

【解析】 ∵AC CE ⊥,BD DF ⊥ ∴90ACE BDF ∠=∠=? 在Rt ACE △和Rt BDF △中 AC BD AE BF =?? =? ∴()Rt Rt HL ACE BDF △≌△ ∴CE DF =,AEC BFD ∠=∠ ∴CEF DFE ∠=∠ 在CEF △和DFE △中 CE DF CEF DFE EF FE =?? ∠=∠??=? ∴CEF DFE △≌△ ∴CF DE = 【例1】 如图1,A 、B 、C 、D 在同一直线上,AB CD =,DE AF ∥,且.DE AF = 求证:AFC DEB △≌△ 如果将BD 沿着AC 边的方向平行移动,图2,B 点与C 点重合时;图3,B 点在C 点右侧时,其余条件不变,结论是否成立,如果成立,请选择一种情况请予证明;如果不成立,请说明理由. 图1 F E D C B A 图2 F E D (C ) B A 图3 F E D C B A 常见轴对称模型 知识导航 模块二 对称型全等 能力提升

【例2】 ⑴如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A.3对 B.4对 C.5对 D.6对 ⑵如图,ABE △和ADC △是ABC △分别沿着AB ,AC 翻折到同一平面内形成的.若1:2:315:2:1∠∠∠=,则4∠=________. 【例3】 如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N . 求证:AM AN =. 常见旋转模型: 夯实基础 能力提升 知识导航 模块三 旋转型全等 E D N M C B A 43 2 1 E D C B A D O F E C B A

最新全等三角形经典模型总结

全等三角形相關模型總結 一、角平分線模型 (一)角平分線の性質模型 輔助線:過點G作GE⊥射線AC A、例題 1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那麼點D到直線AB の距離是cm. 2、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC. B、模型鞏固 1、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.

(二)角平分線+垂線,等腰三角形必呈現 A、例題 輔助線:延長ED交射線OB於F 輔助線:過點E作EF∥射線OB 例1、如圖,在△ABC中,∠ABC=3∠C,AD是∠BACの平分線,BE⊥AD於F . 求證: 1 () 2 BE AC AB =-.

例2、如圖,在△ABC中,∠BACの角平分線AD交BC於點D,且AB=AD,作CM⊥AD交 ADの延長線於M. 求證: 1 () 2 AM AB AC =+. (三)角分線,分兩邊,對稱全等要記全 兩個圖形飛輔助線都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC . A、例題 1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC於P,BQ平分∠ABC 交AC於Q,求證:AB+BP=BQ+AQ .

2、如圖,在△ABC中,AD是∠BACの外角平分線,P是AD上異於點Aの任意一點,試比較PB+PC與AB+ACの大小,並說明理由.

B、模型鞏固 1、在△ABC中,AB>AC,AD是∠BACの平分線,P是線段AD上任意一點(不與A重合). 求證:AB-AC>PB-PC . 2、如圖,△ABC中,AB=AC,∠A=100°,∠Bの平分線交AC於D, 求證:AD+BD=BC . 3、如圖,△ABC中,BC=AC,∠C=90°,∠Aの平分線交BC於D, 求證:AC+CD=AB .

全等三角形单元测试题(含答案)

第 11 章《全等三角形》单元检测题 一、选择题(每小题 4 分,共 40 分) 1.下列可使两个直角三角形全等的条件是 A. 一条边对应相等 B. 两条直角边对应相等 C.一个锐角对应相等 D. 两个锐角对应相等 2.如图,点 P 是△ ABC 内的一点,若 PB=PC ,则 A .点 P 在∠ ABC 的平分线上 B.点 P 在∠ AC B 的平分线上 C.点 P 在边 AB 的垂直平分线上 D .点 P 在边 BC 的垂直平分线上 3. 如图, AD 是△ ABC 的中线, E, F 分别是 AD 和 AD 延长线上的A 点,且 DE DF ,连结BF,CE.下列说法:①CE=BF;②△ABD 和△ ACD 面积相等;③BF ∥ CE;④△ BDF ≌△ CDE. 其中正确的有 E A.1 个 B.2个 C.3个 D. 4个 C B 4. 在直角梯形 ABCD 中, AD∥ BC,∠ B=90 °,E 为 AB 上一点,且 ED D 平分∠ ADC , EC 平分∠ BCD ,则下列结论中正确的有F A. ∠ADE =∠CDE B.DE ⊥ EC C.AD ·BC=BE·DE D.CD =AD +BC A 5. 使两个直角三角形全等的条件是C P A. 斜边相等 B. 两直角边对应相等O D B C. 一锐角对应相等 D. 两锐角对应相等 6.如图, OP 平分∠ AOB, PC⊥ OA 于 C, PD⊥ OB 于 D ,则 PC 与 PD 的大小关系 A. PC>PD B.PC= PD C.PC< PD D.不能确定 7.用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰 三角形;⑥等边三角形,其中不一定能拼成的图形是 A E D A. ①②③ B. ②③ C. ③④⑤ D. ③④⑥ O 8. 如图 ,平行四边形 ABCD 中 ,AC、 BD 相交于点 O,过点 O 作直线分 别交于 AD 、 BC 于点 E、 F,那么图中全等的三角形共有B F C A.2 对 B.4 对 C.6 对 D.8 对

全等三角形常见的几何模型

1、绕点型(手拉手模型) (1)自旋转:?????? ?,造中心对称遇中点旋 全等遇等腰旋顶角,造旋转 ,造等腰直角 旋遇,造等边三角形旋遇自旋转构造方法00 00018090906060 (2 )共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC ( 3) AE 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △ EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) AE 与DC 的交点设为H,BH 平分∠AHC

变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC (1)如图1,点C 是线段 AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF 的形状,并说明理由. (2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ? ②AC=CF+CD. (2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; (3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。

全等三角形综合测试题(含答案[经典试卷]

图 4 C A D B E 图2 A B D C E F 图1 图 3 45321第十一章 全等三角形综合复习测试题 一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为【】. (A )50(B )80(C )50或80(D )40或65 2. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为【】. (A )2平方厘米(B )1平方厘米(C ) 12平方厘米(D )1 4 平方厘米 3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为【】. (A )5厘米(B )7厘米(C )9厘米(D )11厘米 4.工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是【】. (A )HL (B )SSS (C )SAS (D )ASA 5. 利用三角形全等所测距离叙述正确的是( ) A.绝对准确 B.误差很大,不可信 C.可能有误差,但误差不大,结果可信 D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离 6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】. (A )145° (B )180° (C )225° (D )270° 7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′ (C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′ (D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长 8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B )4 (C )5 (D )6 9.将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是【】. (A )45(B )50(C )60(D )75

全等三角形经典模型总结

全等三角形相关模型总结 一、角平分线模型 (一)角平分线的性质模型 辅助线:过点G作GE⊥射线AC A、例题 1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB 的距离是cm. 2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC. B、模型巩固 1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.

(二)角平分线+垂线,等腰三角形必呈现 A、例题 辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F . 求证: 1 () 2 BE AC AB =-. 例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交 AD的延长线于M. 求证: 1 () 2 AM AB AC =+.

(三)角分线,分两边,对称全等要记全 两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC . A、例题 1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ . 2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.

B、模型巩固 1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合). 求证:AB-AC>PB-PC . 2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D, 求证:AD+BD=BC . 3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D, 求证:AC+CD=AB .

全等三角形竞赛试题精选

全等三角形竞赛试题精选 一、选择题与填空题: 1. 在△ABC 和A B C '''?中, AB A B ''=,B B '∠=∠,补充件后仍不一定能保证ABC ?≌ A B C '''?,则补充的条件是………………………………………………【 】 A.BC B C ''= B.A A '∠=∠ C.AC A C ''= D.C C '∠=∠ 2. 若在ABC ?中,∠ABC 的平分线交AC 于D,AC =AB +BD,∠C =300,则∠B 的度数为……………………………………………………………………….【 】 A.450 B.600 C.750 D.900 3. 如图,已知AB ∥CD,AD ∥BC ,AC 与BD 交于O ,AE ⊥BD 于E ,CF ⊥BD 于F ,那么图中全等的三角形有……………………………………………….【 】 A.5对 B.6对 C.7对 D.8对 4. 如图,在等边△ABC 中,AD =BE =CF,D 、E 、F 不是中点,连结AE 、BF 、CD,构成一些三角形.如果三个全等的三角形组成一组,那么图中全等的三角形的组数是…………………………………………………………………….【 】 A.3个 B.4个 C.5个 D.6个 O F E D C B A C ' B ' A ' F E D C B A

5. 如图,AD 是ΔABC 的中线,E 、F 分别在AB 、AC 上且DE ⊥DF ,则……【 】 A .BE+CF >EF B.BE+CF=EF C .BE+CF <EF D.EF 与BE+CF 大小关系无法确定 6. 在△ABC 和A B C '''?中, AB A B ''=,B B '∠=∠,补充条件后仍不一定能保证ABC ?≌A B C '''?,则补充的条件是……………………………………….【 】 A.BC B C ''= B.A A '∠=∠ C.AC A C ''= D.C C '∠=∠ 7. 下面四个命题:①两个三角形有两边及一角对应相等,则这两个三角形全等;② 两个三角形有两角及一边对应相等,则这两个三角形全等; ③两个三角形的三条边分别对应相等,则这两个三角形全等;④ 两个三角形的三个角分别对应相等,则这两个三角形全等.其中真命题是………………….【 】 A. ② ③ B. ① ③ C. ③ ④ D. ② ④ 8. 已知三角形每条边长是整数,且不大于4,这样互不全等的三角形有.【 】 A.10个 B.12个 C.13个 D.14 9. 如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E,给出3个论断:①DE =FE;②AE =CE;③FC ∥AB. 以其中一个论断为结论,其余两个论断为条件,可作出3个命题.其中正确的命题个数是 . A F E D C B N A E D A O E D B

人教版八年级数学全等三角形的常见模型总结(精选.)

人教版八年级数学全等三角形常见模型总结 要点梳理 全等三角形的判定与性质 类型一:角平分线 模型应用 1.角平分性质模型:(利用角平分线的性质) 辅助线:过点G 作GE ⊥射线AC 例题解析 例:(1)如图1,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是 cm. (2)如图2,已知,∠1=∠2,∠3=∠4,求证:AP 平分∠ BAC. 图1 图2 【答案】①2 (提示:作DE ⊥AB 交AB 于点E ) ②21∠=∠Θ,PN PM =∴,43∠=∠Θ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,. 类型二:角平分线模型应用 2.角平分线,分两边,对称全等(截长补短构造全等)

两个图形的辅助线都是在射线OA上取点B,使OB=OA,从而使△OAC≌△OBC. 例题解析 例1:在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。 证明:如图(1), 过O作OD∥BC交AB于D, ∴∠ADO=∠ABC=180°-60°-40°=80°, 又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO, 又∵∠DAO=∠QAO,OA=AO, ∴△ADO≌△AQO, ∴OD=OQ,AD=AQ, 又∵OD∥BP, ∴∠PBO=∠DOB, 又∵∠PBO=∠DBO, ∴∠DBO=∠DOB, ∴BD=OD, 又∵∠BPA=∠C+∠PAC=70°, ∠BOP=∠OBA+∠BAO=70°, ∴∠BOP=∠BPO, ∴BP=OB, ∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。 解题后的思考: (1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。 (2)本题利用“平行法”的解法也较多,举例如下: ①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。

相关主题
文本预览
相关文档 最新文档