当前位置:文档之家› 08-全等三角形经典模型及例题详解

08-全等三角形经典模型及例题详解

08-全等三角形经典模型及例题详解
08-全等三角形经典模型及例题详解

辅助线模型

考点分析:

全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。

典型例题

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。

全等三角形辅助线

找全等三角形的方法:

(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;

(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;

(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;

(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:

①延长中线构造全等三角形;

②利用翻折,构造全等三角形;

③引平行线构造全等三角形;

④作连线构造等腰三角形。

常见辅助线的作法有以下几种:

(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

思路分析:

1)题意分析:本题考查等腰三角形的三线合一定理的应用

2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:

证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,

∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,

∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,

∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。

思路分析:

1)题意分析:本题考查全等三角形常见辅助线的知识。

2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程:

证明:延长AD到E,使DE=AD,连接BE。

又因为AD是BC边上的中线,∴BD=DC

又∠BDE=∠CDA

ΔBED≌ΔCAD,

故EB=AC,∠E=∠2,

∵AD是∠BAC的平分线

∴∠1=∠2,

∴∠1=∠E,

∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。

解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。

思路分析:

1)题意分析:本题考查角平分线定理的应用。

2)解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。

解答过程:

证明:作CE⊥AB于E,CF⊥AD于F。

∵AC平分∠BAD,

∴CE=CF。

在Rt△CBE和Rt△CDF中,

∵CE=CF,CB=CD,

∴Rt△CBE≌Rt△CDF,

∴∠B=∠CDF,

∵∠CDF+∠ADC=180°,

∴∠B+∠ADC=180°。

解题后的思考:

①关于角平行线的问题,常用两种辅助线;

②见中点即联想到中位线。

(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF 交BC于D,若EB=CF。

求证:DE=DF。

思路分析:

1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:因为DE、DF所在的两个三角形ΔDEB与ΔDFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。

解答过程:

证明:过E作EG//AC交BC于G,

则∠EGB=∠ACB,

又AB=AC,∴∠B=∠ACB,

∴∠B=∠EGB,∴∠EGD=∠DCF,

∴EB=EG=CF,

∵∠EDB=∠CDF,∴ΔDGE≌ΔDCF,

∴DE=DF。

解题后的思考:此题的辅助线还可以有以下几种作法:

例5:△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。

思路分析:

1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:本题要证明的是AB+BP=BQ+AQ。形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过O作BC的平行线。得△ADO≌△AQO。得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了。

解答过程:

证明:如图(1),过O作OD∥BC交AB于D,

∴∠ADO=∠ABC=180°-60°-40°=80°,

又∵∠AQO=∠C+∠QBC=80°,

∴∠ADO=∠AQO,

又∵∠DAO=∠QAO,OA=AO,

∴△ADO≌△AQO,

∴OD=OQ,AD=AQ,

又∵OD∥BP,

∴∠PBO=∠DOB,

又∵∠PBO=∠DBO,

∴∠DBO=∠DOB,

∴BD=OD,

又∵∠BPA=∠C+∠PAC=70°,

∠BOP=∠OBA+∠BAO=70°,

∴∠BOP=∠BPO,

∴BP=OB,

∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

解题后的思考:

(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。(2)本题利用“平行法”的解法也较多,举例如下:

①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。

④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从而得以解决。

小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。

(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

例6:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

求证:CD=AD+BC。

思路分析:

1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:

证明:在CD上截取CF=BC,如图乙

∴△FCE≌△BCE(SAS),

∴∠2=∠1。

又∵AD∥BC,

∴∠ADC+∠BCD=180°,

∴∠DCE+∠CDE=90°,

∴∠2+∠3=90°,∠1+∠4=90°,

∴∠3=∠4。

在△FDE与△ADE中,

∴△FDE≌△ADE(ASA),

∴DF=DA,

∵CD=DF+CF,

∴CD=AD+BC。

解题后的思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:

截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;

补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。

2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。

小结:三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

同步练习

(答题时间:90分钟)

这几道题一定要认真思考啊,都是要添加辅助线的,开动脑筋好好想一想吧!加油!你一定行!

1、已知,如图1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。

求证:∠BAD+∠BCD=180°。

2、已知,如图2,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD。求证:∠BAP+∠BCP=180°。

3、已知,如图3,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。

试题答案

1、分析:因为平角等于180°,因而应考虑把两个不在一起的角通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长法或补短法”来实现。

证明:过点D作DE垂直BA的延长线于点E,作DF⊥BC于点F,如图1-2

∴Rt△ADE≌Rt△CDF(HL),

∴∠DAE=∠DCF。

又∠BAD+∠DAE=180°,

∴∠BAD+∠DCF=180°,

即∠BAD+∠BCD=180°

2、分析:与1相类似,证两个角的和是180°,可把它们移到一起,让它们成为邻补角,即证明∠BCP=∠EAP,因而此题适用“补短”进行全等三角形的构造。

证明:过点P作PE垂直BA的延长线于点E,如图2-2

∴Rt△APE≌Rt△CPD(SAS),

∴∠PAE=∠PCD

又∵∠BAP+∠PAE=180°。

∴∠BAP+∠BCP=180°

3、分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC 至E使CE=CD,或在AB上截取AF=AC。

证明:方法一(补短法)

延长AC到E,使DC=CE,则∠CDE=∠CED,如图3-2

∴△AFD≌△ACD(SAS),∴DF=DC,∠AFD=∠ACD。又∵∠ACB=2∠B,

∴∠FDB=∠B,

∴FD=FB。

∵AB=AF+FB=AC+FD,

∴AB=AC+CD。

4、证明:(方法一)

将DE两边延长分别交AB、AC于M、N,

在△AMN中,AM+AN>MD+DE+NE;①

在△BDM中,MB+MD>BD;②

在△CEN中,CN+NE>CE;③

由①+②+③得:

AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE

∴AB+AC>BD+DE+EC

(方法二:图4-2)

延长BD交AC于F,延长CE交BF于G,在△ABF、△GFC和△GDE中有:AB+AF>BD+DG+GF ①

GF+FC>GE+CE ②

DG+GE>DE ③

由①+②+③得:

AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE

∴AB+AC>BD+DE+EC。

5、分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有

AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去

∴△ACD≌△EBD(SAS)

∴BE=CA(全等三角形对应边相等)

∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)

∴AB+AC>2AD。

6、分析:欲证AC=BF,只需证AC、BF所在两个三角形全等,显然图中没有含有AC、BF的两个全等三角形,而根据题目条件去构造两个含有AC、BF的全等三角形也并不容易。这时我们想到在同一个三角形中等角对等边,能够把这两条线段转移到同一个三角形中,只要说明转移到同一个三角形以后的这两条线段,所对的角相等即可。

思路一、以三角形ADC为基础三角形,转移线段AC,使AC、BF在三角形BFH 中

方法一:延长AD到H,使得DH=AD,连结BH,证明△ADC和△HDB全等,得AC=BH。

通过证明∠H=∠BFH,得到BF=BH。

∴ △ADC≌△HDB(SAS)

∴ AC=BH,∠H=∠HAC

∵ EA=EF

∴∠HAE=∠AFE

又∵∠BFH=∠AFE

∴BH=BF

∴BF=AC

方法二:过B点作BH平行AC,与AD的延长线相交于点H,证明△ADC和△HDB全等即可。

小结:对于含有中点的问题,通过“倍长中线”可以得到两个全等三角形。而过一点作已知直线的平行线,可以起到转移角的作用,也起到了构造全等三角形的作用。

思路二、以三角形BFD为基础三角形。转移线段BF,使AC、BF在两个全等三角形中

方法三:延长FD至H,使得DH=FD,连接HC。证明△CDH和△BDF全等即可。

∴△BFD≌△CHD(SAS)

∴∠H=∠BFH

∵ AE=FE

∴∠HAC=∠AFE

又∵∠AFE=∠BFH

∴∠H=∠HAC

∴ CH=CA

∴ BF=AC

方法四:过C点作CH平行BF,与AD的延长线相交于点H,证明△CDH和△BDF全等即可。

注:更多珍贵限量版免费学习资料及在线答疑——

请加入吴铮QQ答疑中转群:246440018,验证信息:快乐铮满分,入群后请仔细阅读群公告哦O(∩_∩)O

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形练习题很经典

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE≌△ACD ,∠1=∠2, ∠B=∠C, 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条 第3题图 第5题图 第2题图 A B C D

件是( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC⊥CD,则不正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC≌△CE D D.∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC、∠ACB 的平分 第9题图 第7题图 第6题图

全等三角形知识点讲解经典例题含答案

全等三角形 一、目标认知 学习目标: 1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素; 2.探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式。 重点: 1. 使学生理解证明的基本过程,掌握用综合法证明的格式; 2 .三角形全等的性质和条件。 难点: 1.掌握用综合法证明的格式; 2 .选用合适的条件证明两个三角形全等 经典例题透析 类型一:全等三角形性质的应用 1、如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角. 思路点拨:AB=AC,AB和AC是对应边,∠A是公共角,∠A和∠A是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解. 解析:AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠AEC和∠ADB是对应角. 总结升华:已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边. 已知两对对应边,第三对边是对应边,对应边所对的角是对应角.

举一反三: 【变式1】如图,△ABC≌△DBE.问线段AE和CD相等吗?为什么? 【答案】证明:由△ABC≌△DBE,得AB=DB,BC=BE, 则AB-BE=DB-BC,即AE=CD。 【变式2】如右图,,。 求证:AE∥CF 【答案】 ∴AE∥CF 2、如图,已知ΔABC≌ΔDEF,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC的长。 思路点拨:由全等三角形性质可知:∠DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ACB的度数与BF的长即可。 解析:在ΔABC中, ∠ACB=180°-∠A-∠B, 又∠A=30°,∠B=50°, 所以∠ACB=100°. 又因为ΔABC≌ΔDEF, 所以∠ACB=∠DFE, BC=EF(全等三角形对应角相等,对应 边相等)。 所以∠DFE=100° EC=EF-FC=BC-FC=FB=2。 总结升华:全等三角形的对应角相等,对应边相等。 举一反三: 【变式1】如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

《全等三角形》典型例题课件.doc

全等三角形知识梳理一、知识网络 性质对应角相等对应边相等 边边边SSS 全等形全等三角形边角边SAS 应用 判定角边角ASA 角角边AAS 斜边、直角边HL 角平分线 作图 性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因 此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 1

3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 全等三角形的判定训练 1.已知AD 是⊿ABC 的中线,BE⊥AD,CF⊥AD,问BE= C F 吗?说明理由。 A F B C D E 2.已知AC= B D,AE =CF,BE=DF ,问AE∥CF 吗? E F A C B D 3.已知AB= C D,BE =DF,AE =CF ,问AB∥CD 吗? A B E F C D 4.已知AC=AB,AE= A D,∠1=∠2,问∠3=∠4 吗? A 1 2 E D 3 4 B C 5. 如图, 已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC请, 说明∠A=∠C. 2

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

全等三角形中题型归纳讲解

全等三角形中题型归纳 一、含有公共边(线段) 例1已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。求证:AF=CE 。 二、含有公共角(夹角) 例2已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 三、直角三角形 例3已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与 CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。(1) BF =AC (2) CE = BF (3)CE 与BC 的大小关系如何。 四、角平分线 例4.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线. 五、中线(点) 例5如图,在△ABC 中,AD 是中线,BE 交AD 于F,且AE=EF,说明AC=BF 的理由 1 2 F E A C D B A E D C B

六、二次全等 例6已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 七、线段和差倍分 例7如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求 证:AD +BC =AB . 八、常见辅助线归纳总结 例8如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。 例9在△ABC 中,,AB=AC , 在AB 边上取点D ,在AC 延长线上了取点E ,使CE=BD , 连接DE 交BC 于点F ,求证DF=EF . 九、全等与等腰三角形 例10已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE 求证:OA =OD . P E D C B A A D B E F C B A E D

全等三角形经典题型50题带答案知识讲解

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

证明:连接BF 和EF 。因为 BC=ED,CF=DF,∠BCF=∠EDF 。所以 三角形BCF 全等于三角形EDF(边角边)。所以 BF=EF,∠CBF=∠DEF 。连接BE 。在三角形BEF 中,BF=EF 。所以 ∠EBF=∠BEF 。又因为 ∠ABC=∠AED 。所以 ∠ABE=∠AEB 。所以 AB=AE 。在三角形ABF 和三角形AEF 中, AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。所以 三角形ABF 和三角形AEF 全等。所以 ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C C D B A B A C D F 2 1 E

全等三角形经典例题(含答案)

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长.

3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC.

5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.

7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.

11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

八年级数学全等三角形经典例题练习及解析

全等三角形单元 预习测试题 小题3分,共30分) 一、选择题(每 1.下列说法错误的是() A .全等三角形的对应边相等B.全等三角形的对应角相等 C.全等三角形的周长相等D.全等三角形的高相等 2.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是() A .∠1=∠2 B.AC= C A C.AB=AD D.∠B=∠D 第2 题第3 题第5 题第7 题 3.如图,AB∥DE,AC∥DF ,AC= D F ,下列条件中不能判断△ABC≌△DEF 的是() A .A B =DE B.∠B=∠E C.EF =B C D.EF∥BC 4.长为3cm,4 c m,6 c m,8cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为() A .一个人取6cm 的木条,一个人取8cm 的木条B.两人都取6cm 的木条 C.两人都取8cm 的木条D.B、C 两种取法都可以 5.△ABC 中,AB= A C,三条高AD,BE,CF 相交于O,那么图中全等的三角形有() A . 5 对B.6 对C.7 对D.8 对 6.下列说法中,正确的有() ①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角、一 边相等的两个三角形全等;④两边、一角对应相等的两个三角形全等. A . 1 个B.2 个C.3 个D.4 个 7.如图,已知△ABC 中,∠ABC=45°,AC =4,H 是高AD 和BE 的交点,则线段B H 的长度为() A .B.4 C.D.5 8.如图,ABC 中,AD 是它的角平分线,AB=4,AC=3,那么△ABD 与△ADC 的面积比是() A .1:1 B.3:4 C.4:3 D.不能确定

最新全等三角形题型归纳(经典完整)

一,证明边或角相等 方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等; 如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2) 同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角 形全等,而且一般是在双垂直的图形中) 1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。 求证:HB=HC 。 2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF . A E D C B 654 32 1E D C B A F G E D C B A F B C A M N E 1234

E D C B A 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD) 证明两条线段和等于另一条线段,常常使用截长补短法。①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。 证明两条线段差等于另一条线段,只需把差化成和来解决即可。 1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求 证:AD +BC =AB . 2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ; 3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD P E D C B A

全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案) 1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求AD 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD 即 BE=AC=2 在三角形 ABE 中,AB-BE

形AEF 全等。所以Z BAF=Z EAF ( Z 1= Z 2)。

4.已知:/ 1= / 2, CD=DE , EF//AB,求证:EF=AC 证明:过E点,作EG//AC ,交AD延长线于G则 / DEG=Z DCA / DGE=/2 又;CD=DEU AD3" GDE ( AAS ) ??? EG=ACv EF//AB /-Z DFE=Z 1 v/ 1= / 2:丄 DFE=Z DG E A EF=EG:EF=AC 5.已知:AD 平分Z BAC, AC=AB+BD,求证:Z B=2 / C 证明:在AC上截取AE=AB,连接 ED ?/ AD 平分 Z BACA Z EAD=Z BAD又 ?/ AE=AB , AD=AD :?" AEM" ABD ( SAS) ?:Z AED=ZB , DE=DB ?/ AC=AB+BD AC=AE+CE ?: CE=DE:Z C=Z ED C vZ AED=Z C+Z EDC=2Z C: Z B=2ZC 6.已知:AC平分Z BAD ,CE丄AB, Z B+ Z D=180 °,求证:AE=AD+BE 证明:在AE上取F,使EF = EB,连接CF因为CE丄AB 所以Z CEB=Z CEF= 90 °因 为EB = EF,CE = CE,所以△ CEB^A CEF 所以Z B=Z CFE 因为Z B+Z D= 180 Z CFE+Z CFA= 180 ° 所以Z D=Z CFA 因为AC 平分Z BAD 所以Z DAC=Z FAC 又因 为AC = AC 所以△ ADC^A AFC ( SAS) 所以AD = AF 所以AE = AF + FE = AD + BE 12.如图,四边形ABCD中,AB // DC,BE、CE分别平分Z ABC、Z BCD,且点E在AD 上。求证: BC=AB+DC。 B D A

全等三角形——经典试题汇编 含答案

北京中考/一模之全等三角形试题精编 北京中考 16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,. 求证:BC ED =. 16、△BAC ≌△BCD (SAS ) 所以,BC =ED 海淀一模 15. 如图,AC //FE , 点F 、C 在BD 上,AC=DF , BC=EF . 求证:AB=DE . 15.证明:∵ AC //EF , ∴ ACB DFE ∠=∠. ………………………………………1分 在△ABC 和△DEF 中, ?? ? ??=∠=∠=,,, EF BC DFE ACB DF AC ∴ △ABC ≌△DEF . ………………………………4分 ∴ AB=DE . ……………………5分 东城一模 16. 如图,点B C F E 、、、在同一直线上,12∠=∠,BF EC =,要使ABC ?≌DEF ?, 还需添加的一个条件是 (只需写出一个即可),并加以证明. A B C D E F A B C D E F

16.(本小题满分5分) 解:可添加的条件为:AC DF B E A D =∠=∠∠=∠或或(写出其中一个即可). …1分 证明:∵ BF EC =, ∴ BF CF EC CF -=-. 即 BC EF = . -------2分 在△ABC 和△DEF 中, , 12,,AC DF BC EF =?? ∠=∠??=? ∴ △ABC ≌△DEF . --------5分 西城一模 15.如图,在△ABC 中,AB=CB ,∠ABC=90o,D 为AB 延长线 上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC . (1) 求证:△ABE ≌△CBD ; (2) 若∠CAE=30o,求∠BCD 的度数. 15.(1)证明:如图1. ∵ ∠ABC=90o,D 为AB 延长线上一点, ∴ ∠A BE=∠CBD=90o . …………………………………………………1分 在△ABE 和△CBD 中, ?? ? ??=∠=∠=,,,BD BE CBD ABE CB AB ∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90o, ∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30o, ∴ ∠BAE =15°. ……………………………………………………………4分 ∵ △ABE ≌△CBD , ∴ ∠BCD =∠BAE =15°. ……………………………………………………5分 图1

相关主题
文本预览
相关文档 最新文档