当前位置:文档之家› 光伏阵列设计时遮挡影响研究

光伏阵列设计时遮挡影响研究

光伏阵列设计时遮挡影响研究
光伏阵列设计时遮挡影响研究

光伏阵列设计时遮挡影响研究

发表时间:2019-03-05T11:11:27.013Z 来源:《建筑细部》2018年第16期作者:沈檬[导读] 本文对光伏发电项目场外地形遮挡和场内间前后遮挡进行了初步分析,结合实际光伏发电项目

中国能源工程(海门)发展有限公司北京市 100020 摘要:本文对光伏发电项目场外地形遮挡和场内间前后遮挡进行了初步分析,结合实际光伏发电项目,通过对计算间距公式和计算机日照模拟图示阴影进行比较分析,得出合理间距设计结果。关键词:光伏阵列;设计时;遮挡影响研究。一引言

在太阳能光伏发电项目的设计工作中需要根据当地的气象数据、装机容量、方阵布置、组件参数、系统结构、系统效率等多种要素来综合评估光伏电站建成后第一年的理论发电量和等效满负荷小时数,评估方法可以依靠PVSYST模拟软件等多种资源设计软件通过参数设置、损耗参数修正、阴影计算等内容来进行模拟计算。

其中,阴影遮挡是经常遇到的一个关键问题,对光伏的发电特性影响占主导地位,在光伏系统的设计中,可能出现的阴影可分为随机隐形和系统阴影两种。随机阴影产生的原因、时间和部位都不确定。系统阴影是由于周围比较固定的建筑、树木以及建筑本身的女儿墙、冷却塔、楼梯间、水箱等遮挡而造成的。采用阵列式布置的光伏系统,其前排组件可能在后排组件上产生的阴影也属于系统阴影。处于阴影范围的组件不能接收直接辐射,但可以接收散射辐射,虽然散射辐射也可以使太阳能电池组件工作,但两类辐射的强度差异仍然造成输出功率的明显不同。消除随机阴影的影响主要依靠光伏系统的监控子系统。对于系统阴影,则应注意回避在一定直接辐射强度之上时诸多遮挡物的阴影区。

二设计依据

根据国家标准《光伏发电站设计规范》中要求:“7.2 光伏方阵布置”“2、地面光伏发电站的光伏方阵布置应满足下列要求:光伏方阵各排、列的布置间距应保证每天 9:00~15:00(当地真太阳时)时段内前、后、左、右互不遮挡。” 我国多处于北半球,每年在冬至时南北向影子最长,因此,设计时应以该日前后排光伏阵列之间的距离要保证上午 9 点到下午3 点(当地真太阳时)之间前排不对后排造成遮挡。 1)真太阳时

定义真太阳视圆面中心连续两次上中天(通俗的说就是太阳连续两次达到头顶)的时间间隔为1真太阳日。1真太阳日划分为24真太阳小时,又取1真太阳小时=60真太阳分,1真太阳分=60真太阳秒。起初,天文学上把真太阳日的计量起点定为真太阳上中天(正午),真太阳时的时刻就是其时角。为了照顾生活习惯,1925年起,把真太阳日的起点定在下中天(半夜)时刻。因为真太阳时是观测太阳视圆面中心得到的,因此简称视时。 2)平太阳时

真太阳的视运动(就是我们看到的太阳每天绕着地球从东方升起、西方落下)是地球自转和公转运动的共同反映。地球的公转轨道是椭圆,它的公转速度不是均匀的,而且自转轴不垂直于公转轨道面,致使天赤道与黄道并不重合。这两个原因使得真太阳日的长度天天都不同。这种时间标准与日常生活的节律一致,但是不便于计量,不能适合科学发展的需要。定义平太阳连续两次上中天的时间间隔为1平太阳日。同样,平太阳日也划分为平太阳小时、平太阳分和平太阳秒。 3)真太阳时与平太阳时之间的换算平太阳时以平太阳作为标准,而平太阳是一个假想的辅助点,无法观测,但是,它可以通过真太阳时来推算:时差=真太阳时(视时)-平太阳时(平时)其中:时差可以根据地球绕太阳公转的规律由天体力学算出,在每年的天文年历中可以查到。三排布设计方案

本工程项目建设容量为30MWp,混合式(29MWp固定式,1MWp斜单轴跟踪式)安装235Wp多晶硅太阳电池组件。以下仅对29MWp 固定式安装进行介绍和分析。

不同跟踪方式在当地条件下对发电量(与固定式相比)的影响不同。据统计全球大型光伏电站大多采用固定式,倾角季度调节式在大型光伏电站使用较少。另据有关研究表明,单轴跟踪比固定式发电量一般可提高15~25%,双轴跟踪比固定式发电量提高20~35%。固定安装单元光伏方阵设计为竖向2排,10×2=20块组件排列,设计倾角为35°。组件与组件之间留有2cm空隙以减少方阵面上的风压。

光伏阵列通常成排安装,一般要求在冬至影子最长时,两排光伏阵列之间的距离要保证上午 9 点到下午3 点之间前排不对后排造成遮挡。

考虑当地纬度及太阳辐射角度,为了避免前后排方阵之间遮挡,光伏电池组件方阵间距(D)应不小于: D=cosβ*H/tan〔arcsin(0.648cosΦ-0.399sinΦ)〕其中,β为电站所在地冬至日上午9:00的太阳方位角: sinα= sinΦsinδ+cosΦcosδcosω sin β = cosδsinω/cosα

Φ为当地纬度,

H为方阵垂直高度。

δ为太阳赤纬,冬至日的太阳赤纬为-23.45度; ω为时角,上午9:00 的时角为45度。前后排单元光伏阵列间距D 为:

太阳能光伏组件支架的设计选型

1.引言 目前,在全球能源供应紧张和环境问题日益严重的情况下,经济和社会的可持续发展受到了巨大挑战,发展和利用清洁而安全的可再生能源受到了广泛重视。虽然目前已经实现利用的可再生替代能源种类较多,但从可用总量上看,水能、风能、潮汐能都太小,不足以满足人类需求。太阳能作为一种资源丰富,分布广泛且可永久利用的可再生能源,具有极大的开发利用潜力。特别是进入21世纪,太阳能光伏发电产业发展非常迅速。太阳能光伏发电在不远的将来不仅要替代部分常规能源,而且将成为世界能源供应的主体,将给能源发展带来革命性的变化。根据欧洲联合委员会研究中心(JRC)的预测,到21世纪末,可再生能源在能源结构中将占到80%以上,其中太阳能发电占到60%以上,充分显示出其重要的战略地位。 太阳能光伏组件支架是固定太阳能电池板的重要部件,在获得太阳能电池板最大发电效率的前提下,保证支架的安全可靠性是光伏组件厂家需要考虑和研究。根据不同形式的太阳能光伏发电的需要,支架系统一般分为单立柱太阳能支架、双立柱太阳能支架、矩阵太阳能支架、屋顶太阳能支架、墙体太阳能支架、追踪系统系列支架等若干规格型号,同时按照不同的安装方式又分为地面安装系统、屋顶安装系统和建筑节能一体化支架安装系统。 2.光伏组件支架设计 2.1 光伏组件支架结构 目前商品化的太阳能光伏组件安装支架大多不可以调节角度,采用跟踪方式进行太阳能发电又浪费大量人力物力,投入产出比受到一定程度的局限。本文设计了一种可根据不同纬度地区而调节角度的光伏系统支架,(如图1所示)该支架系统可以根据需要调节水平角度,不但适应于地面光伏电站的使用,同时还可以在屋顶光伏电站使用,在安装过程中可以快速调整支架的安装角度,避免了常规光伏组件支架不能够迅速调整安装角度的缺点,同时该组件支架采用高碳钢结构,表面经过热镀锌材料,具有成本低,强度高,选材耐腐蚀强,可以

光伏组件与阵列设计

1.1 引言 太阳电池是将太阳光直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是因为:1,

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

太阳能光伏组件生产制造实用技术教程

太阳能光伏组件生产制造实用技术教程第1xx 太阳能光伏发电及光伏组件 1.1 太阳能光伏发电概述 1.2 太阳能光伏发电系统的构成及工作原理 1.3 太阳能光伏组件与方阵 第2xx 太阳能光伏组件的主要原材料及部件 2.1 太阳能电池片 2.2 面板玻璃 2.3 EVA胶膜 2.4 背板材料TPT 2.5 铝合金边框 2.6 互连条及助焊剂 2.7 有机硅胶 2.8 接线盒及连接器 2.9 原材料的检验标准及方法 第3xx 太阳能光伏组件生产工序及工艺流程 第4xx 电池片的分选、检测和切割工序 第5xx 电池片的焊接工序 第6xx 叠层铺设工序 第7xx 层压工序 第8 章装边框及清洗工序

第9xx 光伏组件的检验测试 第10xx 光伏组件的包装 第11xx 常用设备及操作、维护要点 第12xx 光伏组件的生产管理 12.1 光伏组件生产常用图表及技术文件 12.2 光伏组件的板型设计 12.3光伏组件生产的6S管理 12.4 光伏组件生产车间管理制度 12.5 光伏组件生产工序布局 附录 1 常用光伏组件规格尺寸及技术参数 附录2 IEC61215质量检测标准 附录3 ............. 第1xx 太阳能光伏发电及光伏组件 本章主要介绍太阳能光伏发电系统的特点、构成、工作原理及分类。 使读者对太阳能光伏发电系统有一个大致的了解。 1.1 太阳能光伏发电概述 1.1.1 太阳能光伏发电简介 太阳能光伏发电的基本原理是利用太阳能电池(一种类似于晶体二极管的半导体器件)的光生伏打效应直接把太阳的辐射能转变为电能的一种发电方式,太阳能光伏发电的能量转换器就是太阳能电池,也叫光伏电池。当太阳光照射到由P、N 型两种不同导电类型的同质半导体材料构成的太阳能电池上时,其中一部分光线被反射,一部分光线被吸收,还有一部分光线透过电池片。被吸收的光能激发被束缚图1-1 太阳能光伏电池发电原理

太阳能发电系统的结构和工作原理

太阳能发电系统的结构和工作原理 在理解太阳能发电原理之前,如果您对太阳能还有所疑问的话,建议您先看一下什么是太阳能。 所谓太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材 料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。 1、太阳能发电原理 太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中 ,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。 1.1 太阳能电源系统 太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。 (1) 电池单元: 由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的 电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。 理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。(2) 电能储存单元: 太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十 分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。 1.2 控制器 控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常 采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。 1.3 DC-AC逆变器 逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电 。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。 2、太阳能发电系统的效率 在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及 负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围

太阳能电池组件及方阵的设计方法案例图文说明

太阳能电池组件及方阵的设计方法案例图文说明 上面已经说过,太阳能电池组件的设计就是满足负载年平均每日用电量的需求。所以,设计和计算太阳能电池组件大小的基本方法就是用负载平均每天所需要的用电量(单位:安时或瓦时)为基本数据,以当地太阳能辐射资源参数如峰值日照时数、年辐射总量等数据为参照,并结合一些相关因素数据或系数综合计算而得出的。 在设计和计算太阳能电池组件或组件方阵时,一般有两种方法。一种方法是根据上述各种数据直接计算出太阳能电池组件或方阵的功率,根据计算结果选配或定制相应功率的电池组件,进而得到电池组件的外形尺寸和安装尺寸等。这种方法一般适用于中小型光伏发电系统的设计。另一种方法是先选定尺寸符合要求的电池组件,根据该组件峰值功率、峰值工作电流和日发电量等数据,结合上述数据进行设计计算,在计算中确定电池组件的串、并联数及总功率。这种方法适用于中大型光伏发电系统的设计。下面就以第二种方法为例介绍一个常用的太阳能电池组件的设计计算公式和方法,其他计算公式和方法将在下一节中分别介绍。 1.基本计算方注 计算太阳能电池组件的基本方法是用负载平均每天所消耗的电量(Ah)除以选定的电池组件在一天中的平均发电量(Ah),就算出了整个系统需要并联的太阳能电池组件数。这些组件的并联输出电流就是系统负载所需要的电流。具体公式为: 负载用电10A,负载工作8小时。(220V ) ) 组件日平均发电量()负载日平均用电量(电池组件并联数Ah Ah = 其中, 组件日平均发电量=组件峰值工作电流(A)×峰值日照时数(h)。 假设告知负载日耗电(KWh ),如何计算负载日平均用电量(Ah )。 再将系统的工作电压除以太阳能电池组件的峰值工作电压,就可以算出太阳能电池组件的串联数量。这些电池组件串联后就可以产生系统负载所需要的工作电压或蓄电池组的充电电压。具体公式为: 组件峰值工作电压 系数)系统工作电压(电池组件串联数 1.43V ?= 系数1.43是太阳能电池组件峰值工作电压与系统工作电压的比值。例如,为工作电压12V 的系统供电或充电的太阳能电池组件的峰值电压是17~17.5V ;为工作电压24V 的系统

光伏电站阵列单元优化设计软件的开发与实现

计 算 机 系 统 应 用 https://www.doczj.com/doc/48257822.html, 2014 年 第23卷 第 1 期 86软件技术·算法 Software Technique ·Algorithm 光伏电站阵列单元优化设计软件的开发与实现① 王昊轶1, 郭志彤2, 王一波1, 李 健1 1(中国科学院电工研究所 可再生能源发电系统研究部, 北京 100190) 2 (辽宁省电力有限公司 发展策划部, 沈阳 110006) 摘 要: 针对我国光伏电站工程设计过程中如何提高阵列单元设计效率的实际问题, 研究了通过开发计算机软件来解决这一问题的方法, 并详细论述了该软件的设计与实现过程. 通过对光伏发电系统设计过程的分析, 确定了软件的功能定位及其主要功能, 采用面向对象的设计方法完成了软件设计, 在Visual C++2010环境下完成软件的开发. 该软件通过工程设计人员的试用, 具备较好的人机界面, 将设计人员从繁重的工程计算中解脱出来, 大大的提高了设计效率. 关键词: 光伏发电系统; 计算机辅助设计; 光伏电站设计 Developing of PV Plants Array Unit Optimization Design Software WANG Hao-Yi 1, GUO Zhi-Tong 2, WANG Yi-Bo 1, LI Jian 1 1(Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China) 2 (Liaoning Electric Power Company Limited, Shenyang 110006, China) Abstract : This paper discussed the design and implementation of PV array design software in detail. By the analysis of photovoltaic power generation system design process, it determined the function orientation and the main function of software. The software was designed with the help of the object-oriented design method. Under the environment of Visual c++2010, it was completed. The software has the good man-machine interface and greatly improves the design efficiency. Key words : PV system; CAD; PV design 1 引言 随着光伏组件成本的下降及光伏上网电价的调整, 光伏发电在我国能源结构中的比例逐渐加大, 在我国西部太阳能资源一类地区正在建设容量在几十兆瓦及以上的大型光伏电站. 一个大型光伏电站通常由若干方阵组成, 每个方阵由若干阵列单元组成, 因此光伏阵列单元是光伏电站的基本组成单元, 也是工程设计人员在进行电站设计时的基本设计单元[1-3]. 光伏阵列单元的设计是否合理, 直接影响整个电站的运行性能. 但是光伏阵列单元的设计需要综合考虑天文、气象、电气、机械等多领域的计算, 因此完全凭借设计人员的经验很难达到满意的设计性能. 为了提高工程设计人员的设计效率和电站的设计 ① 基金项目:国家高技术研究发展计划(863)(2011AA05A303) 收稿时间:2013-06-25;收到修改稿时间:2013-08-14 性能, 国外学者开发出了一些相关软件如PVsys, PVsol 等, 文献[4,5]对这些软件的功能进行了介绍. 但是这些软件主要面向欧洲和美国的光伏电站设计, 采用的气象数据和设计规范与我国有所差异. 因此作者通过与我国电站设计工程人员交流沟通, 参考我国电气设计相关标准及文献[1-3,6-8], 完成了大型并网光伏电站工程设计与仿真分析软件. 本文详细论述了该软件中的一个子系统“光伏电站阵列单元优化设计软件”的设计方法和实现. 2 软件的功能定位 大型光伏电站工程设计与仿真分析系统是一套覆盖光伏电站工程设计全过程的大型工程设计软件, 其

光伏组件基本结构知识

光伏组件基本结构知识

目录 一、光伏发电系统 (1) 二、光伏电站系统的主要组成部分 (2) 1、光伏组件 (3) 2、光伏逆变器 (7) 3、直流防雷智能汇流箱 (10) 4、就近升压箱室变电站 (11) 5、高压开关柜 (12) 6、SVG及连接变 (13) 7、主变 (14) 8、高压配电设备 (15) 9、中性点接地保护装置 (16) 10、自动化系统 (17) 三、光伏系统的设计 (17) 1、设计依据 (17) 2、设计流程 (18) 3、设计阶段 (18) 4、设计原则 (19) 四、光伏电站的运营与维护 (20) 1、维护要求 (20) 2、日常维护 (20) 五、光伏组件施工知识 (23)

一、光伏发电系统 光伏发电系统是利用太阳能组件和配套电气设备将太阳能转换成所需要电能的发电系统。 当光线照射到太阳能电池表面时,一部分光子被硅材料吸收,使电子发生了跃迁,成为自由电子,该自由电子在PN结两侧聚集形成电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的功率输出。该过程的实质是光子能量转换成电能的过程。 光伏电站主要由光伏方阵、防雷汇流箱、直流配电柜、并网逆变器、交流配电柜、SVG无功补偿系统、升压系统、高压保护系统、直流系统、计量接入系统、监控通讯系统、交直流电缆、气象站、支撑系统、防雷保护系统、照明系统、消防系统、暖通系统、给排水系统、安保系统等构成;另设计单元逆变房、低压配电室、高压配电室、消防通讯室、综合楼(用于站区生活办公、监控管理)。

分布式光伏发电系统主要分为并网光伏发电系统和离网光伏发电系统。并网发电系统又分为集中式光伏发电系统和分布式光伏发电系统。 二、光伏电站系统的主要组成部分 集中式光伏发电系统规模较大,安装集中,整体升压输送到电网。建设地点主要是荒山荒坡、滩涂、戈壁、鱼塘等地。 集中式光伏发电系统主要由光伏组件、直流汇流箱、并网逆变器、交流配电柜、光伏支架、监控系统、电缆等部分组成。

光伏阵列建模

基于PSCAD 的光伏阵列建模 钱海艇 河海大学电气工程学院,南京市(210098) E-mail :Qht916@https://www.doczj.com/doc/48257822.html, 摘 要:根据常用的光伏电池数学模型、光伏电池与温度和光强数值函数关系以及光伏阵列输出特性与光伏电池串-并联函数关系等原理,在PSCAD 环境下,采用新方法构建了光伏阵列仿真模型。文中通过引入不同厂家的光伏电池参数和动态气象数据,进行了光伏电池特性曲线拟合、光伏阵列耦合负载发电以及并网发电等仿真试验。同时给出相关仿真试验结果,经分析表明该模型适合光伏发电系统的仿真试验。 关键词:光伏电池特性;光伏阵列;PSCAD;动态气象数据;光伏发电; 中图分类号:TK514 0. 引言 随着光伏发电技术的发展,大规模光伏发电正面向全球化、商业化的发展。由于变化的气象环境对光伏电池电力输出的影响,在设计光伏发电系统过程中,进行仿真分析、寻求可靠的运行参数是必须的。从而,在理论研究的基础上,构建可靠实用的光伏阵列仿真模型,进而分析光伏发电系统的可行性、可靠性、经济效益最优化以及运行效率最高化等,都是非常必要的研究。 目前,国内外有很多文献是关于光伏发电系统仿真建模,但多数是根据电子学原理,给出复杂的数值仿真模型[1 ~3]。而且,大多数文献都是按照稳态理论来建模的,能够充分考虑光强和温度因素的据少。且多数在构建光伏阵列模型时都是简单的串、并联,没有考虑其对 输出的影响。 本文提出的光伏阵列仿真模型不仅考虑到串-并联对输出的影响,还可以根据不同的气象数据和运行环境数据,模拟光伏电池在不同环境下的运行模式和状况。而且,可以根据不同种类光伏电池的特性参数,设定运行模式。仿真试验的结果表明,该模型便于工程应用,能满足多数工程项目物理模拟的精度要求。 1. 光伏电池及光伏阵列模型 1.1 光伏电池特性及模型 针对光伏电池特性的研究和文献国内外有很多[1~5],理论和技术均已成熟。根据光电学 原理,光伏电池数学模型可分为单指数模型和双指数模型,文献[3 、4]中已经有详细的说明。按照文献[5]对光伏电池等值电路模型的分类有三种,其中最为精确,应用最广的是第三种, 如式(1)所列。 ()0exp 1s s L sh V IR q V IR I I I R AKT ++=?????????????????? ? (1) 根据工程应用要求实用性和精确性相结合的特点,根据文献[6]的近似方法可以得到式 (2)。其中有两个近似系数K 1、K 2可以由式(3)和(4)确定。 (){}12exp 1 sc sc oc I I K I V K V =?×????? (2)

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计 摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。 目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。 关键词:太阳能分布式光伏发电系统 1.前言 太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。从长远来看,太阳能的利用前景最好,潜力最大。近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。 本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。 2.太阳能光伏发电应用现状 太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。 近几年,我国光伏行业发展也非常迅速。国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工

太阳能光伏组件分原材料及部件

太阳能光伏组件的原材料及部件性能,作 用,特点,及检验 1.太阳能电池片 外形与特点: 太阳能电池片是太阳能电池组件中的主要材料,电池片表面有一层蓝色的减反射膜,还有银白色的电极栅线。其中很多条细的栅线,是电池片表面电极向主栅线汇总的引线,两条宽一点的银白线就是主栅线,也叫电极线或上电极。电池片的背面也有两条(或间断的)银白色的主栅线,叫下电极或背电极。电池片与电池片之间的连接,就是把互连条焊接到主栅线上实现的。一般正面的电极线是电池片的负极线,背面的电极线是电池片的正极线。太阳能电池片无论面积大小(整片或切割成小片),单片的正负极间输出峰值电压都是0.48~0.5v。而电池片的面积大小与输出电流和发电功率成正比,面积越大,输出电流和发电功率越大。 合格的太阳能电池片应具有以下特点。 (1)具有稳定高效的光电转换效率,可靠性高。 (2)采用先进的扩散技术,保证片内各处转换效率的均匀性。 (3)运用先进的pecvd成膜技术,在电池片表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观。 (4)应用高品质的银和银铝金属浆料制作背场和栅线电极,确保良好的导电性、可靠的附着力和很好的电极可焊性。 (5)高精度的丝网印刷图形和高平整度,使得电池片易于自动焊接和激光切割。 太阳能电池片的分类及规格尺寸 太阳能电池片按用途可分为地面用晶体硅太阳能电池、海上用晶体硅太阳能电池和空间用晶体硅太阳能电池,按基片材料的不同分为单晶硅电池和多晶硅电池。目前太阳能电池片常见的规格尺寸主要有125mm×125mm、150mm×150mm和156mm×156mm等几种,厚度一般在170~220μm。 单晶硅与多晶硅电池片到底有哪些区别呢?由于单晶硅电池片和多晶硅电池片前期生产工艺的不同,使它们从外观到电性能都有一些区别。从外观上看:单晶硅电池片四个角呈圆弧缺角状,表面没有花纹;多晶硅电池片四个角为方角,表面有类似冰花一样的花纹(业内称为多晶多彩),也有一种绒面多晶硅电池片表面没有明显的冰花状花纹(业内称为多晶绒面);单晶硅电池片减反射膜绒面表面颜色一般呈现为黑蓝色,多晶硅电池片减反射膜绒面表面颜色一般呈现为蓝色。 对于使用者来说,相同转换效率的单晶硅电池和多晶硅电池是没有太大区别的。单晶硅电池和多晶硅电池的寿命和稳定性都很好。虽然单晶硅电池的平均转换效率比多晶硅电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个角为圆弧状),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形的,不存在这个问题,因此对于太阳能电池组件的转换效率来讲几乎是一样的。另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,所以多晶硅太阳能电池占全球太阳能电池总产量的份额越来越大,制造成本也将大大小于单晶硅电池,所以使用多晶硅太阳能电池将更节能、更环保 分类及规格尺寸 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这

太阳电池阵列间距的设计计算:

并网光伏发电系统方阵的最佳安装倾角采用专业系统设计软件进行优化设计来确定,它应是系统全年发电量最大时的倾角。当倾角确定后我们要保证每个光伏阵列在冬至日上午九时到下午三时无阴影遮挡(北半球)。 太阳电池阵列间距的设计计算: 在北半球,对应最大日照辐射接收量的平面为朝向正南,阵列倾角确定后,要注意南北向前后阵列间要留出合理的间距,以免前后出现阴影遮挡,前后间距为:冬至日(一年当中物体在太阳下阴影长度最长的一天)上午9:00到下午3:00,组件之间南北方向无阴影遮挡。 固定光伏组件方阵的支架系统安装的前后最小间距D,如下图所示: 简化的计算公式如下: 式中:φ为纬度(在北半球为正、南半球为负);H为光伏方阵阵列或遮挡物与可能被遮挡组件底边高度差。 同时在太阳能电池方阵排列布置还需要考虑地形,地貌的因素,要与当地自然环境有机的结合。同时设计要规范,并兼顾光伏电站的景观效果,在整个方阵场设计中尽量节约土地。太阳电池方阵的布置设计包括阵列倾角设计,方位角设计,阵列间距设计,需根据具体情况来进行计算。 关于跟踪系统阵列之间的间距计算相对复杂,由于跟踪支架系统的巡日条件和跟踪角度范围与其厂家产品有关,且每家不尽相同。故对其计算无实际意义。但有一点是一致的,就是我们都必须满足一天中不得小于6小时的照射时间窗口。需要说明的是上述时间为地方时。例如在计算中使用的太阳赤纬都是以天文年

历为准的,而天文年历所给出的参数都是世界时0时的值,但时角又是以地方时为依据的,而日常的钟表所显示的时间都是北京时。这里需要注意的是:北京时早8点时,乃是世界时0点,由于地球自西向东转动,所以,凡是在北京以东的地方,其地方时均比北京时要晚,即8点多,而北京以西的地方则尚未到8点。 经度订正是时间转换所必需的。在我国明确规定,东经为正,西经为负;但在美国则刚好相反。具体换算公式是:地方时(即太阳时)=北京时+E-4*(120-L)其中:E为地球绕日公转时进动和转速变化而产生的修正,单位为分;L为当地的经度

光伏系统的组成和原理

光伏系统的组成和原理 光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -维修保养简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电 池寿命可达到25年以上; -根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济

可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。图1-1是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件: ●光伏组件方阵:由太阳电池组件(也称光伏电池组件)按 照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 ●蓄电池:将太阳电池组件产生的电能储存起来,当光照不 足或晚上、或者负载需求大于太阳电池组件所发的电量

光伏组件与阵列设计复习过程

光伏组件与阵列设计

1.1 引言 太阳电池是将太阳光直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是

光伏组件课程设计

课程设计报告 题目太阳能节能灯的设计与分析 系别物理与电子工程学院 年级 2011级专业光伏技术与产业 班级光伏111 学生姓名宋梦丹 学号050411139 指导教师薛春荣 设计时间2013-12

产品简介 【使用优点】 无需电线,按一下底部的开关,白天晒太阳,晚上自动亮光,环保,不用交电费!灯体造型美观大方,轻巧灵活多样,动感十足,太阳能充满电能亮8小时以上。 【安装及使用方法】 把灯罩向左旋开,拨动开关,把灯具插地,放置在阳光下 【技术参数】 ?品牌: MODAS ?型号: MD9548 ?颜色分类: 白色(MD9548W) ?灯具是否带光源: 带光源 ?光源类型: LED ?太阳能板:0.08W(2V 40MA) ?电源:600MAH 1.2V NI-MH ?光源:1*LED(15000MCD) ?产品尺寸:6.7*6.7*36.7CM ?一盒重量:260g 【工作原理】 通过顶部的太阳能板转换成电能,白天光通过太阳能板转换成电能储存在充电电池中,等到晚上天黑时,太阳能板不再对电池充电,灯就自动亮起来。 原理分析 太阳能光伏发电LED照明系统组成高效节能的太阳能光伏发电LED照明系统包括太阳能电池组、DC-DC变换器、最大功率跟踪控制、储存电能的蓄电池组和LED照明控制、LED光源等部分。 太阳能LED自动照明系统的基本原理,是在有光照的情况下,太阳能电池板把光能转变成电能对蓄电池充电,并将电能储存在蓄电池中。夜晚,蓄电池中的电能为半导体发光二极管LED充电发光起到照明的效果。系统采用全自动工作方式,无须人工介入,可以采用声、光或延时控制方式,做到“人在灯亮,人走灯灭”(指楼道、走廊等)或“天黑即亮,延时关灯”(指道路、庭院、景点等)或每日24小时“常明不灭”(指地下停车场、隧道等)。对连续阴雨天,系统可根据

光伏组件与阵列设计

1.1 引言 太阳电池是将太直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是因为:1,

太阳能光伏组件种类

光伏系统的分类与介绍 光伏系统定义:光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(Small DC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(Simple DC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。 3 大型太阳能供电系统(Large DC) 与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通讯基站工程。 4 交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。通常这种系统的负载耗电量也比较大,从而系统的规模也较大。在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。

太阳能光伏电池的设计与制作

河南工程学院 《光伏材料设计》 实习实训报告书 太阳能光伏电池的设计与制作2016 -2017学年第二学期 学院:赵博 学生姓名:理学院 学号:201411004215 学生班级:应用物理1442 指导教师:牛金钟赵瑞锋 日期:2017 年6 月14日

摘要:太阳能光伏电池的设计与制造是我们本专业的最主要内容之一,本次实训的目的是让我们更加深刻了解太阳能光伏电池的发电原理,了解太阳能电池组件的生产流程和生产工艺,了解太阳能光伏电池的应用,并且制作一件太阳能光伏电池板。本文主要讲的是本次的太阳能光伏太阳能电池制作过程,包括选择制作材料,电池板的设计,焊接太阳能电池片,组装太阳能电池,以及对电池组件进行测试。 关键词:电池组件设计组装测试

目录 一、简介 (1) 二、材料及其性质 (1) 1.黏结剂 (1) 2.玻璃-上盖板材料 (1) 3.背面材料 (1) 4.边框 (1) 5.接线盒 (2) 6.硅胶 (2) 7.电池片 (2) 三、设计原理及组装 (2) 1.设计原理 (2) 2.太阳能电池组件设计 (3) 3.电池组件的制作 (3)

一、简介 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。通常采用硅半导体 二、材料及其性质 真空层压封装太阳能电池,主要使用的材料有黏结剂、玻璃、复合模、连接条、铝框等。合理地选用封装材料和采取正确的封装工艺能保证太阳能电池的高效利用并延长使用寿命。优良的太阳能电池组件,除了要求太阳能电池本身效率高外,优良的封装材料和合理的封装工艺也是不可缺少的。 1.黏结剂 黏结剂是固定和保证电池与上、下盖板密合的关键材料,要求可见光范围内具有高透光性,抗紫外线老化;具有一定弹性,可缓冲不同材料见的热胀冷缩;具有良好的电绝缘性能和化学稳定性,不产生有害电池的气体和液体;具有优良的气密性,适用于自动化的组件封装。本次实训中采用的是EVA膜。 2.玻璃-上盖板材料 玻璃是覆盖在电池板正面的上盖板材料,构成组件最外层,既要求透光高,又要坚固,耐风霜雨雪,经受沙砾冰雹冲击,起到长期保护电池作用。 普通玻璃体内含铁量过高及玻璃表面的光反射过大是降低太阳能利用率的主要原因。目前在商业化生产中标准太阳能电池组件的上盖板材料通常采用低铁钢化玻璃,其特点是:透光率高、抗冲击能力强、使用寿命长。厚度一般为3.2mm,透光率达90%以上,对于波长大于1200nm的红外线有较高的反射率,同时能耐太阳紫外线的辐射。 3.背面材料 组件底板对电池既有保护作用又有支撑作用。对底板的一般要求为:具有良好的耐气候性能,能隔绝从背面进来的潮气和其他有害气体:在层压温度下不起任何变化:与黏结材料结合牢固。一般所用的底板材料为玻璃、铝合金、有机玻璃以及PVF复合膜等。目前生产上较多应用的是PVF复合膜。 4.边框 平板式组件应有边框,以保护组件和便于组件与方阵支架的连接固定。边框

相关主题
文本预览
相关文档 最新文档