当前位置:文档之家› 北航航空发动机原理3大作业

北航航空发动机原理3大作业

北航航空发动机原理3大作业
北航航空发动机原理3大作业

机械故障诊断综合大作业—航空发动机的状态监测和故障诊断

机械系统故障诊断 综合大作业 航空发动机的状态监测和故障诊断 1.研究背景与意义 航空发动机不但结构复杂,且工作在高温、大压力的苛刻条件下。从发动机发展现状看,无论设计、材料和工艺水平,抑或使用、维护和管理水平,都不可能完全保证其使用中的可靠性。而发动机故障在飞机飞行故障中往往是致命的,并且占有相当大的比例,因此常常因发动机的故障导致飞行中的灾难性事故。 随着航空科学技术的发展并总结航空发动机设计、研制和使用中的经验教训,航空发动机的可靠性和结构完整性已愈来愈受到关注。自70年代初期即逐步明确航空发动机的发展应全面满足适用性、可靠性和经济性的要求,也就是在保证达到发动机性能要求的同时,必须满足发动机的可靠性和经济性(维修性和耐久性)的要求。 可靠性工作应贯穿在发动机设计-生产-使用-维护全过程的始终。对新研制的发动机,应在设计阶段就同时进行可靠性设计、试验和预估;对在役的发动机,应经常进行可靠性评估、监视和维护。军机和民用飞机的主管部门,设计、生产、使用和维护等各部门,应形成有机的、闭环式的可靠性管理体制,共同促进航空发动机可靠性的完善和提高。 2.国内外进展 自70年代前期,国外一些先进的民用和军用航空公司即着手研究和装备发动机的状态监视和故障诊断系统。电子技术与计算机技术的迅速发展,大大促进了航空发动机的状态监视与故障诊断技术的发展。至今,监视与诊断技术作为一项综合技术,已发展成为一门独立的学科,其应用已日趋广泛和完善。 按民航适航条例规定航空发动机必须有15个以上的监视参数。现今美国普?惠公司由有限监视到扩展监视,逐步完善了其TEAMIII等系统,美国通用电气公司也不断在发展其ADEPT系统。 从各国空军飞机发动机的资料来看,大都采用了发动机状态监视与故障诊断系统。包括发动机监视系统EMS,发动机使用情况监视系统EUMS和低循环疲劳计数器LCFC等,同时为了帮助查找故障,近年来还发展了发动机故障诊断的专家系统,如XMAN和JET—X。美国自动车工程协会(SAE)E-32航空燃气涡轮监视委员会研究并颁布了一系列指南,包括航空燃气涡轮发动机监视系统指南、有限监视系统指南、滑油系统监视指南、振动监视系统指南、使用寿命监视及零件管理指南等。 我国相关民用航空公司和院校开展的发动机状态监测与故障诊断的研究工作已初见成效。并且对于新研制的高性能发动机已将实施状态监视列为重要的技、战术指标,因此正较全面的开展这方面的研究工作。但是总的看来,国内该项工作开展得还不够,亟待有计划、有步骤地借鉴国外的成功经验,发展并推广我们自己的状态监视与故障诊断技术,以适应飞机和发展的需要。

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

航空发动机结构强度设计 大作业

航空发动机结构强度设计 大作业 王延荣主编 北京航空航天大学能源与动力工程学院 2013.3

2 1 某级涡轮转子的转速为4700r/min ,共有68片转子叶片,叶片材料GH33的密度ρ为8.2 ×103 kg/m 3,气流参数沿叶高均布,平均半径处叶栅进、出口的气流参数,叶片各截面的重心位置(X , Y , Z ),截面面积A ,主惯性矩I ξ,I η以及ξ轴与x 轴的夹角α,弯曲应力最大的A , B , C 三点的坐标ξA , ηA , ξB , ηB , ξC , ηc 列于下表,试求叶片各截面上的离心拉伸应力、气动力弯矩、离心力弯矩、合成弯矩及A ,B ,C 三点的弯曲应力和总应力。 截 面 0 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ X , cm 0.53 0.41 0.41 0.40 0.24 0.12 Y , cm -0.41 -0.38 -0.30 -0.19 -0.11 -0.02 Z , cm 62.8 59.1 56.0 53.0 49.4 45.8 A , cm 2 1.80 2.32 3.12 4.10 5.48 7.05 I ξ, cm 4 0.242 0.304 0.484 0.939 1.802 I η, cm 4 6.694 9.332 12.52 17.57 23.74 ξA , cm -2.685 -2.847 -2.938 -2.889 -2.894 ηA , cm 0.797 0.951 1.094 1.232 1.319 ξB , cm -0.084 -0.205 -0.303 -0.219 -0.302 ηB , cm -0.481 -0.521 -0.655 -0.749 -1.015 ξC , cm 3.728 3.909 4.060 4.366 4.597 ηC , cm 0.773 0.824 0.840 1.130 1.305 α 31o 40’ 27o 49’ 25o 19’ 22o 5’30’’ 16o 57’ 12o 43’ c 1am c 1um ρ1m p 1m c 2am c 2um ρ2m p 2m 297m/s -410m/s 0.894kg/m 3 0.222MPa 313m/s 38m/s 0.75 kg/m 3 0.178MPa 2 某一涡轮盘转速12500r/min,盘材料密度8.0×103kg/m 3 , 泊松比0.3,轮缘径向应力140MPa,盘厚度h 、弹性模量E、线涨系数α及温度t 沿半径的分布列于下表,试用等厚圆环法计算其应力分布。 截面, n 半径r , cm 盘厚h , cm E, GPa t , ℃ α,10-6/℃平均半径 平均厚度 0 0.0 4.86 162 165 16.5 1 5.0 3.90 16 2 165 16.5 2.5 4.38 2 10.0 2.97 157 250 17.1 7.5 3.435 3 14.0 2.2 4 148 360 18.2 12.0 2.60 5 4 15.0 1.8 6 140 400 19.0 14.5 2.05 5 15.8 1.60 13 7 430 19.4 15.4 1.73 6 16.6 1.80 134 460 19.7 16.2 1.70 7 17.4 2.30 130 500 20.3 17.0 2.05 3 某转子叶片根部固定,其材料密度2850kg/m 3,弹性模量71.54GPa ,叶片长0.1m ,各截面 位置、面积、惯性矩列于下表,试求其前3阶固有静频。 截面号i 0 1 2 3 4 5 6 7 8 9 10 x , m 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 A , 10-4m 2 1.70 1.46 1.26 1.09 0.96 0.86 0.77 0.73 0.70 0.68 0.68 I , 10-8m 4 0.02790.0212 0.0157 0.01080.00840.00610.00450.00370.0032 0.0030 0.0030

专业点题北航机械原理

一、齿轮传动的基本概念 渐开线齿轮的啮合特点:(1)渐开线齿廓能够保证定传动比;(2)渐开线齿廓之间的正压力方向不变;(3)渐开线齿廓传动具有可分性。 齿轮机构的特点是:传动平稳、适用范围广、效率高、结构紧凑、工作可靠、寿命长。但制造和安装精度高、制造费用大,且不适合于距离较远的两轴之间的传动。齿轮传动可以用来传递任意轴间的运动和动力。 齿轮传动按照一对齿轮传递的相对运动分为平面齿轮传动和空间齿轮传动,平面齿轮传动又分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动和人字齿轮传动;按照工作条件可以分为开式传动、半开式传动和闭式传动。 齿轮传动的基本要求是:传动准确、平稳;承载能力强。 二、齿轮传动的设计与计算 齿廓曲线与齿廓啮合基本定律:在啮合传动的任一瞬时,两轮齿廓曲线在相应接触点的功法线必须通过按给定传动比确定的该瞬时的节点。 渐开线齿轮啮合的正确条件:啮合轮齿的工作侧齿廓的啮合点必须总是在啮合线上,即两齿轮的模数和压力角应该分别相等。 齿轮传动的无侧隙啮合及标准齿轮的安装:一个齿轮节圆上的齿厚等于另一个齿轮节圆上的齿槽宽是无侧隙啮合的条件;外啮合齿轮的标准中心距为,内啮合是标准中心距为。

齿轮及其变位的相关计算:相关参数为齿数、模数、分度圆压力角、齿顶高系数和顶隙系数及标准直齿轮的几何尺寸计算,包括分度圆直径、齿顶高、齿根高、齿全高、齿顶圆直径、齿根圆直径、基圆直径、齿距、齿厚、齿槽宽、中心距、顶隙以及变位齿轮的变位系数等。 渐开线齿轮的根切现象:用展成法加工齿轮式,若刀具的齿顶线或齿顶圆与啮合线的焦点超过被切齿轮的极限点,则刀具的齿顶会将被切齿轮的齿根的渐开线齿廓切去了一部 分。避免根切的最小齿数,用标准齿条刀具切制标准齿轮时,因为 ,最少齿数为17。 三、机构的组成 构件指独立的运动单元,两个构件直接接触组成仍能产生某些相对运动的连接叫运动副。运动副按照相对运动的范围可以分为平面运动副和空间运动副;按运动副元素分为:低副-面接触、应力低;高副-点接触或线接触,应力高。其中运动副元素是只形成运动副的组建之间直接接触的部分。 四、机构自由度的计算 机构相对于机架所具有的独立运动的数目,叫机构的自由度。设一个平面机构由N个构件组成,其中必定有一个构件为机架,其活动构件数为n=N-1.设机构共有个低副、 个高副,因为在平面机构中每个低副和高副分别限制两个自由度和一个自由度,故平面机构的自由度为。在计算平面机构的自由度时,应该注意三种特殊情况:(1)复合铰链:三个或更多的构件在同一处联接成同轴线的两个或更多个转动副,就构成了复合铰链,计算自由度时应该按照两个或更多个运动副计算。(2)局部自由度:在有些机构中,为了其他一些非运动的原因,设置了附加机构,这种附加机构的运动是完全独立的,对整个

2013级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) A.85-90% B.10-15% C.25% D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的( C )。 A相对速度增加, 压力下降B绝对速度增加, 压力下降

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮线图 本题目采用Matlab编程,写出凸轮每一段的运动方程,运用Matlab模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回 程的运动方程 输入凸轮基圆偏 距等基本参数 输出ds,dv,da图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

航空发动机维修工程大作业

一、描述MGS-2和MSG-3的不同之处? MGS-2飞机维修大纲规定的维修要 求主要是针对飞机系统单独项目的维修方式(定时、视情和状态监控维修方式);而MGS-3飞机维修大纲规定的维修要求是针对飞机系统或分系统的维修工作 (润滑、勤务、操作检查、目视检查、检查、功能测试、性能恢复和报废等)。 MGS-2飞机的维修工作应用的 分析逻辑是从组件(units)→零部件 (component)→分系统(subsystem)→飞机系统 (system)的这种自下而上、从小到大的流程。应用分析逻辑到最低管理层面(组件层面、零部件层面、飞机系统或飞机层面逐层递加)为止,即只要可以为较低的管理层面指定一个适当的维修方式就无需再对更高一级管理层面指定维修方式。MGS-2分析逻辑只对飞机系统和飞机结构进行分析。分析结果是为飞机系统单独项目指定不同的维修方式,即定时维修(hard time)、 视情维修(on condition)和状态监控(condition monitoring)维修方式维修方式是保持飞机、飞机系统、系统单独项目的设计固有可靠性水平而规定的维修程序。按规定的方式维修飞机就可以保证满足维修大纲的要求, 保持飞机持续适航性。 与MGS-2飞机不同,MGS-3飞机的维修要求是应用MGS-3分析逻辑确定的。应用MGS-3分析逻辑指定分析逻辑完全不同的方法。其分析逻辑是针对维修工作的分析逻辑,分析工作是从飞机系统(system)→分系统(subsystem)→零部件(component)→组件 (unit or part)的这种从大到小、自上而下的流程。只要可以为上一级的管理维修工作的飞机叫MGS-3飞机。MGS-3飞机采用的是与MGS-2 层面指定一个适当的维修工作,就无需再对下一层面指定维修工作。MSG-3是为飞机系统、分系统指定不同级别的维修工作,即润滑、勤务、操作检查、目视检查、检查、功能测试、性能恢复和报废等维修工作。完成这些维修工作所需的维修成本和技能 要求是逐渐递加的。 MSG-3分析逻辑的应 用除了对飞机系统和飞机结构进行分析以外,增加了针对区域 (zonal)的分析。 MSG-3与MSG-2 分析逻辑比较除了增加区域分析外,出发点也 不相同。在充分吸取过去经验的基础上, MSG-3分析逻辑首先 从飞机系统,即最高的可管理层面开始,且在指定维修工作时不仅考 虑所指定的工作是否适用,同时还要看所指定的工作是否有效。在充分考虑适用性和有效性的基础上,就排除了原来 MSG-2飞机指定维修要求时只考虑适 用性所指定的并不一定必要的维修要求。

机械原理大作业

机械原理大作业 二、题目(平面机构的力分析) 在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于构件1上的平衡力偶M 。 b Array 二、受力分析图

三、算法 (1)运动分析 AB l l =1 滑块2 22112112/,/s m w l a s m w l v c c == 滑块3 21113113/cos ,sin s m l w v m l s ??== 212 113/sin s m w l a ?-= (2)确定惯性力 N w l g G a m F c 2 1122212)/(== N w l g G a m F 121133313sin )/(?-== (3)受力分析 i F F i F F x R D R x R C R 43434343,=-= j F j F F R R R 232323-==

j F i F j F i F F R x R y R x R R 2121121212--=+= j F F F y R x R R 414141+= 取移动副为首解副 ① 取构件3为分离体,并对C 点取矩 由0=∑y F 得 1323F F F r R -= 由0=∑x F 得 C R D R F F 4343= 由 ∑=0C M 得 2112343/cos h l F F R D R ?= ②取构件2为分离体 由0=∑x F 得 11212cos ?R x R F F = 由0 =∑y F 得 1123212sin ?F F F R y R -= ③取构件1为分离体,并对A 点取矩 由0=∑x F 得 x R x R F F 1241= 由0 =∑ y F 得 y R y R F F 1241= 由0=A M 得 1132cos ?l F M R b = 四、根据算法编写Matlab 程序如下: %--------------已知条件---------------------------------- G2=40; G3=100; g=9.8; fai=0; l1=0.1; w1=10; Fr=400; h2=0.8; %--------分布计算,也可将所有变量放在一个矩阵中求解------------------- for i=1:37 a2=l1*(w1^2); a3=-l1*(w1^2)*sin(fai); F12=(G2/g)*a2;

航空发动机原理复习思考题

试题一 一、概念简答题(每题8分,共40 分) 1、目前航空燃气轮机主要有哪几种类型?简述其结构和应用特点。 2、什么是化学反应速度?它与那些因素有关?在燃气轮机燃烧室设计中,应怎样考虑利用这些因素来强化燃烧? 3、主燃烧室按结构形式可分为哪几类?试从工作原理上比较它们的优缺点。 4、双轴涡轮喷气发动机低压转子与高压转子的共同工作点为什么不是独立变化的? 5、调整放大或缩小尾喷管临界截面积对单轴涡轮喷气发动机共同工作线有什么影响?为什么? 二、计算题(每题15分,共60 分) 6、某 压气机增压比为8.5,效率为0.8, 求(1)当进气温度是200C 时的压气机出口总温。(2)压气机对每千克气体的加功量。(3)如测得压气机流量为65kg/s, 计算压气机所需的压缩功率。(绝热指数k=1.4;气体常数 R=287J/kg.K ) 7、装在协和号飞机的发动机,其原压气机进口级装有预旋导流叶片。在其动叶进口处C T 0*115=,叶尖处的s m u s m C s m C u a /360,/125,/20011===,求: (1)叶尖1aw M ? (2)在改型中去掉预旋导流叶片,且叶尖s m C a /2101=,问这时的叶尖1aw M =? 8 、具有收敛尾喷管的涡轮喷气发动机在地面台架上试车时,已知空气流量为69kg/s ,喷管出口处总温1200K ,总压5104.1?Pa ,尾喷管出口面积22.0m ,试估算发动机推力。 9、假定在巡航条件8.00=a M ,a kP P 110=,K T 2160=下,分别排气涡轮风扇发动机的风扇增压比和效率为85.0,6.1==f f ηπ;经风扇后内涵气流进入高压压气机,84.0,25==cH cH ηπ,(1)计算风扇出口总温和高压压气机出口总温。

机械原理大作业

机械原理大作业三 课程名称: 机械原理 级: 者: 号: 指导教师: 设计时间: 1.2机械传动系统原始参数 设计题目: 系: 齿轮传动设计 1、设计题 目 1.1机构运动简图 - 11 7/7777777^77 3 UtH TH7T 8 'T "r 9 7TTTT 10 12 - 77777" 13 ///// u 2

电动机转速n 745r/min ,输出转速n01 12r/mi n , n02 17r /mi n , n°323r/min,带传动的最大传动比i pmax 2.5 ,滑移齿轮传动的最大传动比 i vmax 4,定轴齿轮传动的最大传动比i d max 4。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实 现。设带传动的传动比为i pmax 2.5,滑移齿轮的传动比为9、心、「3,定轴齿轮传动的传动比为i f,则总传动比 i vi i vmax 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、 7、8 9和10为角度变位齿轮,其齿数: Z5 11,Z6 43,Z7 14,Z8 39,Z9 18,乙。35 ;它们的齿顶高系数0 1,径向间隙

系数c 0.25,分度圆压力角200,实际中心距a' 51mm。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位齿轮,其齿数:Z11 z13 13,乙 2 z14 24。它们的齿顶高系数d 1,径向间隙系数c 0.25,分度圆压力角200,实际中心距 a' 46mm。圆锥齿轮15和16选择为标准齿轮令13,乙 6 24,齿顶高系数 h a 1,径向间隙系数c 0.20,分度圆压力角为200(等于啮合角’)。 4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算 4.1滑移齿轮5和齿轮6

最新航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能? 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用? (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用? 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因? 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型? 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求?点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合 要求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点? 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好;

北航七系机械学院机械原理大作业

机械原理课程机构设计 实验报告 题目:建筑垃圾破碎机的设计与分析小组成员与学号: 班级: 第1页

建筑垃圾破碎机的设计与分析 摘要 本文简单介绍了建筑垃圾回收再利用的重要性,与工艺性,并自主设计了将颚式破碎机与反击式破碎机相结合的建筑垃圾破碎机。通过solidworks软件对设计机构进行建模,用adams进行仿真分析,验证所设计的机构均达到设计需要与可行性。 关键词:建筑垃圾破碎机、连杆机构、凸轮廓线设计 第2页

目录 1.机构的引出 (4) 1.1 建筑垃圾及其回收利用价值 (4) 1.2颚式破碎机和反击式破碎机各自的利弊分析 (4) 1.3设计新的建筑垃圾破碎机 (6) 2.机构的结构、功能介绍及建模 (7) 2.1 机构设计简图及各部分功能 (7) 2.2尺寸设计及建模 (8) 2.2.1主动轮和各从动轮的传动比 (8) 2.2.2凸轮廓线设计与挡板行程 ................................... 错误!未定义书签。 3.机构的仿真分析 (12) 3.1颚式破碎机的急回特性 (12) 3.2颚式破碎机的传动角验证 (14) 3.3停歇运动导杆机构所带动的下挡板往复运动的间歇性 (14) 4.总结 (17) 第3页

第4页 1. 机构的引出 1.1 建筑垃圾及其回收利用价值 二十一世纪是一个飞速发展的时代,随着城市人口的增加、新农村建设以及城市地铁的大规模扩建,建筑行业的新陈代谢全面加速,建筑垃圾的排放量也随之增加。然而,传统的方法处理建筑垃圾是将建筑垃圾运往乡村或郊外,露天堆放或掩埋。这样不仅破坏植被,降低土壤的生产能力,而且会让建筑垃圾中的有害物质渗入地下水层,污染环境,给人们的生活带来困扰。因此,如何实现建筑垃圾的高效、环保循环利用成为当今人们所面临的一个难题。 建筑垃圾的主要组成部分是废弃混凝土和砖块,而它们都是由水泥和天然砂石拌合而成的,这些都是砖块等建筑材料的重要组成部分。为了最大程度的利用建筑垃圾,首先应该解决的问题就是对其中的大块物料进行破碎,只有这样,破碎后的小快物料才能很好的还原天然砂石的性能,实现建筑垃圾的循环利用。 1.2颚式破碎机和反击式破碎机各自的利弊分析 目前应用较广的破碎机有颚式破碎机与反击式破碎机两种。 颚式破碎机的主体构造如图 1 图 1 颚式破碎机的主体构造 其工作原理为:轮①通过皮带和电机上的主动轮相连,①的转动带动杆②进而带动构件③的摆动(构件③的上端和机架铰接)。构件③通过摆动将体积较大

哈工大机械原理大作业凸轮

机械原理大作业二 课程名称: _______ 设计题目: 凸轮机构设计 院 系: ------------------------- 班 级: _________________________ 设计者: ________________________ 学 号: _________________________ 指导教师: ______________________ 哈尔滨工业大学 Harbin I nstituteof Techndogy

设计题目 如右图所示直动从动件盘形凸轮机构,选择一组凸轮机构的原始参数, 据此设计该凸轮机构。 凸轮机构原始参数 二.凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图 凸轮推杆升程运动方程:冷3唱—亦(中] 156 12 .. v 」1 - cos()] 兀1 5 374.4 2 12 ? a 1si n( ) 兀 1 5 % t 表示转角, s 表示位移 t=0:0.01:5*pi/6; %升程阶段 s= [(6*t)/(5*pi)- 1/(2*pi)*si n(12*t/5)]*130; hold on plot(t,s);

t= 5*pi/6:0.01:pi; %远休止阶段 s=130; hold on plot(t,s); t=pi:0.01:14*pi/9; %回程阶段 s=65*[1+cos(9*(t-pi)/5)]; hold on plot(t,s); t=14*pi/9:0.01:2*pi; %近休止阶段 s=0; hold on plot(t,s); grid on % t表示转角,令3 1=1 t=0:0.01:5*pi/6; %升程阶段v=156*1*[1-cos(12*t/5)]/pi hold on plot(t,v); t= 5*pi/6:0.01:pi; %远休止阶段

哈工大机械原理大作业

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业一 课程名称:机械原理 设计题目:连杆机构运动分析 院系:机电学院 班级:1208105 分析者:殷琪 学号: 指导教师:丁刚 设计时间: 哈尔滨工业大学 设计说明书 1 、题目 如图所示机构,一只机构各构件的尺寸为AB=100mm,BC=,CE=,BE=,CD=,AD=,AF=7AB,DF=,∠BCE=139?。构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。 2、机构结构分析

该机构由6个构件组成,4和5之间通过移动副连接,其他各构件之间通过转动副连接,主动件为杆1,杆2、3、4、5为从动件,2和3组成Ⅱ级RRR 基本杆组,4和5组成Ⅱ级RPR 基本杆组。 如图建立坐标系 3、各基本杆组的运动分析数学模型 1) 位置分析 2) 速度和加速度分析 将上式对时间t 求导,可得速度方程: 将上式对时间t 求导,可得加速度方程: RRR Ⅱ级杆组的运动分析 如下图所示 当已知RRR 杆组中两杆长L BC 、L CD 和两外副B 、D 的位置和运动时,求内副C 的位置、两杆的角位置、角运动以及E 点的运动。 1) 位置方程 由移项消去j ?后可求得i ?: 式中, 可求得j ?: E 点坐标方程: 其中 2) 速度方程 两杆角速度方程为 式中, 点E 速度方程为 3) 加速度方程 两杆角加速度为 式中, 点E 加速度方程为 RPR Ⅱ级杆组的运动分析 (1) 位移方程 (2)速度方程 其中 (3)加速度方程 4、 计算编程 利用MATLAB 软件进行编程,程序如下: % 点B 和AB 杆运动状态分析 >>r=pi/180; w 1=10; e 1=0; l 1=100; Xa=0; Ya=0;

哈工大机械原理大作业

连杆的运动的分析 一.连杆运动分析题目 图1-13 连杆机构简图 二.机构的结构分析及基本杆组划分 1.。结构分析与自由度计算 机构各构件都在同一平面内活动,活动构件数n=5, PL=7,分布在A、B、C、E、F。没有高副,则机构的自由度为 F=3n-2PL-PH=3*5-2*7-0=1 2.基本杆组划分 图1-13中1为原动件,先移除,之后按拆杆组法进行拆分,即可得到由杆3和滑块2组成的RPR II级杆组,杆4和滑块5组成的RRP II级杆组。机构分解图如下:

图二 图一 图三 三.各基本杆组的运动分析数学模型 图一为一级杆组, ? c o s l A B x B =, ? sin lAB y B = 图二为RPR II 杆组, C B C B j j B E j B E y y B x x A A B S l C E y x S l C E x x -=-==-+=-+=0000 )/a r c t a n (s i n )(c o s )(?? ? 由此可求得E 点坐标,进而求得F 点坐标。 图三为RRP II 级杆组, B i i E F i E F y H H A l E F A l E F y y l E F x x --==+=+=111)/a r c s i n (s i n c o s ??? 对其求一阶导数为速度,求二阶导数为加速度。

lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0; yC=-350; A0=xB-xC; B0=yB-yC; S=sqrt(A0.^2+B0.^2); zj=atan(B0/A0); xE=xB+(lCE-S)*cos(zj); yE=yB+(lCE-S)*sin(zj); a=0:0.0001:20/255; Xe=subs(xE,t,a); Ye=subs(yE,t,a); A1=H-H1-yB; zi=asin(A1/lEF); xF=xE+lEF*cos(zi); vF=diff(xF,t); aF=diff(xF,t,2); m=0:0.001:120/255; xF=subs(xF,t,m); vF=subs(vF,t,m); aF=subs(aF,t,m); plot(m,xF) title('位移随时间变化图像') xlabel('t(s)'),ylabel(' x') lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0;

发动机设计大作业

民用客机航空发动机设计方案 一、本型航空发动机的应用领域 本型发动机主要用于民用客机。民用客机是体型较大、载客量较多的集体飞行运输工具,用于来往国内及国际商业航班。本客机巡航高度约为9,000米。飞机发动机有着不同的工作状态,当发动机每公里消耗燃料最少情况下的飞行速度,称为巡航速度。本客机巡航速度为亚声速,取0.8马赫。要求飞行稳定,不会产生较大颠簸,保障乘客能够舒适且安全地到达目的地。客机的总质量较大,因而相应发动机的体积,质量和推力都要远远大过战斗机发动机,使用寿命上也要求长很多,并且要求发动机具有良好的安全性和经济性等指标。客机是用于商业用途的,因而要求其发动机具有很好的性价比。涡轮风扇发动机要比涡轮喷气发动机更省油,尤其是超过声速不太多时。因此,发动机选用大涵道比涡轮风扇发动机。 飞行器简图为: 发动机这样布局是因为,发动机质量较大,对飞机结构强度有较高的要求,因而对称安置在两个机翼距机身较近的位置以提高整个飞机的安全性,保证飞机两侧重量相同,避免飞机发生左右倾斜或重心不稳的问题。 二、航空发动机的性能设计指标 发动机指标由客机的要求决定,发动机要求为: 推力:87000N 单位推力:450N?s/kg 重量:2100 推重比:4.2 耗油率:0.10kg/(h?N) 涡轮前温度:1200℃

总压比:22 整机效率:30% 三、航空发动机的结构形式选取 发动机结构简图如下: 3.1 进气口的结构形式 发动机进气口为环形,固定唇口。进气口为空气喷气发动机所需空气的进口和通道,亚声速进气口前缘较为钝圆,以避免低速起飞时进口处气流分离。内部通道多为扩散形。 在最大速度或巡航状态下,进入气流的减速增压过程大部分在进口外面完成,通道内的流体损失不大,因而有较高的效率。超声速进气道通过多个较弱的斜激波实现超声速气流的减速。超声速进气道分为外压式、内压式和混合式三类。此外,还有可调式进气口,在超声速条件下,不可调进气道只在设计状态下能与发动机协调工作,这时进气道处于最佳临界状态。在非设计状态下,譬如改变飞行速度,进气道与发动机的工作可能不协调。当发动机需要空气量超过进气道通过能力时,进气道处于低效率的超临界状态。当发动机需要空气量低于进气道通过能力时,进气道将处于亚临界溢流状态。过分的亚临界状态使阻力增加,并引起进气道喘振。为了使进气道在非设计状态下也能与发动机协调工作(即进气道与发动机匹配),提高效能,广泛应用可调式进气口。本型飞行器飞行速度为亚声速,不需要用超声速进气口和可调式进气口,亚声速进气口足以满座要求。 3.2 风扇的结构形式 单级轴流式。风扇排气涵道的收敛度大,以减少气流流过静叶的气动力损失。涡扇发动机的外函推力完全来自于风扇所产生的推力,风扇的的好坏直接的影响到发动机的性能,这一点尤其在高函道比的涡扇发动机上。多级风扇与单级风扇相比几乎没有优点,它重量大、效率低,其实它是在涡扇发动机的技主还不十分成熟的时候一种无耐的选择。 随着风扇单级增压比的一步步提高,现如今在中、高函道比的涡扇发动机上大都采用单级风扇。在战斗机上使用的低函道比涡扇发动机是为了减少重量。它的双转子其实是由风扇转子和压气机转子组成的结构。受战斗机的机内容积所限,采用大空气流量的高函道比涡扇发动机是不现实的,但为了提高推力只能提发动机的出口压力,再者风扇不光要提供全部的外函推力而且还要部分的承担压气机的任务,所以风扇只能采用比较高的增压比,采用多级风扇。本文中采用的是高涵道比发动机,于是采用单级风扇。 3.3 低压压气机和高压压气机结构形式

北航机械原理大作业-V8发动机自制版

北京航空航天大学B E I H A N G U N I V E R S I T Y 机械原理课程机构设计 实验报告 题目:八缸发动机的设计与分析 成员: 班级:班 机械工程及自动化学院 2013年06月 八缸发动机的设计与分析

(北京航空航天大学机械工程及自动化学院,北京市102206)摘要:本文先是列举了几种典型的发动机,然后对其工作原理进行分析,得到了多缸发动 机设计的基本经验。在此基础上,设计出了一种八缸发动机,通过对该发动机的理论分析和ADAMS仿真,表明该八缸发动机不仅可以实现正常驱动的功能,而且结构紧凑,效率高,极具有实用性。 关键字:机构分析;Adams仿真;SolidWorks建模,八缸发动机

目录 1.设计要求 (2) 2.现状调研 (2) 2.1 V型发动机 (3) 2.2 L型发动机 (3) 2.3 H型发动机 (4) 3.发动机工作原理分析 (5) 4.八缸发动机设计与分析 (6) 4.1活塞缸体设计 (7) 4.2进气排气系统 (7) 5.八缸发动机的设计验证 (10) 5.1创建模型 (11) 5.2功能仿真 (11) 6.结论 (15) 参考文献 (15)

1.设计要求 此八缸发动机根据技术任务书要求,在充分论证的基础上选择内燃机的型式,确定主要结构参数,选定主要零部件与辅助系统的结构型式,进行确定一种总体方案图,如下 图1.1 按照4*2的方式排列发动机可以使八个缸体的动力同时输出又不会相互干扰,能满足动力的叠加,极具合理性。 设计要求如下: ⑴根据初步确定的主要零部件的结构型式及轮廓尺寸进行布置,绘制纵横剖面图和一些必要的局部视图,以及运动轨迹图等,借以发现它们之间在尺寸,空间位置,拆装和运动轨迹方面所出现的干涉,并给予合理解决 ⑵根据初步选定的辅助系统型式及主要几件轮廓尺寸,确定它们在内燃机中的合适位置和安装方式,检验它们之间是否相互干涉,拆装和维修是否方便。 ⑶在上述工作基础上,确定内燃机零部件,系统及其机件的布置和外形尺寸,制作一套完整的SolidWorks内燃机仿真零件 ⑷将文件导入Adams进行分析仿真,验证设计的合理性,制作仿真视频。 总结设计中出现的问题和解决问题的办法,以及小组成员的收获。 2.现状调研 通过查阅相关文献,可找出几种典型的发动机,如图2.1所示。

机械原理大作业

机械原理大作业 课程名称:机械原理 设计题目:连杆机构运动分析 院系:机械工程院 班级: xxxx 学号: xxxxx 设计者: xx 设计时间:2016年6月

一、题目 1-12:所示的六连杆机构中,各构件尺寸分别为:lAB =200mm,lBC=500mm,lCD=800mm,xF=400mm,xD=350mm,yD=350mm,w1=100rad/s,求构件5上的F点的位移、速度和加速度。 二、数学模型 1.建立直角坐标系 以F点为直角坐标系的原点建立直角坐标系X-Y,如下图所示。

2.机构结构分析 该机构由I级杆组RR(原动件AB)、II级杆组RRR(杆2、3)、II级杆组PRP (杆5、滑块4)组成。 3.各基本杆组运动分析 1.I级杆组RR(原动件AB) 已知原动件AB的转角

φ=0-2Π 原动件AB的角速度 w=10rad/s 原动件AB的角加速度 α=0 运动副A的位置 xA=-400,yA=0 运动副A的速度 vA=0,vA=0 运动副A的加速度 aA=0,aA=0 可得: xB=xA+lAB*cos(φ) yB=yA+lAB*sin(φ) 速度和加速度分析: vxB=vxA-wl*AB*sin(Φ) vyB=vyA+w*lAB*sin(φ) axB=axA-w2*lAB*cos(φ)-e*lAB*sin(φ) ayB=ayA-w2*lAB*sin(φ)+e*lAB*cos(φ)

2.II级杆组RRR(杆2、3) 杆2的角位置、角速度、角加速度 lBC=500mm,lCD=800mm,xD=350mm,yD=350mm, ψ2=arctan﹛[Bo+﹙Ao2+Bo2-Co2﹚?]/﹙Ao+Bo﹚﹜ ψ3=arctan[﹙yC-yD)/(xC-xD)] Ao=2*LBC(xD-xB) Bo=2*LBC(yD-yB) lBD2=(xD-xB)2+(yD-yB)2 Co=lBC2+lBD2-lCD2 xC=xB+lBC*cos(ψ2) yC=xB+lBC*sin(ψ2) 求导可得C点的角速度和角加速度。

相关主题
文本预览
相关文档 最新文档