当前位置:文档之家› 热加工传输原理应用

热加工传输原理应用

热加工传输原理应用
热加工传输原理应用

热加工传输原理应用

————————————————————————————————作者:————————————————————————————————日期:

?

热加工传输原理大作业

题目: 焊接接头中金属的流动及数值模拟在焊接中的应用姓名:

班级:

学号:

日期:

哈尔滨工业大学材料科学与工程学院

焊接接头中金属的流动及数值模拟在焊接中的应用

姓名: 班级: 学号:

金属的处理过程中总是伴随着“三传现象”,即“动量传输,热量传输和质量传输”。焊接过程中,在焊接接头处热量的散发,异种原子在焊接接头的扩散,及外部能量的输入均对结晶后的焊接接头组织产生重大影响,由于组织决定性能,因此将对接头的性能产生很大影响。本篇文章以摩擦焊为例,研究接头塑性金属的流动行为,以及热传输原理中数值分析在焊接中的应用。

1、摩擦焊接头的金属流动性。

1.1 摩擦焊接

摩擦焊接作为一种优质、精密、高效、节能和环保的固相连接技术,在航空航天及一般工业领域都有着巨大的应用潜力,在轻量化、高可靠性及低成本的装备制造中具有独特的优势。在国外工业强国,惯性摩擦焊(IFW)已成功用于航空发动机粉末盘与轴的连接,线性摩擦焊(LFW)已被应用到高推重比航空发动机整体叶盘的关键制造,搅拌摩擦焊(FSW)已用于飞机机舱等大型铝合金构件的制造。国内也将摩擦焊应用到了部分构件制造上。国内对摩擦焊的研究主要集中在对摩擦焊工艺及应用的研究。摩擦焊是一个涉及温度、力学、冶金及其相互作用的高度复杂过程,此过程中以摩擦界面处材料的塑性变形为主,界面处塑性金属流动的产生以及流动行为将会影响到热源的产生以及界面的扩散与动态回复再结晶,进而影响到焊接接头的质量。塑性金属层是否连续、完整和牢固地覆盖于摩擦界面,对能否形成无缺陷、优质的焊接接头具有重要影响。因此,研究摩擦焊接过程中塑性金属流动行为非常重要。

1.2 旋转摩擦焊接头的金属塑性流动。

国外早期有关摩擦焊的研究主要集中在旋转摩擦焊接头形成过程中塑性流动与温度场的数值研究。1973年,Duffin与Bahrani 对低碳钢管的连续驱动摩擦焊接过程进行了实验研究与分析,将工艺

规范参数与试样的变形情况进行了相关分析。1985年,Francis与C raine针对薄壁管件的连续驱动摩擦焊过程的摩擦阶段(不包括顶锻阶段)进行了分析,将变形层当做大粘性系数的牛顿流体,研究了变形层厚度、轴向缩短量与温度的关系。1994年,Midling与Gron g采用实验与解析方法研究了Al-Mg-Si合金与Al-SiC复合材料的摩擦焊接过程中的温度变化与塑性流动行为,预测了接头的应变场与温度场。1997年,Bendzsak等人通过解析的方法,对惯性摩擦焊接头的塑性金属流动行为进行了初步的阐述。以上文献摩擦热的处理都是以当量热流密度的形式从摩擦界面输入,模型简化过多,尽管部分计算结果与实验结果吻合,摩擦焊条件下的塑性流动行为仍然没有被很好地阐明。国内在1984年采用了急停技术对45钢连续驱动摩擦焊接过程中变形层和高温区的扩展过程进行了研究。实验开展了摩擦压力和摩擦时间对变形层和高温区扩展过程规律的研究,并揭示了在摩擦加热开始时,变形层首先在距离圆心1/2~2/3半径处的摩擦表面上形成。变形层的厚度随摩擦压力的增大而增大。史弼采用解析法对摩擦焊接过程中的高温塑性变形区进行研究,定性地分析了焊接参数对塑性区宽度的影响。

1.3搅拌摩擦焊接过程的塑性流动。

在搅拌摩擦焊接过程中,工具形状、焊接参数和待焊材料直接影响焊缝金属的塑性流动,从而决定了焊核区、热机械影响区、热影响区的大小和性能。

2、焊接过程的数值模拟。

2.1 焊接影响因素

焊缝组织的形成过程复杂,受诸多因素影响,如焊缝金属及母材成分、焊接热循环过程、焊缝中夹杂物尺寸和分布、奥氏体晶粒成分和尺寸等等。通过相变热力学计算,可确定铁素体、珠光体、贝氏体等形核孕育时间以及转变开始温度;通过相变动力学计算,可确定新生相晶粒生长速度并计算最终的质量百分比。由于焊接是一个不平衡的连续冷却过程,进行热力学、动力学计算比较困难,而且组织转变

过程中的部分参量尚未有明确的物理模型和数学表达式,因此,模拟接头微观组织仍然十分困难。但随着计算机技术的发展,计算机模拟在焊接领域中已得到越来越广泛的应用。很多的科研工作者进行了大量的研究,并取得了很大的进展。其研究主要集中在以下几个方面。1.焊接热过程的数值模拟;2.焊接熔池流体流动以及焊缝形状、尺寸的数值模拟;3.焊缝金属凝固和焊接接头相变过程、组织变化的数值模拟;4.焊接应力和应变发展过程的数值模拟;5.非均匀焊接接头的力学行为的数值模拟;6.焊接结构断裂韧性、疲劳裂纹扩展、焊接热影响区氢扩散的数值模拟等。在此主要介绍焊接接头微观组织的计算机模拟方法并对其中广泛应用的蒙特卡罗法和元胞自动机法用于晶粒生长微观模拟的研究现状及发展趋势进行评述。

采用计算机模拟技术研究焊接接头微观组织及其变化对材料性能的影响是近年来焊接模拟技术研究领域中的热点和前沿课题之一。目前用于焊接接头微观组织模拟的方法主要有确定性方法和概率性方法。

2.2 确定性方法。

确定性方法是指在给定时刻,一定体积熔体内晶粒的形核密度和生长速率都是确定的函数。到目前为止确定性方法已经得到了广泛的发展。运用确定性方法建立的模型可成功预测微观组织的特征,如等轴晶的平均尺寸和柱状晶的纵向生长等。在低合金钢焊缝奥氏体晶粒尺寸计算模型,该模型从晶粒长大的基本理论出发,考虑了焊接条件下的影响因素,综合了焊缝金属合金元素对奥氏体晶粒长大的影响,建立了一个在连续冷却条件下基于碳原子扩散速率的低合金钢焊缝金属奥氏体晶粒尺寸的计算模型。对于基于夹杂物惰性界面非扩散形成的针状铁素体连续转变动力学模型,该模型可以用来研究焊缝中针状铁素体的转变特征,包括转变温度范围、转变程度以及与焊缝化学成分、工艺参数、相变温度之间的关系、相变过程中的最大可能转变趋势等。但这种方法往往忽略了与晶体学有关的各个因素,无法考察模壁邻近晶粒择优生长形成柱状晶区,因此无法预测发生在模壁附近的等轴晶向柱状晶的转变和柱状横截面尺寸的变化,也无法模拟晶粒向液相区生长和柱状晶向等轴晶的转变等。

2.3 概率性方法。

人们基于“概率性”思想提出的随机性模拟方法,即蒙特卡罗MC(Monte Carlo)方法和元胞自动机CA(Cellular Automata)法避免了上述问题。MC方法在微观组织模拟时,以界面能最小为原理,以概率统计理论为基础,以随机抽样为手段对晶粒生长过程进行模拟。MC法没有分子动力学中的迭代问题,也没有数值不稳定的情况,收敛性可以得到保证,MC法的收敛速度与问题的维数无关,这是它的优点,且其误差容易确定。另外,MC法的计算量没有分子动力学那样大,所需机时少。CA法最早是由VonNeumann和Ulam作为生物机体的一种可能的理想模型而提出的,随后它们被逐渐引入到数学、物理和材料科学等更加广泛的领域,比如计算机理论、湍流和组织形成模拟研究等。CA法是物理体系的一种理想化,是一类离散模型的统称,或者可以说是一种建立模型的基本思想和方法。元胞自动机在刚刚提出到20世纪60、70年代并未引起足够的重视,其发展较为零散和缓慢,也没有形成系统的描述,直到1985年,随着计算机科学的发展,尤其是S.Wolfram对它的理论及应用进行了深入研究,较为系统地给出了元胞自动机的一些数学理论基础以及统计描述,人们才逐渐地意识到元胞自动机的价值,从而激发了人们对它的研究兴趣。而元胞自动机在材料科学中的应用也是近几十年才发展起来的。另外,近年来一种新的模拟方法,即相场法也逐渐成为人们的研究热点。相场法是一种计算技术,可以使研究者在枝晶尺度上真实地模拟微观组织的形成,通过引入新变量——相场φ而得名。相场是一个序参量,表示系统在时间和空间上的物理状态(液态或固态)。相场对系统中的相具有恒定的值,可以定义相场φ的一个确定的值表示系统中的相的状态,例如φ=0代表固相区,φ=1代表液相区,在固液界面上φ的值在0~1之间连续变化,相场理论是建立在统计学基础上的,以Ginzburg Landau相变理论为基础,通过微分方程反映扩散、有序化势以及热力学驱动力的综合作用。相场方程的解可以描述金属系统的固液界面的形态、曲率以及界面的移动。相场参数的求解还需耦合外部温度场、溶质场、流速场等,此外,若使用显式查分格式,界

面厚度与网格步长还需满足一定条件。

2.4 基于蒙特卡罗(MC)法的晶粒生长模型。

MC法的基本原理及思想:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。MC方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟试验。它是以一个概率模型为基础,按照这个模型所描绘的过程,将模拟试验的结果作为问题的近似解。

MC模拟晶粒长大常用的几种模型

2.4.1 初始的MC模型

1983年,Anderson首次提出一个新型的MC程序,将其应用于二维的晶粒长大动力学模拟。将微观结构映射到一个离散的网格上,每一个网格赋给一个从1到Q的值,表明该点的晶粒取向。晶粒的原始分布取向是随机选取的,与晶体学取向不相同,系统进化减少了最近邻格点的对偶。微观结构的暂时进化遵从晶粒尺寸和形状对时间的依赖性,微观结构的产生与肥皂泡试验相一致,然后根据晶粒生长的动力学方程进行模拟。

2.4.2 晶界迁移模型GBM(grain boundary migration model)

在实际晶粒长大和再结晶过程中,晶界的迁移是极其复杂的,没有一定的规律可循,在模拟中采用的是晶界迁移各向同性,即不考虑其他因素的影响,只考虑能量在晶界迁移中的作用。

2.4.3基于试验数据的模型EDB(experimented da ta based model)

基于试验数据的模型就是将MC模拟与晶粒生长动力学试验结合起来,通过对焊接热影响区的焊接热循环进行有限元分析,将其与晶

粒生长模型结合起来,得出一个准确的一一对应的模拟时间与真实时间的关系。在目前的研究中,微观晶粒生长的模拟多是采用GBM模型和EDB模型进行的。

2.5 MC法模拟焊接接头组织晶粒长大的研究进展

随着科学技术的发展和电子计算机的发明,20世纪40年代,MC法作为一种独立的方法被提出来,并且首先在核武器的研制、粒子传输等领域中得到了应用。美国EXXON研究组在80年代初开发了二维算法后,很快引起广大学者的重视并进一步应用于再结晶、多晶材料的晶粒长大、有序—无序畴转变等多种金属学和物理学仿真过程。1983年,Anderson提出一个新型的MC程序,将其应用于二维的晶粒长大动力学模拟,后来,又将MC法应用于模拟晶粒生长的尺寸分布、拓扑学和局部动力学的研究。Brown和Spittle最先采用Anderson等发展起来的MC方法建立了晶粒生长的概率模型。后来,PanpingZhu和Smith考虑了材料的界面能与体积自由能,并结合连续性方程将Brown和Spittle的方法进行了改进。1993年,Paillard等[19]应用MC法在二维网格上模拟HiB Feω(Si)为3%的合金正常和异常晶粒的生长。在模拟中,他们考虑了2个不同结晶取向的晶粒之间能量和晶界迁移的各向异性,与试验结果比较得出用MC法模拟晶粒长大是可行的。之后,Radhakrishnan和Zach aria提出了一个修正的MC算法,以获得MC模拟、晶粒尺寸的真实参数和时间之间的关系。并使用修正的MC模型深入研究了0.5Mo-Cr -v钢焊接热影响区晶粒的结构。模拟结果表明为精确预测0.5Mo-Cr-v钢HAZ的晶粒尺寸需考虑HAZ温度梯度的急速变化以及晶粒液相边界的钉扎作用。此后,MC法焊接接头微观组织模拟中得到了迅速的发展。1996年,Gao等人提出了HAZ晶粒生长的3个模型,使MC模拟能够应用于整个焊接过程中,并且通过GBM模型在马口铁再结晶区等温晶粒生长的应用和EDB模型在连续加热的钛合金热处理中的应用,进一步分析了2种模型在实际工艺生产过程的应用,并且得出等温过程和连续加热过程下普通晶粒生长的一般模拟规律,即当等温晶粒生长动力学的实验数据可得到时,基于实验数据的模型

在模拟中可得到很好的结果。1998年,RadhakrishnanB.等人又进一步把MC法与有限差分法结合起来,再现热机械处理下微观结构演化的信息。1999年S.Jahanian等人利用GBM模型,对0.5Mo-Cr-v焊接HAZ晶粒生长进行了模拟,并在模拟中将温度梯度融入MC算法,成功地获得了焊接热影响区的热钉扎现象,丰富了文献[20]中提出的修正MC算法,进一步奠定了焊接接头HAZ晶粒生长模拟的研究基础。Yang和Sista[23]利用GBM模型对钛合金HAZ晶粒生长进行三维的MC模拟,提出了第一个工业用纯钛在GTA焊接中三维晶粒生长模型,克服了二维模拟中的缺点。2002年,M.Y.Li 和E.Kannatey 等利用EDB模型对Ni270激光焊接后HAZ晶粒的生长进行了二维模拟,并且具体分析了在实际模拟过程中时间、空间以及物理参数如温度的测量等等对模拟结果的影响和原因,进一步为MC法应用于高温焊件组织预测提供了研究基础。在国内,许多学者对焊接接头微观组织晶粒生长过程也有了不少的研究。但早期还是主要集中在对MC法本身的探讨、模拟晶粒分布函数特点以及晶粒形貌等方面。例如,丁雨田等人应用MC方法模拟了定向凝固条件下微观组织的形成过程。莫春立等人通过对MC法的研究揭示了其在模拟微观组织过程中的重要作用,讨论了MC法的特点以及概述了MC模拟方法在材料加工过程中的应用情况。陈礼清等人利用二维点阵及MC法模拟了二维多晶体晶粒长大的规律等。钟晓征等人运用MC法及改进的Q-Statepotts算法,对多晶体材料正常和异常晶粒的长大过程进行了模拟,并对正常晶粒生长形貌演化也进行了可视化研究。同时,叶日晴等人也使用快速Q-Statepotts算法对多晶体材料在退火中晶粒生长过程的结构演化进行了计算机模拟和统计分析。近些年来,研究开始主要集中在简单纯金属的焊接组织及热影响区的模拟。如莫春立等人利用EDB模型对单相铁素体不锈钢HAZ晶粒长大的过程进行了模拟,与试验结果较吻合。模拟结果揭示了温度梯度的存在对晶粒长大的阻碍作用,HAZ微观组织的演变过程及晶粒尺寸的分布情况。姜寿文等人采用MC方法和简化的物理模型所编制的程序也较好地模拟了冷轧钢板退火组织的演变过程及变化规律,模拟程序所演示的退火过程晶粒尺寸和再结晶百分比变化与实验所得到的结果一

致。宋晓艳等人利用三维的MC仿真技术模拟了单相材料正常晶粒的生长过程,更准确地反映了晶粒长大动力学和拓扑学的全面信息,逼真再现了晶粒长大的过程,并且明显提高了模拟效率,这是二维模拟难以比拟的。

2.6基于元胞自动机(CA)法的晶粒生长模型

2.6.1元胞自动机的基本思想

CA法同样以随机概念、形核的物理机理与晶体生长动力学理论为基础。具体来说,元胞自动机是由元胞和元胞空间组成,复杂的体系对应元胞空间被划分成一个一个简单的元胞,并且时间被离散成时间步,元胞的状态也被离散成有限个分离的状态,元胞之间的相互作用也被限定在一定的范围内,即1个元胞只与它相邻的元胞邻居发生作用,元胞与元胞之间的作用由几条简单的规则组成,即每个元胞在某一时刻的状态由一个时间步前的状态按照一定规则来决定。这种元胞状态的转变是随着时间步的不断增加同步地进行着,每个元胞在受到其邻居的影响的同时也在影响着它的邻居,最后通过计算机统计而得到体系的总体状态。这种以简单的、离散的元胞通过简单的规则与邻居发生局部作用来考察复杂体系的方法就是元胞自动机的基本思想。传统的数学建模方法是建立描述体系行为的偏微分方程,它依赖于对体系的成熟的定量理论,而大多数体系缺乏这样的理论。于是元胞自动机从微观出发来考虑问题,与同样从微观出发的分子动力学和蒙特卡罗法需要依赖与体系内部原子间势函数或体系内部自由能的计算不同,元胞自动机直接考察体系的局部交互作用,再借助计算机统计模拟这种局部作用所导致的总体行为,从而得到它们的组态变化。

2.6.2元胞自动机在微观组织模拟中的研究进展

材料的组织形态及其演变规律具有复杂、动态和随机性的特征,对于这类问题一直以来都缺乏有效的定量数学描述,元胞自动机在处理这类问题时具有较显著的优点。元胞自动机在材料科学中的应用是近十几年才发展起来的,最早出现在凝固结晶方面。Packard建立

了第一个枝晶生长的二维元胞自动机模型,考察了局部的界面曲率的影响,并定性观察了枝晶生长结构。在他的影响下,又有不少学者对凝固枝晶的元胞自动机模拟进行了研究,这些模型都考虑了曲率、热扩散和潜热等效应,并定性地生成了凝固枝晶的基本组织结构形态,并从不同的侧面反映出枝晶生长的一些现象及不同因素对它的影响。Brown在研究中考察了不同过冷度对枝晶形态的影响,观察到随着过冷度的降低,枝晶的尖端出现明显的分叉,过冷度再继续减少,随着侧支形成的数目减少而向主轴生长。这类元胞自动机模型也运用到凝固中的耦合生长现象,如共晶生长,Brown在这里考虑了过程中不同组元的再分布,虽然没有考虑潜热和热传导等热效应,模拟结果仍再现了共晶生长产生的层状共晶组织特征。Brown还进一步地把元胞自动机与有限差分法结合起来,建立了三维的元胞自动机有限差分(CAFD)模型,来模拟两相的耦合生长。在2000年,他又建立了多元多相合金的CAFD模型,该模型能够较好地预测平衡凝固时微观偏析和平衡成分生成的信息。另外,H.W.Hesselbarth和I.R.Gobel在1991年也成功地利用CA法模拟了二维情况下的再结晶过程[39]。他们利用元胞自动机模型建立了再结晶形核和核长大的动力学模型以及在模拟中不同的参数和算法对再结晶行为的影响。模拟结果成功地证明了已被公认的再结晶动力学理论:f=1-exp(-B·tn),即JMAK(Johnson-Mehl-Avrami-Kalmogorav)理论。在国内,近年也有许多学者进行了一定的研究。李殿中等人采用CA法对K417Ni基高温合金涡轮叶片的凝固组织进行了模拟,分析计算了任一时刻任一晶粒的生长尺寸及形态演变过程,结合金属凝固过程和热形成过程的温度场、浓度场、应力应变场的数值模拟和金属结晶、再结晶过程中的热力学、动力学条件,实现了组织过程的定量模拟,建立了金属成形过程组织演变的宏—微观耦合模型。魏秀琴等人提出了基于一种电渣熔铸凝固结晶过程的三维元胞自动机模型,对电渣熔铸凝固过程进行了计算机模拟就电渣熔铸过程中金属熔池深度的变化以及电极熔速、渣温、铸件尺寸和散热系数对它的影响进行了一系列计算机模拟试验,结果再现了电渣熔铸中一些已确认的现象。2002年,余亮等人又在研究中认为枝晶这种特殊形态的形成和生

长,完全是晶体凝固以及温度场耦合作用得到的自然结果,并且通过试验说明,通过元胞自动机可以在最基础的物理冶金理论支持下,对于微观结构的形成和发展进行机理上的研究。但目前CA法用于焊接接头晶粒生长微观模拟的研究者还比较少。

综上所述,元胞自动机方法是处理微观组织演变过程的一种好的方法。如果有限元、有限差分法与CA方法结合,构造合理的宏、微观耦合的物理模型,则可以模拟实际工件焊接过程的组织演变,预测晶粒度、相的分布等,并通过宏观工艺参数来优化组织。目前国内外开展此项工作的学者尚不多见,但已经引起了不少学者的关注。

3、数值模拟在摩擦焊接中的应用。

Smith等建立了热力耦合流动模型,此模型将工具几何、合金类型、工具旋转速度、工具位置和移动速度作为输入量预测了材料的流动过程。Colegrove等采用了二维计算流体动力学软件Fluent研究了FSW工具附近的金属流动。所获得流动规律与London和Guerra实验得到的流动规律几乎一致。数值模拟建立的固相力学模型确定了材料流动的速度场、材料流动特征以及塑性流动过程中的应力分布。实验部分是通过可视化跟踪技术确定焊接前后的材料的流动模式。Seidel等基于流体力学理论建立二维FSW模型,此模型将把FSW焊接过程认为是层流、粘性、非牛顿流体绕过旋转的圆柱体搅拌头。材料塑性变形产热使得焊缝金属发生软化。二维模型预测了焊缝金属流动在多数情况下,材料都是从后退侧绕过搅拌头流动的。基于流体力学分析材料流动行为是不能准确反映材料在焊接过程中的运动本质的,一些学者(如张洪武等)使用通用有限元软件ABAQUS 对FSW的搅拌过程进行二维模拟,研究了焊接工艺过程中焊件材料的流动情况以及在焊接过程中材料的应力和应变情况。得到以下3种流动模式,即:前进侧的材料绕搅拌头旋转数周之后沉积在搅拌头之后的尾迹中;后退侧的材料直接被搅拌头旋推到搅拌头的后方;靠近中间焊缝处的材料会进入旋转区绕搅拌头旋转。以上二维模型过于简单,做了过多假设,并不能代表真实的FSW流动特性。英国焊接研究所

的Smith在文献中总结了搅拌摩擦焊过程中材料流动模拟的进展,指出搅拌摩擦焊三维空间模型更具有实践意义。Colegrove等应用商用计算流体力学软件FLUENT模拟了FSW过程中金属材料的塑性流动,建立了TrivexTM搅拌头和TrifluteTM搅拌头的三维滑动模型。这些模型揭示了围绕探针的三维流动情况,并预测了横向压力和向下方向的压力。但在这个模型中,Colegrove没有考虑搅拌头螺旋线、搅拌头倾斜角度、轴肩上的同心圆环以及搅拌头探针顶端冠状凸起对流体流动的影响。文献利用温度场作为边界条件针对搅拌摩擦焊焊缝中复杂的金属的流动建立的模型分析了焊接速度、搅拌头旋转速度对模型的影响。得出了许多焊接过程中真实的特征,但此模型没有预测出焊接压力。Nandan等人根据以前的实验建立了三维金属粘塑性流动模型,模拟结果表明,搅拌摩擦焊过程热传导和材料流动有着明显的不对称性,而且随着焊接速度和搅拌头旋转速度的提高,这种不对称性也在增强。最近,Nandan等人还建立了搅拌摩擦焊接中碳钢三维粘塑性流动和传热模型,模型采用非牛顿粘性计算了金属的流动,文献得到了不同深度的水平面流线(如图所示),流线显示了近圆的存在,且为闭合的流线,这说明搅拌针周围材料存在回流。图中还表明材料移动主要发生在后退侧。

国内栾国红等在铝合金搅拌摩擦焊接头行为分析中详细介绍了搅拌摩擦焊接头塑性流变数值模拟所得到的结果。在搅拌头轴肩下大约1.5mm处,搅拌摩擦焊前进侧的塑性流体结构中存在一个不稳定区域——紊流区。这个紊流区的存在会严重改变金属材料的过渡途径。王大勇等建立了搅拌摩擦焊过程中热塑性软化区的流动行为物理模型,并将塑性软化区分为3层:轴肩附近、搅拌针上部和搅拌针下端附近。通过模型的建立和计算得出3层的材料流动特征各不相同:轴肩附近的材料首先流入因搅拌针行进而在搅拌针后部留下的空腔内,

剩余材料则围绕着轴肩由前进侧流动到搅拌头的后部;搅拌针上部附近的材料以剪切的方式从搅拌针前部流动到搅拌针后部;而搅拌针下端附近的材料以挤压的方式从搅拌针的前部流动到搅拌针的后部。王希靖等和王训宏等均采用FLUENT流体工程仿真软件对搅拌摩擦焊焊缝金属的塑性流动进行了数值计算与模拟。文献初步得出了搅拌摩擦焊焊缝塑性流体流动横向、纵向规律。从已有的文献来看,采用FLUE NT软件能较好地模拟FSW中流体的塑性流动,但温度场无法很好阐明。同时,由于搅拌摩擦焊接头的特殊性,看作纯流体也是对实际过程的较大简化,结果也不太理想。文献采用ABAQUS软件建立了基于非线性连续介质力学有限元模型,研究了不同参数下的搅拌摩擦焊接条件下的材料流动,模拟结果表明,焊缝前进侧存在漩涡,且漩涡中材料流动速度随着移动速度的增加而增加。

4、结束语

热传输现象在焊接中广泛存在,利用传输原理中的三传现象相关原理对焊接接头的微观组织进行分析可以得到很接近事实的数据。微观组织对焊接构件的性能具有非常重要的影响,对它进行模拟和预测具有非常重大的现实意义。尽管在近十几年内,国内外学者在焊接微观组织的计算机模拟这一领域取得了较大的进展,焊接生产也正由“理论—试验—生产”的模式向“理论—数值模拟—生产”的模式发展,但各种模拟方法都作了多种假设,因此仍处在研究阶段,离实际应用尚有一定距离,还有许多方面有待发展,如:1. 基础理论研究,进一步考虑更多的影响因素,建立更加完善的物理模型和数学模2.耦合宏微观分析方法,建立完善的宏微观统一模型,更真实、全面地再现焊接过程;3. 进一步进行算法研究,提高计算精度和计算速度;4.建立完备的热物性参数数据库。

热加工课后习题答案

第一章金属的晶体结构与结晶 1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。 答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。 线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。 如位错。 面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。如晶界和亚晶界。 亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。滑移部分与未滑移部分的交界线即为位错线。如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位 错” 。 单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。多晶体:由多种晶粒组成的晶体结构称为“多晶体” 。 过冷度:实际结晶温度与理论结晶温度之差称为过冷度。自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的 固态质点,使结晶时的晶核数目大大增加,从而提高了形核率, 细化晶粒,这种处理方法即为变质处理。 变质剂:在浇注前所加入的难熔杂质称为变质剂。

2.常见的金属晶体结构有哪几种?a-Fe、丫- Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属何种晶体结构? 答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格; a —Fe、Cr、V属于体心立方晶格; Y - Fe、Al、Cu、Ni、Pb属于面心立方晶格; Mg、Zn属于密排六方晶格; 3.配位数和致密度可以用来说明哪些问题? 答:用来说明晶体中原子排列的紧密程度。晶体中配位数和致密度越大,则晶体中原子排列越紧密。 4.晶面指数和晶向指数有什么不同? 答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为Uvw 1;晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为hkl。 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响? 答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增力口。同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。 6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡, 因而表现各向同性。 7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影

光纤通信原理及应用

光纤通信原理及应用 摘要:光纤通信技术是利用半导体激光器等光电转换器将电信号转换成光信号,并使其在光纤中快速、安全地传输的一门新兴技术。光纤是一种理想的传输媒体,它具有传输时延低、高通信质量、高带宽、抗干扰能力强等特点。光纤在高速以太网中有着广泛的应用。论文主要分析了光电信号的转换、光纤通信的基本原理并介绍了光纤在通信领域中的一些应用。 关键词:光纤通信;光电转换;全反射 1. 引言 光纤是用光透射率高的电介质构成的光通路,它是一种介质圆柱光波导,它是用非常透明的石英玻璃拉成细丝,主要由纤芯和包层构成双层通信圆柱体。光纤通信就是在发送端利用半导体激光转换器将电信号转换成光信号并利用光导纤维传递光脉冲来进行通信,光波通过纤芯以全反射的方式进行传导,有光脉冲相当于1,没有光脉冲相当于0。同时,接收端利用光电二极管或半导体激光器做成光检测器,检测到光脉冲时将光信号还原成电信号。在由于可见光的频率非 常高,约为8 10MHz的量级,因此一能做到使用一根光个光纤通信系统的传输带宽远远大于其它的传输媒体的带宽。同时利用光的频分复用技术,就纤来同时传输多个频率很接近的光载波信号,使得光纤的传输能力成倍地提高。 2.理论模型 在光纤通信系统的发送端使用光电信号检测电路将电信号转换成光信号,并使得光信号以大于某一角度入射到光通道,此时光信号在光纤以全反射的方式不断向前传输,并在接收端再将光信号转换成电信号进行进一步的处理。 2.1 光电信号检测电路的基本原理 光电检测电路主要由光电器件、输入电路和前置放大器组成。其中,光电检测器件是实现光电转换的核心器件,它把被测光信号转换成相应的电信号;输入电路为光电器件正常的工作条件,进行电参量的变换并完成前置放大器的电路匹配;前置放大器能够放大光电器件输出的微弱电信号,并匹配后置处理电路与检测器件之间的阻抗。 2.1.1 光电信号输入电路的静态计算 图解计算法是利用包含非线性元件的串联电路的图解法对恒流源器件的输入电路进行计算。反射偏置电压作用下的光电二极管的基本输入电路如下:

数字测图原理和方法

《数字测图原理与方法》教学实习任务书 南京师范大学地理科学学院 2010年11月

一、前言 《数字测图原理与方法》教学实习是该课程教学的重要组成部分,是巩固和深化课堂所学知识的必要环节。通过实习培养学生理论联系实际、分析问题与解决问题的能力以及实际动手能力,使学生具有严格认真的科学态度、实事求是的工作作风、吃苦耐劳的劳动态度以及团结协作的集体观念。同时,也使学生在业务组织能力和实际工作能力方面得到锻炼,为今后从事测绘工作打下良好基础。 实习地点:南京师范大学仙林校区老北区。 实习时间:2010年11月16日-12月21日(共5周)。 实习成绩考核方面:实习态度、协作精神、观测记录、实习报告。 二、实习目的 1、熟练掌握全站仪的使用,掌握水平角、垂直角、距离的观测,坐标量测,数据记录与整理计算; 2、掌握水准仪的使用和水准测量记录与计算; 3、掌握数字测图的基本要求和成图过程; 4、掌握用全站仪进行小地区大比例尺数字测图的数据采集和计算机地形绘图的方法; 5、掌握测绘实习报告的编写。 三、实习任务 在为期五周的时间里,各小组测绘两幅 1:500比例尺的数字地形图。具体任务如下: 1、布设图根控制导线,进行图根平面控制测量和图根水准高程控制测量,完成导线和水准路线的近似平差计算,得到碎部测量所需的控制点的平面和高程坐标,要在实习报告中提供平面控制测量和高程控制测量的平差计算表格。 2、进行数字测图的碎部数据采集(地物和地貌),在KeyStone(开思)环境下,依据地形图图式的要求,小组内各自完成两幅1:500比例尺的数字地形图的制作,并将两幅1:500地形图进行拼接成更大图幅的1幅地形图。

热加工基础总复习思考题

热加工基础总复习题 第一章铸造 一、名词解释 铸造:将热态金属浇注到与零件的形状相适应的铸型型腔中冷却后获得铸件的方法。 热应力:在凝固冷却过程中,不同部位由于不均衡的收缩而引起的应力。 收缩:铸件在液态、凝固态和固态的冷却过程中所发生的体积缩小现象,合金的收缩一般用体收缩率和线收缩率表示。 金属型铸造:用重力浇注将熔融金属浇人金属铸型而获得铸件的方法。 流动性:熔融金属的流动能力,仅与金属本身的化学成分、温度、杂质含量及物理性质有关,是熔融金属本身固有的性质。 二、填空题 1.手工造型的主要特点是(适应性强)(设备简单)(生产准备时间短)和(模样成本低),在(成批)和(大量)生产中采用机械造型。 2. 常用的特种铸造方法有(熔模铸造),(金属型铸造)、(压力铸造),(低压铸造)和(离心铸造)。 3.铸件的凝固方式是按(凝固区域宽度大小)来划分的,有(逐层凝固)、(中间凝固)和(糊状凝固)三种凝固方式。纯金属和共晶成分的合金易按(逐层凝固)方式凝固。 4.铸造合金在凝固过程中的收缩分三个阶段,其中(液态收缩和凝固收缩)收缩是铸件产生缩孔和缩松的根本原因,而(固态收缩)收缩是铸件产生变形、裂纹的根本原因。

5.按照气体的来源,铸件中的气孔分为(侵入性气孔)、(析出性气孔)和(反应性气孔)三类。因铝合金液体除气效果不好等原因,铝合金铸件中常见的“针孔”属于(析出性气孔)。 6.铸钢铸造性能差的原因主要是(熔点高,流动性差)和(收缩大)。 7.影响合金流动性的内因有(液态合金的化学成分)外因包括(液态合金的导热系数)和(黏度和液态合金的温度)。 8.铸造生产的优点是(成形方便)、(适应性强)和(成本较低)。缺点是(铸件力学性能较低)、(铸件质量不够稳定)和(废品率高)。 三、是非题 1.铸造热应力最终的结论是薄壁或表层受拉。( ×) 2.铸件的主要加工面和重要的工作面浇注时应朝上。(×) 3.冒口的作用是保证铸件同时冷却。(×) 4.铸件上宽大的水平面浇注时应朝下。( ) 5.铸铁的流动性比铸钢的好。( ) 6.含碳4.3%的白口铸铁的铸造性能不如45钢好。( ×) 7.铸造生产特别适合于制造受力较大或受力复杂零件的毛坯。(×) 8.收缩较小的灰铁铸件可以采用定向(顺序)凝固原则来减少或消除铸造内应力。(×)

光纤传输的特点优势及传输原理

光纤传输的特点优势及传输原理 优点 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。 组成部分 光源(又称光发送机),传输介质、检测器(又称光接收机)。计算机网络之间的光纤传输中,光源和检测器的工作一般都是用光纤收发器完成的,光纤收发器简单的来说就是实现双绞线与光纤连接的设备,其作用是将双绞线所传输的信号转换成能够通过光纤传输的信号(光信号)。当然也是双向的,同样能将光纤传输的信号转换能够在双绞线中传输的信号,实现网络间的数据传输。在普通的视、音频、数据等传输过程中,光源和检测器的工作一般都是由光端机完成的,光端机就是将多个E1信号变成光信号并传输的设备,所谓E1是一种中继线路数据传输标准,我国和欧洲的标准速率为2.048Mbps,光端机的主要作用就是实现电一光、光一电的转换。由其转换信号分为模拟式光端机和数字式光端机。因此,光纤传输系统按传输信号可分为数字传输系统和模拟传输系统。模拟传输系统是把光强进行模拟调制,将输入信号变为传输信号的振幅(频率或相位)的连续变化。数字传输系统是把输入的信号变换成“1”,“O”脉冲信号,并以其作为传输信号,在接受端再还原成原来的信号。当然,随着光纤传输信号的不同所需要的设备有所不同。光纤作为传输介质,是光纤传输系统的重要因素。可按不同的方式进行分类:按照传输模式来划分:光线只沿光纤的内芯进行传输,只传输主模我们称之为单模光纤(Single—Mode)。有多个模式在光纤中传输,我们称这种光纤为多模光纤(Multi-Mode)。 按照纤芯直径来划分:缓变型多模光纤、缓变增强型多模光纤和缓变型单模光纤按照光纤芯的折射率分布来划分:阶跃型光纤(Step index fiber),简称SIF;梯度型光纤(Graded index f iber),简称GIF;环形光纤(r iv er f iber);W 型光纤。 光缆:点对点光纤传输系统之间的连接通过光缆。光缆含1根光纤(称单纤),有2根光纤(称双纤),或者更多。 单、多模光纤传输设备的原理 光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。

光纤通信原理与技术课程教学大纲

《光纤通信原理与技术》课程教学大纲 英文名称:Fiber Communication Principle and its Application 学时:51 学分:3 开课学期:第7学期 一、课程性质与任务 通过讲授光纤通信技术的基础知识,使学生了解掌握光纤通信的基本特点,学习光纤通信系统的三个重要组成部分:光源(光发射机)、光纤(光缆)和光检测器(光接收机)。通过本课程的学习,学生将掌握光纤通信的基本原理、光纤通信系统的组成和系统设计的基本方法,了解光纤通信的未来与发展,为今后的工程应用和研究生阶段的学习打下基础。 二、课程教学的基本要求 要求通过课堂认真听讲和实验课,以及课下自学,基本掌握光纤通信的基础理论知识和应用概况,熟悉光纤通信在电信、通信中的应用,为今后的工作打下坚实的理论基础。 三、课程内容 第一章光通信发展史及其优点(1学时) 第二章光纤的传输特性(2学时) 第三章影响光纤传输特性的一些物理因素(5学时) 第四章光纤通信系统和网络中的光无源器件(9学时) 第五章光纤通信技术中的光有源器件(3学时) 第六章光纤通信技术中使用的光放大器(4学时) 第七章光纤传输系统(4学时) 第八章光纤网络介绍(6学时) 第九章光纤通信原理与技术实验(17课时) 四、教学重点、难点 本课程的教学重点是光电信息技术物理基础、电光信息转换、光电信息转换,光电信息技术应用,光电新产品开发举例。本课程的教学难点是光电信息技术物理基础。

五、教学时数分配 教学时数51学时,其中理论讲授34学时,实践教学17学时。(教学时数具体见附表1和实践教学具体安排见附表2) 六、教学方式 理论授课以多媒体和模型教学为主,必要时开展演示性实验。 七、本课程与其它课程的关系 1.本课程必要的先修课程 《光学》、《电动力学》、《量子力学》等课程 2.本课程的后续课程 《激光技术》和《光纤通信原理实验》以及就业实习。 八、考核方式 考核方式:考查 具体有三种。根据大多数学生学习情况和学生兴趣而定其中一种。第一种是采用期末考试与平时成绩相结合的方式进行综合评定。对于理论和常识部分采用闭卷考试,期末考试成绩占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%;第二种是采用课程设计(含市场调查报告)和平时成绩相结合的方式,课程设计占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。第三种是采用课程论文(含市场调查报告)和平时成绩相结合的方式,课程论文占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。 九、教材及教学参考书 1.主教材 《光纤通信原理与技术》,吴德明编著,科学出版社,第二版,2010年9月 2.参考书 (1)《光纤通信原理与仿真》,郭建强、高晓蓉、王泽勇编著,西南交通大学出版社,第一版,2013年5月 (2)《光通信原理与技术》,朱勇、王江平、卢麟,科学出版社,第二版,2011年8月

数字测图原理与方法

数字测图原理与方法 一、比例尺的概念及比例尺的分类。 比例尺:图上长度与相应的实地水平长度之比,称为该图的比例尺。 比例尺的分类 ①小比例尺:1:25万、1:50万、1:100万 ②中比例尺:1:2.5万、1:5万、1:10万 ③大比例尺:1:500、1:1000、1:2000、1:5000、1:1万 二、白纸测图与数字测图的基本概念。 (1)白纸测图:传统的地形测量是利用测量仪器对地球表面局部区域内的各种地物、地 貌(总称地形)的空间位置和几何形状进行测定,以一定的比例尺并按图式符号绘 制在图纸上,即通常所称的白纸测图。 (2)数字测图:广义地讲,生产数字地图的方法和过程就是数字测图。数字测图实质上 是一种全解析机助测图方法。它以计算机为核心,在相关输入输出设备的支持下,对地形空间数据进行采集、存贮、处理、输出和管理。 三、什么是大比例尺数字地图? 贮存在数据载体(磁带、磁盘或光盘)上的数字形式的大比例尺地图。 四、大比例尺数字地图的特点。 (1)以数字形式表示地图的内容。 (2)具有良好的现势性。 (3)以数字形式贮存的1:1的数字地图,不受比例尺和图幅的限制。 (4)具有较高的位置精度且精度均匀。 (5)为与空间位置有关的信息系统提供基础数据。 (6)地图的建立需要较大的费用和较长的时间。 (7)读写需要相应的软硬件的支持。 五、数字测图技术特点。 (1)精度高 (2)自动化程度高、劳动强度小 (3)更新方便、快捷 (4)便于保存与管理 (5)便于应用 (6)易于发布和实现远程传输 六、数字测图系统的工作过程及作业模式。 数字测图(digital surveying and mapping,简称DSM)系统是以计算机为核心,在外连输入输出设备硬、软件的支持下,对地形空间数据进行采集、输入、成图、绘图、输出、管理的测绘系统。 大比例尺数字测图分为三个阶段:数据采集、数据处理和地图数据的输出。 广义地理解数字测图系统:采集地形数据输入计算机,由机内的成图软件进行处理、成图、显示,经过编辑修改,生成符合国标的地形图,并控制数控绘图仪出图。 七、数字测图的数据采集方式有哪几种? ①地面数字测图法 ②地图数字化法 ③数字摄影测量法

3S理论与技术复习参考

地球信息科学(Geoinformatics或Geomatics): 又译为地理信息科学,是测绘学、摄影测量与遥感学、地图学、地理科学、计算机科 学、卫星定位技术、专家系统技术与现代通讯技术等的有机集成,即 多种学科的综合。是用各种现代化方法采集、量测、分析、存储、管 理、显示、传播、和应用与地理和空间分布有关数据的一门综合的计 算机信息科学、技术和产业实体。Geomatics作为解决空间问题的工 具,是一门应用科学。 地球——空间系统本身是复杂的、开放的、动态的,因此要用动态 的、系统的方法来研究。“3S”技术是Geomatics的核心内容, Geomatics是3S技术的广义定义。 特点:动态性、系统化、实时性、空间特征、信息科学 狭义的3S技术: RS(Remote Sensing): 获取地面信息,并更新。 GIS(Geographic Information System): 对地理信息进行采集、存储、管理、分析和显示的基础平台。 GPS(Global Positioning System): 实现准确的定位。(实时、动态) 一、RS,GPS,GIS的概念和功能 概念: GIS:地理信息系统是在计算机软硬件的支持下,对空间相关数据进行采集、存储、管理、操作、模拟、显示和综合分析的计算机技术系统。 RS:不直接接触物体本身,从远处通过各种传感器探测和接收来自目标物体的信息,经过信息的传输及其处理分析,来识别物体的属性及其分布等特征的综合技术。 RS(抽象):安装在平台上的传感器,借助于某种信息传播媒介来感测遥远事物的过程。 RS技术(具体):从不同高度的平台(如飞机、人造卫星等)使用传感器收集地物的电磁波信息,再将这些信息传输到地面并加以处理,从而达到对地物的识别与监测的全过程。 GPS: 利用GPS定位卫星,在全球范围内实时进行定位、导航的系统,称为全球卫星定位系统,简称GPS。是一种全球性、全天候、连续的卫星无线导航系统,可向用户提供连续、实时、高精度的位置、速度、时间信息 功能:

光纤传输原理

光纤传输原理 光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。光纤,不仅可用来传输模拟信号和数字信号,而且满足视频传输的需求。其数据传输率能达几千Mbps。如果在不使用中继器的情况下,传输范围能达到6-8km。 综观国内外配线系统的发展,我们可看出这样三个阶段: 1、双绞线阶段。在这个阶段语音同大规模数据通信不能混用也适应这样的数据通信。 2、同轴电缆 +双绞线阶段。 3、光纤阶段。 射线光学理论是用光射线去代替光能量传输路线的方法,这种理论对于光波长远远小于光波到尺寸的多模光纤是容易得到简单而直观的分析结果的,但对于复杂问题,射线光学只能给出比较粗糙的概念。 多模光纤传输设备所采用的光器件是LED,通常按波长可分为850nm和1300nm两个波长,按输出功率可分为普通LED和增强 LED--ELED。多模光纤传输所用的光纤,有62.5mm和50mm两种。 在多模光纤上传输决定传输距离的主要因素是光纤的带宽和LED 的工作波长,例如,如果采用工作波长1300nm的LED和50微米的光纤,其传输带宽是 400 MHz .km,链路衰减为0.7dB/km,如果基带传输频率F为150MHz,对于出纤功率为-18dBm,接收灵敏度为-25 dBm 的光纤传输系统,其最大链路损耗为7 dB,则可计算:

ST连接器损耗: 2dB(两个ST连接器) 光学损耗裕量:2 则理论传输距离: L=(7 dB-2 dB-2 dB)/0.7dB/km=4.2 km L为传输距离,而根据光纤的带宽计算: L=B/F=400 MHz .km/150MHz=2.6km 其中 B为光纤带宽,F为基带传输频率,那么实际传输测试时,L£2.6km,由此可见,决定传输距离的主要因素是多模光纤的带宽。 9.1单模传输设备 图1 单模光纤传输光纤传输应用 单模传输设备所采用的光器件是LD,通常按波长可分为850nm 和1300nm两个波长,按输出功率可分为普通LD、高功率LD、DFB-LD(分布反馈光器件)。单模光纤传输所用的光纤最普遍的是G.652,其线径为9微米。 1310nm波长的光在G.652光纤上传输时,决定其传输距离限制的是衰减因数;因为在1310nm波长下,光纤的材料色散与结构色散相

光纤传输原理

三、光纤传输原理 分析光波在光纤中的传输可应用两种理论:射线理论和波动理论。前者是一个近似的分析方法,但简单直观,对定性理解光的传播现象很有效,而且对光纤半径远大于光波长的多模光纤能提供很好的近似,但在应用上有它的局限性。后者是严密的解析方法,为了全面分析光纤中光的传播、信号失真、功率损耗,特别是分析单模光纤和得出全面的定量结果,就必须采用波动理论方法,即求解麦克斯韦方程并满足光波导的边界条件。光纤传播原理的理论分析是复杂的,这里只是粗糙地进行概念性描述,并引出与光纤传输特性有关的参量。 1. 光学中的反射、折射原理 光波是波长极短的电磁波,因此可采用光波长λ→0时的几何光学进行分析。于是一条很细很细的光束,它的轴线就是光射线,简称射线,它代表光能量传输的方向。光在同一媒质中传播时是直线前进,在不同媒质传播时,在媒质交界面处要发生反射和折射。 如图3-12,媒质Ⅰ和Ⅱ的折射率分别是n1和n2,当光射线从媒质Ⅰ入射到界面上时,则一部分能量被反射,另一部分能量进入媒质Ⅱ发生折射,由于光波本质上是电磁波,这时可利用平面电磁波的电磁场方程式和无穷大平面交界面边界条件,求得光波的反射和折射定律(这里仅考虑传播方向的),即

式中θ1和θ1′分别是射线的入射角和反射角,二者相等;θ2是射线的折射角;v1、v2和n1、n2分别为媒质Ⅰ、媒质Ⅱ中的光速及其折射率,二者关系为n=,c是光在真空中的传播速度(c≈3×108m/s),媒质的折射率(v)越大,在其中的光速(v)就愈低。 根据式(3-2),假设n1>n2,则sinθ2>sinθ1,必有θ2>θ1。现在逐渐增大入射角θ1,当增大到一定程度时,θ2就变为90°,光不能进入媒质Ⅱ,此时的入射角称为临界角θc(θ1=θc),这时 (3-3) 下面考虑折射与反射的两种情况: ①在假设的n1>n2条件下,当θ1≥θc时,能量全部被反射,不发生折射,这种现象称为全反射。由此可见,当光波从光密(n值大的)媒质入射到光疏(n值小的)媒质时,光射线的入射角θ1≥θc时,将发生全反射。

光纤照明的原理与应用

光纤照明的原理与应用 摘要:在照明技术中,光纤照明是一枝独秀的照明新技术。本文详细地阐述了光纤照明的原理和特点。并着重介绍了光纤照明的产品及应用。 关键词:光导纤维光纤照明灯具产品与应用 一、概述 在照明技术中,光纤照明是一枝独秀的照明新技术。由于它具有光的柔性传输,安全可靠。所以广泛地应用于工业、科研、医学及景观设计中,并在国内外市场中已形成各类产品。本文仅以个人学习和实践中的有限知识重点介绍景观设计中的光纤照明技术及产品和应用以求教同行专家。 二、光纤照明的原理 光纤照明系统是由光源、反光镜、滤色片及光纤组成,如图一所示。

当光源通过反光镜后,形成一束近似平行光。由于滤色片的作用,又将该光束变成彩色光。当光束进入光纤后,彩色光就随着光纤的路径送到预定的地方。 由于光在途中的损耗,所以光源一般都很强。常用光源为150~250W 左右。而且为了获得近似平行光束,发光点应尽量小,近似于点光源。 反光镜是能否获得近似平行光束的重要因素。所以一般采用非球面反光镜。 滤色片是改变光束颜色的零件。根据需要,用调换不同颜色的滤光片就获得了相应的彩色光源。 光纤是光纤照明系统中的主体,光纤的作用是将光传送或发射到预定地方。光纤分为端发光和体发光两种。前者就是光束传到端点后,通过尾灯进行照明,而后者本身就是发光体,形成一根柔性光柱。 对光纤材料而论,必须是在可见光范围内,对光能量应损耗最小,以确保照明质量。但实际上不可能没有损耗,所以光纤传送距离约30m 左右为最佳。

光纤有单股、多股和网状三种。对单股光纤来说,它的直径为Ф6~Ф20mm.同时又可分为体发光和端发光两种.而对多股光纤来说,均为端发光.多股光纤的直径一般为Ф0.5~Ф3mm,而股数常见为几根至上百根. 网状光纤均为细直径的体发光光纤组成.可以组成柔性光带. 从理论上讲,光线是直线传播的.但在实际应用中,人们都希望改变光线的传播方向.经过科学家数百年不懈的努力,利用透镜和反光镜等光学元件来无限次的改变传播方向.而光纤照明的出现,正是建立在有限次的改变光线传播方向,实现了光的柔性传播.正如圆弧经无数次的分割后成直线一样,光纤照明正是以无限次反射后,光线就随光纤的路径传送,实现了柔性传播.但是光纤照明的柔性传播,并没有改变光线直线传播的经典理论. 三、光纤照明的特点 1、光线柔性传播 从理论上讲,光线是直线传播的。然而因实际应用的多元性,总希望能方便地改变光的传播方向。光纤照明正是满足了这一要求。这是光纤照明的特点之一。

光纤传输原理

光纤,不仅可用来传输模拟信号和数字信号,而且

: 综合布线系统中使用的光纤为玻璃多模850nm波长的 其纤芯和包层由两种光学性能不同的介质构成。内部的介质对光的折射率比环绕它的介质的折射率高。由物理学可知,在两种介质的界面上,当光从折射率高的一侧射入折射率高的一侧时,只要入射角度大于一个临界值,就会发生反射现象,能量将不受损失。这时包在外围的覆盖层就象不透明的物质一样,防止了光线在穿插过程中从表面逸出。只有那些初始入射角偏小的光线才有折射发生,并且在很短距离内就被外层物质吸收干净。

4、光纤传输的特点优势及传输原理 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。

光导纤维的原理及应用

光导纤维的原理及应用 廖浚竹 物理学2015级 摘要:介绍了阶跃型和梯度型光导纤维内光线传输原理,光导纤维的优良特性和在各个领域的广泛应用。 关键词:光导纤维、全反射、自聚焦、光纤应用 引言: 光导纤维的研制成功使人类的通迅技术得到了前所未有的发展,自从1977年美国加利福尼亚洲通用电话公司安装第一套光纤通讯系统以后,发展十分迅猛,至今已普遍使用。于当今信息爆炸的世界,人们对提高无线电波传递信息容量给予了极大的关注,光纤通信就是这一征程上的重大里程碑。 近年来,随着现代科学技术的迅猛发展,光导纤维不仅在通信、电子和电力等领域的应用日益扩展,而且在医学检测、太阳光照明、制作传感器等方面也有了重要突破,成为大有前途的新型基础材料。 1、阶跃型(全反射型)光导纤维光线传输原理 1.1全反射 光由光密介质进入光疏介质时,即n2>n1时,折射光线将远离法线。随着入射角θ1的增大,折射角θ2增加很快,当入射角θ1增加到θc时,折射线延表面进行,即折射角为90°,该入射角θc称为临界角。若入射角大于临界角,则只有反射没有折射,此现象称为全反射(图1)。当光线由光疏媒介射到光密媒介时,折射光线将靠近法线而折射,故这时不会发生全反射。 临界角:θc=arc(n1/n2) 图1 1.2光导纤维 ⑴基本结构 光纤的内层是纯玻璃光芯,外包折射率低于玻璃折射率的掺杂物(包层)。内芯是光传播的部分,包层与纤芯折射率的差别就是为了使光发生全内反射。大部分的光纤在包层外还有一层涂覆层,它一般是一层或几层聚合物,防止纤芯和包层受到震荡而影响光学或物理性质。涂覆层对在光纤里传播的光没有影响,它只是作为一个减震器。 ⑵基本原理

数字测图原理与方法知识点考研总结

数字测图原理与方法知识点考研总结 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

数字测图原理与方法 一、名词解释 1、大地水准面:把一个假象的、与静止的平均海水面重合并向陆地延伸且包围整个地球的特定重力等位面称为大地水准面。 2、视准轴:物镜光心与十字丝交点的连线称为视准轴。 3、系统误差:在相同的观测条件下,对某一量进行一系列的观测,如果出现的误差在符号和数值大小都相同,或按一定的规律变化,这种误差称为“系统误差”。 4、偶然误差:在相同的观测条件下,对某一量进行一系列的观测,如果误差出现的符号和数值大小都不相同,从表面上看没有任何规律性,这种误差称为“偶然误差”。 5、方位角:由直线一端的基本方向起,顺时针方向至该直线的水平角度称为该直线的方位角。方位角的取值范围是0°~360°。 6、危险圆:待定点P 不能位于由已知点A 、B 、C 所决定的外接圆的圆周上,否则P 点将不能唯一确定,故称此外接圆为后方交会的危险圆。 7、全站仪:全站仪是全站型电子速测仪的简称,它集电子经纬仪、光电测距仪和微处理器于一体。 8、等高距:地形图上相邻两高程不同的等高线之间的高差,称为等高距。

9、数字测图系统:是以计算机为核心,在硬件和软件的支持下,对地形空间数据进行数据采集、输入、处理、输出及管理的测绘系统,它包括硬件和软件两个部分。 10、数字地面模型(DTM ):是表示地面起伏形态和地表景观的一系列离散点或规则点的坐标数值集合的总称。 11、数字高程模型(DEM ):数字高程模型DEM ,是以数字的形式按一定结构组织在一起,表示实际地形特征空间分布的模型,是定义在 x 、y 域离散点(规则或不规则)上以高程表达地面起伏形态的数字集合。 二、简答题 1、实际测绘工作中,一般采用的基准面和基准线各是什么 大地水准面和铅垂线是测量外业所依据的基准面和基准线;参考椭球面和法线是测量内业计算的基准面和基准线。 2、角度观测的主要误差来源(种类)有哪些 1)仪器误差:(1)水平度盘偏心差(2)视准轴误差(3)横轴倾斜误差(4)竖轴倾斜误差;2)仪器对中误差;3)目标偏心误差;4)照准误差与读数误差;5)外界条件的影响。 3、何谓视差如何消除视差 如果目标像与十字丝平面不重合,则观测者的眼睛作移动时,就会发觉目标像与十字丝之间有相对移动,这种现象称为“视差”。 消除视差的方法为:先转动目镜调焦螺旋,使十字丝十分清晰;然后转动物镜调焦螺旋,使目标像十分清晰;上下(或左右)移动眼睛,如

光纤光缆原理与应用

光纤光缆原理与应用发布时 间:10-09-0 1 来 源: 点击 量: 26160 字段选 择:大中 小 前言 光纤光缆原理与应用(历史) 1976年,美国贝尔研究所在亚特兰大建成第一条光纤通信实验系统,采用了西方电气公司制造的含有144根光纤的光缆。1980年,由多模光纤制成的商用光缆开始在市内局间中继线和少数长途线路上采用。单模光纤制成的商用光缆于1983年开始在长途线路上采用。1988年,连接美国与英法之

间的第一条横跨大西洋海底光缆敷设成功,不久又建成了第一条横跨太平洋的海底光缆。中国于1978年自行研制出通信光缆,采用的是多模光纤,缆心结构为层绞式。曾先后在上海、北京、武汉等地开展了现场试验。后不久便在市内电话网内作为局间中继线 试用,1984年以后,逐渐用于长途线路,并开始采用单模光纤。通信光缆比铜线电缆具有更大的传输容量,中继段距离长、体积小,重量轻,无电磁干扰,自1976年以后已发展成长途干线、市内中继、近海及跨洋海底通信、以及局域网、专用网等的有线传输线路骨干,并开始向市内用户环路配线网的领域发展,为光纤到户、宽代综合业务数字网提供传输线路。 光纤光缆原理与应用光缆是信息高速路的 基石)

光缆是当今信息社会各种信息网的主 要传输工具。如果把互联网称作信息高速路的话,那么,光缆网就是信息高速路的基石---光缆网是互联网的物理路由。一旦某条光缆遭受破坏而阻断,该方向的“信息高速公路”即告破坏。通过光缆传输的信息,除了通常的电话、电报、传真以外,现在大量传输的还有电视信号,银行汇款、股市行情等一刻也不能中断的信息。目前,长途通信光缆的传输方式已由PDH向SDH发展,传输 速率已由当初的140MB/S发展到2.5GB/S、4×2.5GB/S、16×2.5GB/S甚至更高,也就是说,一对纤芯可开通3万条、12万条、48 万条甚至向更多话路发展。如此大的传输容量,光缆一旦阻断不但给电信部门造成巨大损失,而且由于通信不畅,会给广大群众造

数字测图原理及方法试题库及其答案

东北大学数字测图原理与方法题库 2013~2014学年度第二学期东北大学期末复习资料 数字测图原理与方法备考题库2014.5 一、概念题(本大题共66小题,其中()为补充容) 1. 测绘学: 测绘学是以地球形状、大小及地球表面上的各种地物的几何形状和地貌的形态为研究对象,并研究如何将地面上的各种地物、地貌测绘成图及将设计、规划在图纸上的各种建筑物放样于实地的有关理论与方法的一门科学。 2. 地球椭球体:在测绘工作中选用的用来代替地球形状作为测量基准面的一个非常接近水准面、并且可用数学式表达的几何形体。 3. 地球椭球:代表地球形状和大小的旋转椭球。 4. 参考椭球:与某个区域如一个国家水准面最为密合的椭球称为参考椭球。 5. 参考椭球定位:确定参考椭球面与水准面的相关位置,使参考椭球面在一个国家或地区最佳拟合,称为参考椭球定位。 6. 水准面:水准面中与平均海水面相吻合并向大陆、岛屿延伸而形成的闭合曲面,称为水准面。 7. 坐标系:把地面上的点沿着椭球面法线方向投影到椭球面上并用经纬度来表示其位置的坐标系叫坐标系。 8. 体:水准面所包围的地球形体,叫体。 9. 高程:地面点到水面的铅垂距离,称为该点的绝对高称,或称海拔。 10. 地物:地球表面的一切物体(包括自然地物和人工地物)统称为地物。 11. 地貌: 地貌是指地表面高低起伏的形态。 12. 视差:由于物像没有和十字分划板重合,当人眼相对十字分划板相对移动时物像也和十字分划板相对移动,这种现象叫视差。 13. 照准部偏心差:是指照准部旋转中心与水平度盘分划中心不重合,指标在度盘上读数时产生的误差。 14. 照准误差:是指视准轴偏离目标与理想照准线的夹角。(即视准轴不垂直于仪器横轴时产生的误差) 15. 竖盘指标差:(由于竖盘水准管或垂直补偿器未安到正确位置,使竖盘读数的指标线与垂直线有一个微小得角度差x,称为“竖盘指标差”。)因竖直度盘指标线偏离了正确而使竖直角与正确值产生的差异被称为竖盘指标差。 16. 水准尺的零点差:(从理论上讲,水准尺的零分划线应正好与尺底面重合;但事实上由于制造质量和长期使用,两者往往不相重合。)水准尺底面与零分划线不重合,称为水准尺零点误差。 17. 望远镜的视准轴:望远镜物镜中心与十字丝焦点的连线称为视准轴。 18. 坐标方位角:将坐标北顺时针转至某直线的夹角称为该直线的坐标方位角,以α表示(0~360°)。 19. 子午线收敛角:除中央子午线及赤道上的点以外任何一点的真北方向N与坐标北X都不重合。两者之间的夹角称为该点的子午线收敛角,以γ表示。且当坐标北偏于真北以东时,γ为正,当坐标北偏于真北以西时,γ为负。 20. 磁偏角:磁北与真北两者之间的夹角称为磁偏角,以δ表示。且当磁北偏于真北以东时,δ为正,当磁北偏于真北以西时,δ为负。 21. 真误差:观测值与其真值之差,称为真误差。 22. 系统误差:在相同的观测条件下,对某个固定量进行多次观测,如果观测误差在符号及

《电信传输原理及应用》习题

电信传输习题 第1章 电信传输的基本概念 一、实践活动 1.实地参观当地的中国电信市话传输机房,建立对传输系统整体、直观的印象,询问有关技术人员进一步了解市话对称电缆、同轴电缆、光纤的使用状况。 2.了解身边无线通信网络,特别要留心一下学校周边的各种基站、卫星地面站、微波中继及天线。 3.实地参观学校的专业实验室,向老师咨询传输线路和传输设备种类及用途。 二、思考与练习 1. 什么是通信、电信和电信传输?电信号有哪些种类?各有什么特征? 2. 完整的电信传输系统的是如何组成的? 3. 电信传输有些什么特点? 4. 常用传输介质的结构及用途是什么? 5、以功率电平为例,请简述正电平、负电平和零电平的意义。 6、试简述绝对电平和相对电平的意义以及两者之间的关系。 7.已知测试点的阻抗R L =75Ω,其电压为0.85V ,试计算测试点上的绝对功率电平是多少? 8.设电路某点的绝对功率电平为 (1)0.5N P , (2)-1.5 N P , (3)-7 dBm 试求该点的功率值。 9.已知测试点功率为0.2w ,线路始端功率为10mw ,求测试点的相对功率电平值。 10.已知测试点电压为0.7V ,线路始端电压为0.2V ,求测试点的相对电压电平值。 第2章 金属传输线理论 一、实践活动 实地参观当地的中国电信市话传输机房,询问有关技术人员进一步了解市话对称电缆、同轴电缆使用状况。 二、思考与练习 1.集总参数与分布参数有哪些异同? 2.何为长线?何为短线? 3.阐述金属传输线出现R 、L 、C 和G 的原因及它们的物理意义 4.传输线的特性阻抗和传输常数代表什么意义? 5.当Z C =Z L 时,传输线处于什么工作状态?传输线具有什么特点? 6.当Z C ≠Z L 时,传输线处于什么工作状态?传输线具有什么特点? 7.通信回路的串音损耗与串音防卫度的物理意义是什么? 8.若已知f=5MHz ,同轴电缆回路的一次参数:电阻km R /501Ω=,电感km mH L /2.01=,电导km S G /151μ=,电容km nF C /331=。试求该同轴电缆的二次参数。 9.设某平行双导线的直径为2mm ,间距为8mm ,周围介质为空气,求其特性阻抗。 10.设某同轴线的外导体内直径为20mm ,内导体外直径为10mm ,求其特性阻抗;若在内外导体之间填充ε为2.20的介质,求其特性阻抗。

工程材料与热加工复习资料

工程材料与热加工 复习资料 第1章材料的力学性能 一、选择题 1.金属材料在静载荷作用下,抵抗变形和破坏的能力称为__C____。 A. 塑性 B. 硬度 C. 强度 D. 弹性 2.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是___C___。 A. HBS B. HRC C. HV D. HBW 3.做疲劳试验时,试样承受的载荷为__B_____。 A. 静载荷 B. 交变载荷 C. 冲击载荷 D. 动载荷 二、填空题 1.金属塑性的指标主要有断后伸长率和断面收缩率两种。 2.金属的性能包括物理性能、化学性能、工艺性能和力学性能。 3.常用测定硬度的方法有压入法、刻划法和回跳法测试法。 4.材料的工艺性能包括铸造性能、锻造性能、焊接性能、切削加工性、热处理性等。5.零件的疲劳失效过程可分为疲劳裂纹产生、疲劳裂纹扩展、瞬时断裂三个阶段。三、判断题 1.用布氏硬度测试法测量硬度时,压头为钢球,用符号HBS表示。( √) 2.材料的断裂韧度大于材料的应力场强度因子的,材料的宏观裂纹就会扩展而导致材料的断裂。( ×) 四、概念及思考题 1.硬度,硬度的表示方法。 答:(1)硬度:材料在表面局部体积内抵抗变形(特别是塑性变形)、压痕或刻痕的能力;(2)硬度的表示方法:①布氏硬度:HBS(钢头:淬火钢球)或HBW(钢头:硬质合金球)②洛氏硬度:HR ③维氏硬度:HV 2.韧性,冲击韧性。3.疲劳断裂4.提高疲劳强度的途径。 第2章金属的晶体结构与结晶 一、名词解释 晶体:是指原子(离子、分子)在三维空间有规则地周期性重复排列的物体; 晶格:是指原子(离子、分子)在空间无规则排列的物体; 晶胞:通常只从晶格中选取一个能完全反应晶格特征的、最小的几何单元来分析晶体中原子的排列规律,这个最小的几何单元成为晶胞; 晶粒:多晶体中每个外形不规则的小晶体; 晶界:晶粒与晶粒间的界面; 共晶转变:在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的过程; 结晶:原子从排列不规则的液态转变为排列规则的晶态的过程。 二、问答题 1.金属中常见的晶体结构有哪几种? 答:(1)体心立方晶格(2)面心立方晶格(3)密排六方晶格 2.实际晶体的晶体缺陷有哪几种类型? 答:(1)点缺陷(2)线缺陷(3)面缺陷 3.固溶体的类型有哪几种?

相关主题
文本预览
相关文档 最新文档