当前位置:文档之家› 粉末冶金综述论文

粉末冶金综述论文

粉末冶金综述论文
粉末冶金综述论文

合金元素在Cu-PM材料中的应用研究进展

(重庆理工大学重庆巴南)

摘要:在铜基粉末冶金材料中添加合金元素可以显著改善材料的性能特别是摩擦性能,烧结含合金元素的Cu-PM材料是一种有发展前景的粉末冶金材料,如添加Al、Cr、Ni等元素。本文综述了合金元素对铜基粉末冶金材料的性能和组织结构等的影响,总结了到目前为止相关领域的结论和进展,并讨论了Cu-PM 材料生产现状和发展趋势。

关键词:合金元素;Cu-PM;应用;进展

1 引言

铜基粉末冶金摩擦材料是以铜粉为主要成分,此外含有润滑组元石墨和摩擦组元陶瓷颗粒以及强化铜基体的合金元素等多种组分。其最早出现于1929年,材料是含少量的铅、锡和石墨的铜基合金。铜基粉末冶金摩擦材料在飞机、汽车、船舶、工程机械等刹车装置上的应用发展较快,使用较成熟是在70年代之后。前苏联于1941年后成功地研制了一批铜基摩擦材料,广泛应用于汽车和拖拉机上。美国对铜基摩擦材料的研究也较多,主要是致力于基体强化,从而提高材料的高温强度和耐磨性。二十世纪初,铜基摩擦材料大多用在干摩擦条件下工作,五十年代以后,大约75%的铜基摩擦材料,均在润

滑条件下工作。这些摩擦材料都是以青铜为基,以锌、铝、镍、铁等元素强化基体。由于合金元素在铜基粉末冶金材料中的良好作用,国内很多单位及个人展开了相关方面的工作并发表了论文及成果。本文就国内含合金元素的铜基粉末冶金材料的相关研究进行了论述。

2 Cu-PM材料生产现状及国内外对比

纯铜粉末主要用电解法和雾化法生产。

电解法是借助电流的作用, 使电解液中的铜离子在阴极析出成粉的制粉过程。用电解法生产的铜粉呈表面积发达的树枝状、纯度高、压制性能优良, 是纯铜粉末的主要生产方法。相关文献表中数字表明, 我国的铜及铜基合金粉末的产量和用量与欧美等国家差距很大, 这从一个侧面说明我国铜粉生产与应用还具有十分广阔的开发空间。电解铜粉与国外产品相比, 主要差距在于:(1)产品的规格少。(2)粉末的抗氧化性不足, 国外电解铜粉可以保存一年甚至数年都不氧化变色, 而国内铜粉保存期一般不超过半年。

雾化法是借助于高压气流或水流介质的冲击作用将液态铜或其合金粉碎成粉末的工艺过程。所产生的纯铜粉末为近球形, 松装密度大, 流动性好, 但压制性能较差, 用量不及电解铜粉。由于雾化法生产成本低、效率高、对环境污染小, 是一个很有发展潜力的生产方法。

我国的铜基合金粉末的应用以粉末冶金零件为主,与国外相比主要存在两个方面的不足:(1)在新产品的开发能力方面。如美国青铜粉末公司开发了无铅可切削黄铜粉末,已形成Cu-10Zn、Cu-20Zn 、Cu-30Zn 三个牌号;而且国外大公司除完全合金化的粉末外, 还普遍开发部分合金化粉末和预混合粉末, 为不同的产品和用户提供特定的粉末, 以提高产品性能, 降低生产成本, 而我国在这方面还是空白。(2)特种铜基粉末的研制和生产能力不足。特种铜基粉末一般指非结构材料中应用的铜合金粉末。这类粉末对合金的成分、纯度、粒度、粒形均有着较高的要求, 如热喷涂、钎焊、化工等领域应用的铜基粉末。目前这些高性能粉末主要是由高等学校和研究院进行研制和小批量生产试制, 还未形成成熟的牌号和批量生产能力。而且部分特殊性能的粉末还需依靠进口。

3 合金元素添加对Cu-PM材料影响进展

3.1 Al元素在Cu-PM材料中的应用

综合相关文献可知,材料的显微组织有新相生成,基体组织得到细化且晶粒分布均匀,材料整体性能得到提高。其中,黄建龙等[1]关于Al元素含量对Cu-PM材料性能的影响研究中发现在Cu-PM材料中添加铝元素后,材料的密度、孔隙度和抗压强度、摩擦因数降低,硬度和线膨胀率增加,而磨损率明显降低,同时随着Al含量的增加,材料的密度、孔隙度、抗压强度逐渐降低,线膨胀率呈上升趋势,磨损率明显降低,而摩擦因数变化不明显。杨明关于Al、Zr元素含量对Fe-18Cu-PM材料组织

和性能影响的硕士论文[2]中发现,Al元素的添加量为 0%~3%,添加Al后材料的显微组织有AlCu

4新相生成,且随着Al含量的增加,其力学性能不断提高(含铝 2%时材料的力学性能最佳),材料的摩擦因数随Al含量和转速的增加先上升后下降,在 Al量为2%时,在中高转速下摩擦材料的表面出现薄的氧化膜,这些氧化膜薄较薄且致密,在Al含量为3%时,在高转速下材料由于摩擦热的产生在表面形成氧化膜较厚,且易剥落,剥落后的氧化以磨粒的形式存在,材料的磨损以粘着和犁削为主。3.2 Cr元素在Cu-PM材料中的应用

铬是改善铜基摩擦材料摩擦磨损性能的一个重要组元,以Cr或Cr-Fe取代传统材料中的陶瓷相作为硬质相(即摩擦组元)制备铜基粉末冶金摩擦材料,可改善硬质相与基体间的结合状态从而使摩擦系数和磨损量降低。大连交通大学房顺利的学位论文[3]成果表明,铜基摩擦材料中添加铬元素有利于提高材料的硬度和致密度,且随铬含量的增加,材料的摩擦系数降低、耐磨性增加,而摩擦系数随着摩擦压力的增大整体降低,铬含量较高时,随着压力的增加,摩擦系数的降低幅度变小,磨损量随压力增加而增加,且对于铬含量较少的材料比较明显。赵翔[4]等人的研究结论为用Cr-Fe取代传统铜基粉末冶金摩擦材料中的陶瓷摩擦组元,可有效改善硬质相与基体间的结合状态,摩擦过程中硬质颗粒不易脱落,同时可改变传统摩擦材料的摩擦因数随速度提高而降低的特性,摩擦因数随转速提高呈先降

低后增加的趋势,从整体上看,以 Cr-Fe为摩擦组元的摩擦材料相对于以 Al

2O

3

为摩擦组元的材料,

其摩擦因数提高12%-27%,摩擦因数稳定性提高 10%-20%,线磨损量降低20%-70%。同时以 Al

2O

3

摩擦组元的材料,在7000 r/min转速下摩擦后磨损表面存在脱落掉块的现象,而以Cr-Fe为摩擦组元的摩擦材料的摩擦面平整,形成的氧化膜致密、无明显脱落掉块现象。

3.3 Fe元素在Cu-PM材料中的应用

由相关文献可知,粉末冶金摩擦材料中经常加入铁粉,或作为基体组元,或作为摩擦组元,或是与基体组元合金化。钟志刚等人[5]研究了Fe含量对Cu基金属陶瓷摩擦材料的摩擦磨损性能的影响,发现随Fe含量从5%增至35%, Cu基金属陶瓷摩擦材料的硬度基本呈线性增加,但 Fe对摩擦系数的提高是有限的。Fe含量的增加导致了Cu基金属陶瓷摩擦材料的耐磨性降低,并且当Fe含量大于20%时,材料的磨损性急剧降低。从摩擦磨损综合性能考虑, Fe粉可以部分替代Cu粉用以制造Cu基金属陶瓷摩擦材料,但Fe粉含量不应超过20%。陈洁等人[6] 发现Fe在铜基航空摩擦材料中起摩擦组元的作用,当Fe含量超过4%后能提高材料的摩擦系数,并且随Fe含量的增加,材料摩擦系数不断增加。低转速摩擦条件下,Fe组元起磨粒作用,使磨损量增大,降低了摩擦材料的耐磨性能。但在高速摩擦条件下,随摩擦面温度的升高,Fe参与摩擦面氧化膜工作层的形成,从而降低了磨损量,提高了材料的耐磨

性。对比Fe和SiO

2的作用[7],Fe、SiO

2

都能提高材料的硬度,但加入SiO

2

降低了材料的密度。Fe、SiO

2

都可作为摩擦组元,但二者增摩效果不同,摩擦速度较低时SiO

2

能较大地提高摩擦因数,却增加了材

料的磨损量;摩擦速度较高时,因表面工作膜的形成,SiO

2

提高摩擦因数的作用较小,磨损量也较少。Fe 虽然对摩擦因数的提高作用不显著,但能有效地增加材料的耐磨性。不同转速条件下,加Fe材料的摩

擦因数和磨损量的变化都较加入SiO

2的材料要小。Fe、SiO

2

在摩擦过程中的作用机理不同,它们对材

料摩擦性能的影响与本身的性质、与基体的结合能力以及表面形成的工作膜等因素有关。沈红娟的硕士学位论文[8]中得出了Fe在铜基粉末冶金材料中的作用,随着铁含量升高,磨损率增大,摩擦系数在低速时增大,高速时减小。铁含量为5%左右时摩擦材料的性能最好,具有较低的磨损率和较高的摩擦系数,且摩擦系数和磨损率稳定。对铁含量 5%的试样外加铁粉,摩擦系数在低速度时(小于2000r/min)几乎不变,在较高速度时减小。干湿摩擦相比,湿摩擦的磨损率大于干摩擦。

3.4 其他元素在Cu-PM材料中的应用

姚萍屏等人关于合金元素锌/镍对铜基粉末冶金刹车材料的影响[9]的研究发现,铜基粉末冶金刹车材料中加入少量的Zn能提高材料的摩擦因数,降低材料的磨损量,但Zn含量过多则反而会降低材料的摩擦磨损性能。Zn溶入基体,对基体起到了固溶强化作用。高转速摩擦条件下,Zn能提高材料的耐磨性能。而加入少量的Ni能提高材料的摩擦因数和耐磨性能,Ni在基体中起到了固溶强化作用和细晶强化作用,改善了材料的显微结构和物理性能,从而提高了材料的摩擦磨损性能。但Zn、Ni含量不宜过高,加Ni比加Zn更有利于提高材料的综合性能。由文献[2]可知,添加Zr 后材料基体显微组织有FeZr3新相生成,材料的组织晶粒细化,孔隙率下降,随着Zr含量的增加材料的抗压强度先上升后下降,材料的摩擦系数总体趋势呈先下降后上升的趋势。在 500r/min 的转速下材料摩擦划痕也显著小于不含Zr的材料,材料主要以磨粒磨损为主。材料在中速1500r/min转速下有第三体生成,含锆材料的由于基体组织完善,材料主要以氧化磨损为主,并掺杂少量磨粒磨损。在高速3000r/min下,

材料磨损以氧化磨损和磨粒磨损及疲劳磨损为主。赵翔等人[11]的研究表明Al

2O

3

颗粒表面镀铜能使烧

结后的铜基粉末冶金摩擦材料Al

2O

3

-Fe-Sn-C/Cu的力学性能有所改善,布氏硬度增加了12%,弹性模

量提高了约7%。Al

2O

3

颗粒镀铜使铜基粉末冶金摩擦材料Al

2

O

3

-Fe-Sn-C/Cu的摩擦磨损性能提高,摩

擦系数提高了5%-10%,摩擦系数稳定性提高了13%-23%,线磨损量降低了20%-50%。Al

2O

3

镀铜能使摩

擦材料Al

2O

3

-Fe-Sn-C/Cu在摩擦过程中于摩擦表面形成致密的氧化膜,且不易出现脱落掉块现象。

4 Cu-PM材料研究前景及效益

4.1 研究前景

铜基粉末冶金研究显示,由于材料的用途不同,配方的侧重点也有很大的差异,材料的力学性能也不同,这似乎暗示影响摩擦材料性能的因素很多。目前,理论研究的结论很少,比如材料的动态性能,高温疲劳性能分析,刹车的热机动态藕合等等,都是一些值得研究的问题。材料应用的条件不同则可能表现出不同的性能(比如被动围压),今后研究铜基粉末冶金摩擦材料可从以下几个方面考虑:

(l)摩擦时产生振动的原因分析。

(2)刹车时摩擦材料中的热应力测量,磨损测量等。

(3)具有减震层的摩擦材料的抗震和除噪研究。

(4)摩擦材料的高温冲击及冲击磨损性能研究。

(5)材料在高速刹车时抗冲击性的1:l试验研究等。

(6)摩擦材料冲击疲劳过程中的微观形变。

4.2 铜基粉末冶金材料效益

4.2.1经济效益(内容数据由郑州车辆北段技术设备科提供)

经估算,每吨铜基粉末冶金闸瓦的生产成本为1.3万元,每件闸瓦重SKg,成本价约40元左右。目前列车所用高磷铸铁闸瓦每件售价30元左右,复合材料闸瓦每件售价65元左右,由于铜基粉末冶金闸瓦性能优越,建议每件售价90元,即每吨售价为1.8万元。全国消耗闸瓦达5亿元以上。对中型粉末冶金厂,按年产850吨(约17万件)铜基粉末冶金闸瓦的生产能力计算,则:

铜基粉末冶金摩擦材料高温疲劳磨损和冲击性能研究年产值=年产量x售价=850x1.8=1530(万元)

年利润=年产量x(售价-成本价)=805x(1.8-1.3)=25(万元)

利润率=(利润/成本)x100%=425/(850x1.3)=38%

摩擦片的需求:每根轮轴上装有个制动盘,每个制动盘有2个闸片,每节车有4根轮轴,所以每节车上需用这种闸片32块,每片售价50元,一片的重量大约3Kg,即每吨售价为1.7万元。仍按年产850吨,则年产值为1445万元,年利润为340万元,利润率为31%。

4.2.2社会效益

铜基粉末冶金闸瓦寿命为高磷铸铁的4倍左右,消耗850吨闸瓦(约17万件)所用资金为1530万元,相当于消耗68万件(17万件x4)高磷铸铁闸瓦,所需资金为2040万元(68万件x30元/件)。因此年产850吨铜基粉末冶金闸瓦可为国家节约资金510万元(2040万元一1530万元)。若用铜基粉末冶金闸瓦/闸片,每件闸瓦/闸片寿命约为一年。这些闸瓦/闸片若全用铜基粉末冶金闸瓦代替,每年为我国节约的资金数目是非常庞大的。另外,采用铜基粉末冶金闸瓦,由于更换次数大大减少,可省去列车检修人员的大量工作,节省列车维修时间,其间接经济效益也很可观。

4.2.3环境效益

铜基粉末冶金材料配方中各组分无毒、无味,产品生产时无环境污染,而高磷铸铁生产时存在炉气、粉尘等环境污染。另外,铜基粉末冶金闸瓦使用时,可避免或减轻铸铁闸瓦制动时的噪音和火花,减轻对环境的危害。

5 结束语

改革开放以来,我国航天行业,航空行业,汽车制造业,机械行业和电子设备制造行业等快速发展,迎合21世纪经济时代,更是呈井喷式飞速发展。行业制造中的活塞环、滑块、滑板、轴承、轴瓦及精密仪器机床导轨等零部件表面长期受交变载荷作用,其中摩擦成为影响零部件主要因素,经常会导致零部件失效甚至报废,从而一定程度上影响企业的经济效益。所以,对传统的减摩装置、减摩材料和减摩工艺提出了更新观念、引进先进技术的客观要求应运而生,粉末冶金减摩涂层就是一种防止摩擦磨损的新兴技术。粉末冶金减摩涂层就是以金属及其合金为基体,常用的基体有铁基、铜基、

镁基、铝基、镍基等,用粉末冶金技术在基体表面层添加一层减摩层制成复合材料,以达到增强材料抗高温、耐磨、疲劳强度增强的目的。日本的三部隆宏等专家指出:铜基粉末冶金摩擦材料具有更优异的综合性能。随着粉末冶金工业的不断发展及市场需求的不断扩大,合金元素在Cu-PM材料中的应用将愈加成熟和广泛。

参考文献:

[1]黄建龙.王建吉.党兴武.陈生圣.谢军太.铝含量对铜基粉末冶金材料性能的影响[J].润滑与密

封,2013,(1):57-60.

[2]杨明.Al、Zr 对 Fe-18Cu 基粉末冶金摩擦材料组织和性能的影响[D].南京航空航天大学,2011.

[3]房顺利.铬对铜基粉末冶金材料摩擦磨损性能的影响[D].大连交通大学,2013.

[4]赵翔.郝俊杰.彭坤.于潇.裴广林Cr-Fe为摩擦组元的铜基粉末冶金摩擦材料的摩擦磨损性能[J].

粉末冶金材料科学与工程,2014,(6):935-939.

[5]钟志刚.邓海金.李明.李东生.Fe含量对Cu基金属陶瓷摩擦材料摩擦磨损性能的影响[J].材料工

程,2002,(8):17-23.

[6]陈洁.熊翔.姚萍屏.李世鹏.Fe在铜基粉末冶金摩擦材料中的作用[J].粉末冶金工业,

2006,(4):17-20.

[7]姚萍屏.熊翔.黄伯云.航空刹车出来的应用现状与发展[J].粉末冶金工业,2000,10(6):34-37.

[8]沈红娟.铁在铜基粉末冶金摩擦材料中的作用[D].大连交通大学,2009.

[9]姚萍屏.熊翔.李世鹏.陈洁.黄伯云.合金元素锌/镍对铜基粉末冶金刹车材料的影响[J].润滑与密

封,2006,(4):2-3,22.

[10]赵翔.郝俊杰.于潇.彭坤.张永振.Al

2O

3

镀铜对铜基粉末冶金摩擦材料Al

2

O

3

-Fe-Sn-C/Cu摩擦磨损

性能的影响[J].复合材料学报,2015,2):451-457.

[11]陈仕奇.铜基粉末及材料研究新进展[J].粉末冶金工业,2002,(5):37-41.

[12]邓陈虹.葛启录.范爱琴.粉末冶金金属基复合材料的研究现状及发展趋势[J].粉末冶金工

业,2011,(1):54-59.

[13]丁华东.铜基粉末冶金含油自润滑材料研究进展[J].粉末冶金材料科学与工程,1998,(1):34-38.

[14]韩凤麟.铜基粉末冶金的过去、现状及前景[J].粉末冶金工业,2009,(1):39-48

[15]赵洪汐.熊计.稀土在铁基粉末冶金材料中的应用研究进展[J].稀土,2009,(3):76-78.

粉末冶金原理_考研复习纲要

课程名称:粉末冶金学 Powder Metallurgy Science 第一章导论 1粉末冶金技术的发展史History of powder metallurgy 粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。 粉末冶金既是一项新型材料加工技术,又是一项古老的技术。 .早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件; .1700年前,印度人采用类似方法制造了重达的“DELI 柱”(含硅Fe合金,耐蚀性好)。 .19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。 .20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。钨灯丝的生产标志着粉末冶金技术的迅速发展。 .1923年硬质合金的出现导致机加工的革命。 .20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。 .20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。 .战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。大大扩大了粉末冶金零部件及其材料的应用领域。 .粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。 2粉末冶金工艺 粉末冶金技术的大致工艺过程如下:

↓ 成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等) ↓ 烧结(加压烧结、热压、HIP等) ↓ —后续处理 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点 .低的生产成本: 能耗小,生产率高,材料利用率高,设备投资少。 ↑↑↑ 工艺流程短和加工温度低加工工序少少切削、无切削 .材料成分设计灵活、微观结构可控(由工艺特征决定): 能制造普通熔练法不可能生产的材料,如W-Cu、SnO 2 -Ag、WC-Co、Cu-石墨、金 属陶瓷(TiC-NiCr,Al 2O 3 -Ni或Cu,TiB 2 -Cu等)、弥散强化材料(Al 2 O 3 -Cu Al 2 O 3 -Al, Y 2O 3 -Fe基合金)、粉末超合金(非相图成分)、难熔金属及其合金如钨钼、含油 轴承、过滤材料等。 .高的性能: 粉末高速钢、粉末超合金因无成分偏析和稳定的组织(细的晶粒)而性能优于熔炼法制备的合金;纳米材料,金属-陶瓷梯度复合材料(梯度硬质合金)。 主要不足之处: .由于受设备容量的限制,传统粉末冶金工艺制造的粉末冶金零部件的尺寸较其它加工方法(铸造,机加工等)小; .材料韧性不高; .零部件的形状复杂程度和综合力学性能有限等。

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common 摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。 关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

综述:硬质合金

硬质合金的研究和应用 The studies and applications of cemented carbide 作者:何梓秋机械类创新实验班 3112010441 内容摘要:硬质合金由于具有高硬度,高抗压强度,高热硬性以及高耐磨性,高耐腐蚀性,常用于制造切削工具和耐磨零部件。广泛应用于军工、航天航空、机械加工、冶金等领域。本文将通过新型硬质合金的研发和硬质合金制造工艺的进步两条路径对硬质合金的研究进行介绍。再结合各种硬质合金的特性,介绍其具体的应用。 Abstract:Because cemented carbide has high hardness,high compressive strength,high abrasive resistance and high corrosion resistance,it is always used for manufacture cutting tools and wear-resistant parts.It provides widely applications in war industry,aerospace,machine work,metallurgy and so on.This thesis will describe the studies of cemented carbide on two ways,the inventions of new-type cemented carbide and the progress of manufacturing process for cemented carbide.And then this thesis will introduce the specific applications combining the characteristics of every type of cemented carbide. 关键词:硬质合金,研究,应用,金属碳化物,粉末冶金 Keywords:cemented carbide,studies,applications,metal carbide,powder metallurgy 关于硬质合金的基础知识 一.硬质合金的起源 早在1923年,德国科学家施勒特尔为了提高拉丝模质量,往碳化钨粉末中加进10%~20%的钴做粘结剂,发明了世界上人工制成的第一种硬质合金。 虽然用这种硬质合金制造成的刀具进行切割钢材很容易产生刀刃磨损甚至断裂,但是硬质合金因此得以面世,为至今几乎长达一个世纪的硬质合金研究、发展及应用开辟了起点。 二.硬质合金的成分、分类和牌号 硬质合金是一种金属陶瓷,它的组成是:基体为金属碳化物(如WC、TiC、TaC等),Co、Ni、Mo等金属粉末则充当粘结剂。于是硬质合金具是有金属性质的粉末冶金材料,它具有高硬度,高抗压强度,高热硬性以及高耐磨性,高耐腐蚀性,常用于制造切削工具、刀具、钴具和耐磨零部件。它的分类及牌号如下: 1.钨钴类硬质合金 主要成分是碳化钨(WC)和粘结剂钴(Co)。牌号由“YG”(“硬、钴”两字汉语拼音字首)和平均含钴量(质量分数X 100)组成。例如YG6,表示平均ωCo=6%,余量为碳化钨的钨钴类硬质合金。

粉末冶金原理

1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料, 经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒 3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量 g/cm3。 4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。 5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线, 分布曲线对应50%处称为中位径 弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象 6.合批:将成分相同而粒度不同的粉末进行混合,称为合批 7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。 8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常 烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。 9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结 体的密度和其它性能得到提高的方法。 10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。 11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。 12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。 13.混合:将两种或两种以上不同成分的粉末混合均匀。分为机械法和化学法。 14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成 拱桥孔洞的现象。 15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合 金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。 16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗 粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。擦碎等方法在液体介质中容易分散成更小的团粒或二次颗粒或单颗粒;絮凝体则是在粉磨悬浊液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒。 17.减少因摩擦出现的压力损失的措施:1)添加润滑剂、2)提高模具光洁度和硬度、3) 改进成形方式,如采用双面压制等。 18.粉末冶金技术的优点:1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料:① 能控制制品的孔隙度(多孔材料、多孔含油轴承等);②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等);③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分的偏析);②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔金属)。缺点:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 19.粉末料预处理的方式及作用:1、退火:还原氧化物,消除杂质,提高纯度;消除加工 硬化,稳定粉末的晶体结构;钝化金属,防止自燃。2、混合:使不同成分的粉末混合均匀,便于压制成形和后续处理。3、筛分:筛分的目的在于把颗粒大小不匀的原始粉

特种陶瓷的制备工艺综述及其发展趋势

特种陶瓷的制备工艺综述及其发展前景 摘要:本文主要介绍了粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法以及未来的发展趋势。目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些面临急需解决的问题。当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。压力成形不能满足形状复杂性和密度均匀性的要求。多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;粉末冶金;陶瓷材料 引言 陶瓷分为普通陶瓷和特种陶瓷两大类,特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。因此研究特种陶瓷制备技术至关重要。 1 陶瓷原料的制备方法 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。 由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著

复合材料综述

金属基陶瓷复合材料制备技术研究进展与应用* 付鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川750021) 摘要综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了 国内金属基陶瓷复合材料的未来发展。 关键词金属基陶瓷复合材料制备技术应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng, HAO Xunuan, GAO Yahong, GU Yudan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix compositesfabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 前言:现代高技术的发展对材料的性能日益提高,单料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半

粉末冶金 试题

试题 1 、碳还原法制取铁粉的过程机理是什么?影响铁粉还原过程和铁粉质量的因素有哪些? 2 、制取铁粉的主要还原方法有哪些?比较其优缺点。 3 、发展复合型铁粉的意义何在? 4 、还原法制取钨粉的过程机理是什么?影响钨粉粒度的因素有哪些? 5 、作为还原钨粉的原料,蓝钨比三氧化钨有什么优越性,其主要工艺特点是什么? 6 、试举出还原 - 化合法的应用范围。 7 、试举出气相沉积法的应用范围。 8 、试举出液相沉淀法的应用范围。 9 、水溶液电解法的成粉条件是什么?与电解精炼有什么异同? 10 、影响电解铜粉粒度的因素有哪些? 11 、电解法可生产哪些金属粉末?为什么? 12 、金属液气体雾化过程的机理是什么?影响雾化粉末粒度、成分的因素有哪些? 13 、离心雾化法有什么特点? 14 、快速冷凝技术的特点是什么?快速冷凝技术的主要方法有哪些? 15 、雾化法可生产哪些金属粉末?为什么? 16 、有哪些方法可生产铁粉?比较各方法的优缺点。 17 、从技术上、经济上比较生产金属粉末的三大类方法:还原法,雾化法和电解法。 18 、试论述超细粉末的前景及应用。 19、粉末颗粒有哪几种聚集形式?它们之间的区别在哪里? 20、氢损法测定金属粉末的氧含量的原理是什么?该方法适用于怎样的金属?为什么说它测定的一般不是全部氧含量? 21、什么叫当量球直径?今假定有一边为 1 m 的立方体颗粒,试计算它的当量球体积直径和当量球表面直径各是多少? 22、假定某一不规则形状颗粒的投影面积为 A ,表面积为 S ,体积为 V ,请分别导出与该颗粒具有相等 A 、 S 和 V 的当量球投影面直径 D A ,当量球表面直径 D s 和当量球体积直径 D V 的具体表达式。 23、请解释为什么粉末的振实密度对松装密度的比值愈大时,粉末的流动性愈好?

柴油机连杆文献综述

文献综述 一.柴油机连杆加工工艺分析 主要说的是关于传统工艺连杆加工中影响其精度的主要参数和连杆加工工艺路线,连杆加工工艺的分析和改进,以及连杆加工工艺设计中应该注意的问题反映连杆精度的参数主要有五个:(1).连杆大端中心面和小端中心面相对于连杆身中心面的对称(2).连杆大小头孔中心距尺寸精度(3).连杆大小头孔平行度;(4).连杆大小头孔的尺寸精度、形状精度;(5).连杆大头螺栓孔与接合面的垂直度。 传统加工路线: 连杆工艺设计注意问题: 工序安排

定位基准: 夹具使用 二.发动机连杆的粉末锻造 主要介绍粉末锻造工艺的技术特点、制造工艺流程、主要制造工艺参数、主要生产工序及工艺参数等;国外采用连杆胀断工艺的公司有哪些 1.特点:粉末冶金烧结件作锻造毛坯可一次锻造成形,无飞边,节省加工工时和设备。具有粉末冶金和机械精锻的优点。粉末锻造可实现烧结材料的高密度化,是材料具有高强度和无明显各向异性。a.避免不必要的机械加工,如模锻连杆早热处理前需要经过几到机加工,而粉锻连杆仅需一道机加工。b.质量偏差小,模锻3%-5%,粉锻连杆仅0.5%。c.疲劳轻度高d.零件致密、轻量,密度≥7.8g/cm3,形状及尺寸经一次性锻造即可达到最终产品要求。e.节约能源50%,节约材料40%,有利于环境保护。 2.制造工艺流程: 预合金钢粉→配料机混料→压制成预制坯→烧结成锻坯→快速送入预热的锻模→致密化闭模锻造→锻件脱模→在可控气氛中冷至室温→热处 理→喷丸强化 3.原料参数:德国宝马生产V8发动机连杆所用预合金钢粉成分为w(Mn)=0.3%~0.4%、w(Cr)=0.1%%~0.25%、w(Ni)=0.2%%~0.3%、w(Mo)=0.25%~0.35、w(C)=0.6%,其余为Fe. 4.主要工艺参数: a.配料及混料经配料计算和准确称取粉重后置于混料机混合20—30分钟至分布均匀; b.压制预制坯要对预制坯的设计应合理,对其密度、质量、质量变化和尺寸要求精确控制,避免过负荷损坏模具; c.烧结预制坯在通有还原保护气体的专用烧结炉中进行,烧结温度1120—1130℃,至完全合金化,后移至无氧化性气体的温饱炉中于1000℃左右保温;

粉末冶金原理重点

装球量:球磨筒内磨球的数量。 球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为n i=M/ (qlt)x 100% 粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。 松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为 g/cm3。 振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。 一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。 二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。 压缩性: 粉末被压紧的能力 成形性: 粉末压制后,压坯保持既定形状的能力 净压力: 单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。 多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。 气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。 活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。 氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。 液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。 机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。 热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程 冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法 1 、粉末制备的方法有哪些,各自的特点是什么? 1 物理化学法 1 还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co 及其合金粉末) 金属热还原法(Ta,Nb,Ti,Zr,Th,U)-SHS自蔓延高温合成。 1.2还原-化合法:适合于金属碳化物、硼化物、硅化物、氮化物粉末 1.3化学气相沉积CVD 1.4物理气相沉积PVD或PCVD (复合粉)

纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。 关键词纳米粉末;制备方法;机械法;物理法;化学法 一.绪论 超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。 二.方法综述 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。 2. 1. 1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。 2. 1. 2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

锰在粉末冶金材料中的应用

锰在粉末冶金材料中地应用 罗述东1 ,李祖德2 ,赵慕岳1 ,易健宏1 <1.中南大学粉末冶金国家重点实验室, 2.北京市粉末冶金研究所,) 摘要:锰是重要地工业原料,在粉末冶金材料中有广泛应用.该文概述锰在烧结钢、阻尼合金、铝合金、钛铝合金、钨基重合金、硬质合金等材料中地应用情况.可以预期,在提高粉末冶金材料性能与开发粉末冶金新材料地领域中,锰将具有广阔地应用前景. 1. 引言 元素锰地原子序数为25,在周期表中位于第四周期,ⅦB族,属于过渡族金属.金属锰密度7.43 g/cm3,性硬而脆,莫氏硬度5~6,致密块状金属锰表面为银白色,粉末呈灰色[1,2].锰元素在地壳中地含量约

0.085%,在已知元素中占第十五位,在重金属中仅次于铁而居第二位[3].锰资源丰富,价格便宜. 元素锰早在1774年就被发现,但是,在钢铁工业中地重要作用直到1856年发明底吹酸性转炉,以及1864年发明平炉炼钢法之后,才为人们所认识.现在,锰作为有效而廉价地合金化元素,已成为钢铁工业中不可缺少地重要原料.约90%锰消耗于钢铁工业,用量仅次于铁,其余10%消耗于有色金属冶金、化工、电子、电池、农业等部门[4,5]. 锰及其化合物是生产粉末冶金材料地常用原料.Benesovsky 和Kieffer于1950年首先认识到锰在粉末冶金材料中地重要性.此后,锰在粉末冶金工业中地应用逐渐扩大.通过开发母合金技术和预合金技术,开发了含锰系列地高强度烧结钢.并且,在其它粉末冶金材料中作为主要组元或添加组元,发挥了重要作用.本文就锰在粉末冶金材料中地应用情况进行综述. 2. 锰在高强度烧结钢中用作合金元素 锰溶于铁素体中所产生地固溶强化作用,优于许多合金元素<强化作用递增次序:Cr<W<V<Mo<Ni<Mn<Si<P).利用这一特性,传统冶金工业生产了许多含锰地高强度低合金钢牌号.粉末冶金工作者借鉴这一经验,以锰作为添加剂开发出多种高强度烧结钢系列.例如,按ISO5755:2000

小综述

热电材料 热电材料(又称温差电材料)是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。如随着空间探索兴趣的增加、医用物理学的进展以及在地球难于日益增加的资源考察与探索活动,需要开发一类能够自身供能且无需照看的电源系统,热电发电对这些应用尤其合适。 热电材料具有3个基本效应[1],即Seebeck效应、Pettier效应和Thomson 效应,这3个效应奠定了热电理论的基础,同时也确定了热电材料的应用方向:(1)Seebeck效应义称为温差电效应.是指在两种不同金属构成的回路中,如果两个接头处的温度不同,发现了同路中有一电动势存在。 (2)Pettier效应是指当直流电通过两种不同导电材料构成的同路时,结点上将产生吸放热现象,改变电流方向,吸放热也随之反向。 (3)Thomson效应是一种二级效应,若电流流过有温度梯度的导体,则在导体和周围环境之间将进行能量交换,当电流流过一个单一导体,且该导体中存在温度梯度,就会有可逆的热效应产生,称为Thomson效应。 热电材料的性能采用热电优值ZT的大小来衡量可由式表示 其中Z为热电品质因子,T为绝对温度K ,S为Seebeck 系数,δ为电导率,?为热导率由声子热导率L 和电子热导率e 组成。ZT值越大材料的热电性能越好。传统采用掺杂,形成固溶体的方法来提高材料的电导率。材料的热导率由两部分构成.一部分是电子热导率,即电子运动对热量的传导,另一部分是声子热导率.即声子振动产生的热量传递部分,即.K=K e+K L。,半导体热电材料中电子热导率占总热导率的比例较小,因此,通过降低声子热导率来调节材料的热导率几乎成了提高半导体热电材料热电灵敏值最主要的方法。S2σ被叫做这种材料的功率因子。可以看出温差电优值和T 相乘所得到的ZT 是一个没有单位的数值,因此将其称为无量纲热电优值。 温差电材料按其导电的性质可分为P型温差电材料和N型温差电材料,P 型半导体,是靠“空穴”来导电。在电场作用下“空穴”流动方向和电子流动方向相反,即“空穴”由正板流向负极,这是P型半导体原理,在温度场的作用下“空穴”向高温差端移动。将一种杂质掺入半导体后,会放出自由电子,这种半导体称为N型半导体,自由电子向低温端移动。而传统的热电器件是由一定数量的p 型和n 型块体热电材料制成。n型半导体的温差电动势的方向是从高温端指向低温端(Seebeck系数为负),而P型半导体的温差电动势的方向是低温端指向高温端(Seebeck系数为正),因此利用温差电动势的正负也可判断半导体的导电类型。 其ZT值的提高主要是由于【2】: 1.费米能级附近的电子能态密度增大从而导致材料的赛贝克Seebeck 系数增大。 2. 可以利用多谷立方晶格费米面附近的各向异性改善其电热输运性能。 3. 可以增加声子在多层势垒势阱界面的散射而不显著增加界面的电子散射

粉末压制过程中的摩擦与润滑

粉末压制过程中的摩擦与润滑 摘要:粉末成形过程中的摩擦行为是一个十分复杂的问题,受粉末和模具材料性能、粉末形状大小、模具表面状况、粉末与模具间相对运动速度、润滑剂特性、粉末和模具温度等许多因素的影响.摩擦造成了制品密度低、分布不均匀、模具磨损,影响了制品的性能、尺寸精度及其应用范围。特别是复杂形状、厚度尺寸较大的粉末冶金制品,摩擦的存在极易造成制品的失效。摩擦行为的复杂性使得对其进行准确的测定和表达比较困难,加之这方面的研究不多,造成了进一步研究的困难.综述近几年国外对粉末成形过程摩擦现象的研究进展。 关键字:金属粉末;压制;摩擦模型;润滑 一、粉末成形简介 1、粉末成型:通过外力,把粉末或其聚集体制作成具有一定尺寸、形状和强度的坯体或制品。 2、成型目的:获得要求形状和尺寸,质地均匀,尽可能的致密,有一定强度的坯体。通常又与最佳均匀化,致密化等联系在一起模压成形是最基本方法。 3、压制成型原理:机械压力连续地或多次地通过压头传递到在模型中的粉末体上,在高压下粉末体致密化而形成具有一定形状、尺寸和强度的坯体[1]。 4、压制机理: a.颗粒重排:在低压时,颗粒发生重新排列而填充气孔产生紧密堆积 b.在较高压力下,引起颗粒的破碎,并通过碎粒的填充而致密。

在压力一定时,致密化能力决定于压制粉料颗粒的性质(包括团聚体)(主要是物料颗粒的硬度)。 c.塑性变形:在高压下,通过塑性形变填充空间,这时颗粒间的点接触变成面接触。 二、粉末压制过程 2.1成形前原料准备 2.1.1退火 将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。 金属粉末退火的目的: a.氧化物还原,降低碳和其它杂质的含量,提高粉末的纯度; b.消除粉末的加工硬化,稳定粉末的晶体结构; c.防止超细粉末自燃,将其表面钝化[2]。 2.1.2混合 a.混合:将两种或两种以上不同成分的粉末混合 b. 将相同成分而粒度不同的粉末混合 混合方法:机械法(干混、湿混)和化学法 机械法:干混用于生产铁基制品;湿混用于生产硬质合金。混料设备有球磨机、V型混合器、锥形混合器、酒桶式混合器、螺旋混合器等。湿混介质要求不与物料发生化学反应,沸点低易挥发,无毒性,来源广,成本低,常用酒精、汽油、丙酮等[3]。 化学法:将金属或化合物粉末与添加的金属盐溶液均匀混合,或各组

粉末冶金综述论文

合金元素在Cu-PM材料中的应用研究进展 (重庆理工大学重庆巴南) 摘要:在铜基粉末冶金材料中添加合金元素可以显著改善材料的性能特别是摩擦性能,烧结含合金元素的Cu-PM材料是一种有发展前景的粉末冶金材料,如添加Al、Cr、Ni等元素。本文综述了合金元素对铜基粉末冶金材料的性能和组织结构等的影响,总结了到目前为止相关领域的结论和进展,并讨论了Cu-PM 材料生产现状和发展趋势。 关键词:合金元素;Cu-PM;应用;进展 1 引言 铜基粉末冶金摩擦材料是以铜粉为主要成分,此外含有润滑组元石墨和摩擦组元陶瓷颗粒以及强化铜基体的合金元素等多种组分。其最早出现于1929年,材料是含少量的铅、锡和石墨的铜基合金。铜基粉末冶金摩擦材料在飞机、汽车、船舶、工程机械等刹车装置上的应用发展较快,使用较成熟是在70年代之后。前苏联于1941年后成功地研制了一批铜基摩擦材料,广泛应用于汽车和拖拉机上。美国对铜基摩擦材料的研究也较多,主要是致力于基体强化,从而提高材料的高温强度和耐磨性。二十世纪初,铜基摩擦材料大多用在干摩擦条件下工作,五十年代以后,大约75%的铜基摩擦材料,均在润 滑条件下工作。这些摩擦材料都是以青铜为基,以锌、铝、镍、铁等元素强化基体。由于合金元素在铜基粉末冶金材料中的良好作用,国内很多单位及个人展开了相关方面的工作并发表了论文及成果。本文就国内含合金元素的铜基粉末冶金材料的相关研究进行了论述。 2 Cu-PM材料生产现状及国内外对比 纯铜粉末主要用电解法和雾化法生产。 电解法是借助电流的作用, 使电解液中的铜离子在阴极析出成粉的制粉过程。用电解法生产的铜粉呈表面积发达的树枝状、纯度高、压制性能优良, 是纯铜粉末的主要生产方法。相关文献表中数字表明, 我国的铜及铜基合金粉末的产量和用量与欧美等国家差距很大, 这从一个侧面说明我国铜粉生产与应用还具有十分广阔的开发空间。电解铜粉与国外产品相比, 主要差距在于:(1)产品的规格少。(2)粉末的抗氧化性不足, 国外电解铜粉可以保存一年甚至数年都不氧化变色, 而国内铜粉保存期一般不超过半年。 雾化法是借助于高压气流或水流介质的冲击作用将液态铜或其合金粉碎成粉末的工艺过程。所产生的纯铜粉末为近球形, 松装密度大, 流动性好, 但压制性能较差, 用量不及电解铜粉。由于雾化法生产成本低、效率高、对环境污染小, 是一个很有发展潜力的生产方法。 我国的铜基合金粉末的应用以粉末冶金零件为主,与国外相比主要存在两个方面的不足:(1)在新产品的开发能力方面。如美国青铜粉末公司开发了无铅可切削黄铜粉末,已形成Cu-10Zn、Cu-20Zn 、Cu-30Zn 三个牌号;而且国外大公司除完全合金化的粉末外, 还普遍开发部分合金化粉末和预混合粉末, 为不同的产品和用户提供特定的粉末, 以提高产品性能, 降低生产成本, 而我国在这方面还是空白。(2)特种铜基粉末的研制和生产能力不足。特种铜基粉末一般指非结构材料中应用的铜合金粉末。这类粉末对合金的成分、纯度、粒度、粒形均有着较高的要求, 如热喷涂、钎焊、化工等领域应用的铜基粉末。目前这些高性能粉末主要是由高等学校和研究院进行研制和小批量生产试制, 还未形成成熟的牌号和批量生产能力。而且部分特殊性能的粉末还需依靠进口。 3 合金元素添加对Cu-PM材料影响进展 3.1 Al元素在Cu-PM材料中的应用 综合相关文献可知,材料的显微组织有新相生成,基体组织得到细化且晶粒分布均匀,材料整体性能得到提高。其中,黄建龙等[1]关于Al元素含量对Cu-PM材料性能的影响研究中发现在Cu-PM材料中添加铝元素后,材料的密度、孔隙度和抗压强度、摩擦因数降低,硬度和线膨胀率增加,而磨损率明显降低,同时随着Al含量的增加,材料的密度、孔隙度、抗压强度逐渐降低,线膨胀率呈上升趋势,磨损率明显降低,而摩擦因数变化不明显。杨明关于Al、Zr元素含量对Fe-18Cu-PM材料组织

粉末冶金_论文司宗甲

先进制造技术---粉末冶金技术 2013届机械在职研究生司宗甲(扬州保来得科技实业有限公司) 摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。 关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇 一、世界粉末冶金工业概况 2012年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2010年起,世界铁粉市场持续增长,4年时间增加了近20%。 汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。 粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。 欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。 工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。 二、粉末冶金技术简介 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。 粉末冶金工艺的基本工序是: 1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。 2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。 3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧

粉末冶金法在金属制备中的应用

题目:粉末冶金法在金属制备中的应用 姓名:李文廷 学号: 201201020446 年级: 2012级 专业:化学 学院:理学院 成绩:

目录 1粉末冶金的定义 (1) 2粉末冶金工艺 (2) 3粉末冶金技术的特点 (2) 3.1低的生产成本 (2) 3.2高的性能 (2) 4粉末冶金材料的应用 (3) 4.1应用于机械零件的制造 (3) 4.2应用于合金性能的改进 (3) 4.2.1铝合金 (3) 4.2.2高合金材料 (3) 4.2.3高温合金 (4) 4.2.4磁性材料 (4) 4.3应用于新型材料的研制 (4) 4.3.1金属基复合材料 (4) 4.3.2弥散强化高温材料 (4) 4.4梯度功能材料 (4) 4.5其他方法的应用 (4) 4.5.1超塑性材料 (4) 4.5.2高抗蚀性材料 (4) 4.6粉末冶金材料在国民经济各部门的应用 (4)

5.主要不足之处 (6) 6.粉末冶金的发展前景 (6) 6.1向全致密化发展 (6) 6.2向高性能化、集成化和低成木等方向发展 (7) 6.3粉木治金产业化发展 (7) 7.展望 (7) 8.参考文献 (7)

粉末冶金法在金属制备中的应用 摘要:从机械零件的制造、合金性能的改进及新型材料的研制及制备工艺等方面综述了粉末冶金技术的应用与发展。粉末冶金作为一种独特的零件制造技术,向高致密化、高性能化、集成化和低成木等方向发展,木文分析了粉末冶金的定义涵和该技术的主要功能,重点对粉末冶金技术的应用进行慨括。 关键词:粉末冶金、制备工艺、应用、发展 近30 年来,粉末冶金技术获得了飞速的发展,许多“后致密化”技术(即在传统的粉末冶金方法的烧结工序之后增加一些致密化工序,如复压、复烧、锻造、拉制、挤压等) 、热等静压、注射成型以及机械合金化等工艺的研制成功,克服了传统粉末冶金制品由于致密性低而导致使用上的技术障碍,使粉末冶金技术得以推广应用。到目前为止,粉末冶金技术既是高强度、高密度、形状复杂、无切削、少切削零件的制造工艺,又是生产新型材料的加工方 1.粉末冶金的定义: 末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工业技术。目前,粉末冶金技术已被广泛应用于交通、机械、电子、航空航天、兵器、生物、新能源、信息和核工业等领域,成为新材料科学中最具发展活力的分支之一。粉末冶金技术具备显著节能、省材、性能优异、产品精度高且稳定性好等一系列优点,非常适合于大批量生产。

相关主题
文本预览
相关文档 最新文档