当前位置:文档之家› 完整版阻抗匹配的研究

完整版阻抗匹配的研究

完整版阻抗匹配的研究
完整版阻抗匹配的研究

阻抗匹配的研究

?>分事

在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具

体的系统中怎样才

能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹

配。对于什么情况下需

要匹配,采用什么方式的匹配,为什么采用这种方式。

例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配;

1、串联终端匹配

串联终端匹配的理论岀发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间

串接一个电阻R,使

源端的输岀阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射

串联终端匹配后的信号传输具有以下特点:

A由于串联匹配电阻的作用,驱动信号传播时以其幅度的50 %向负载端传播;

B信号在负载端的反射系数接近+ 1,因此反射信号的幅度接近原始信号幅度的50 %。

C反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同;

D负载端反射信号向源端传播,到达源端后被匹配电阻吸收;?

E反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。

相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。

选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输岀阻抗之和与传输线的特征阻

抗相等。理想的信

号驱动器的输岀阻抗为零,实际的驱动器总是有比较小的输岀阻抗,而且在信号的电平发生变化时,输岀

阻抗可能不同。比如电

源电压为+ 4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37?,在高电平时典型的输出阻抗为45?[4] ;TTL驱动器和CMOS驱动

一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考

虑。

链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受

到的波形就会象图3.2.5 中C 点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号

处在不定逻辑状态,信号的噪声容限很低。

串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额

外的阻抗;而且只需要一个电阻元件。

2 、并联终端匹配

并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。并联终端匹配后的信号传输具有以下特点:

A 驱动信号近似以满幅度沿传输线传播;

B 所有的反射都被匹配电阻吸收;

C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。

在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或

相等。假定传输线的特征阻抗为50? ,则R 值为50? 。如果信号的高电平为5V ,则信号的静态电流将达到100mA 。由于典型的TTL 或

CMOS 电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输

线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则:

⑴.两电阻的并联值与传输线的特征阻抗相等;

⑵.与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大;

⑶.与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗。因而不适用于电池供电系统等对功耗要求高的系统。另外,单电阻方式

由于驱动能力问题在一般的TTL 、CMOS 系统中没有应用,而双电阻方式需要两个元件,这就对PCB 的板面积提出了要求,因此不适

合用于高密度印刷电路板。

当然还有:AC 终端匹配;基于二极管的电压钳位等匹配方式

3 、信号发射与端接技术

3.1 、信号反射的形成传输线上的阻抗不连续会导致信号反射,我们以理想传输线模型来分析与信号反射有关的重要参数。理想传输线L 被内阻为R0 的数字信号驱动源VS 驱动,传输线的特性阻抗为Z0 ,负载阻抗为RL 。

理想的情况是当R0 = Z0 = RL时,传输线的阻抗是连续的,不会发生任何反射,能量一半消耗在源内阻

R0 上,另一半消耗在负载电阻RL 上(传输线无直流损耗)。如果负载阻抗大于传输线的特性阻抗,那么负载端多余的能量就会反射回源端,由于负载端没有吸收全部能量,故称这种情况为欠阻尼。如果负载阻抗小于传输线的特性阻抗,负载试图消耗比当前源端提供的能量更多的能量,故通过反射来通知源端输送更多的能量,这种情况称为过阻尼。欠阻尼和过阻尼都会引起反向传播的波形,某些情况下在传输线上会形成驻波。当Z0 = RL时,负载完全吸收到达的能量,没有任何信号反射回源端,这种情况称为临界阻尼。从系统设计的角度来看,由于临界阻尼情况很难满足,所以最可靠适用的方式轻微的过阻尼,因为这种情况没有能量反射回源端。

只要根据传输线的特性阻抗进行终端匹配,就能消除反射。从原理上说,反射波的幅度可以大到入射电压的幅度,极性可正可负。当RLvvzO 时,p l Z0时,p L>0,处于欠阻尼状态,反射波极性为正。当从负载端反射回的电压到达源端时,又将再次反射回负载端,形成二次反射波

3.2 、阻抗匹配与端接方案

4.2.1 、典型的传输线端接策略由以上分析可知,在高速数字系统中,传输线上阻抗不匹配会引起信号反射,减小和消除反射的方法是根

据传输线的特性阻抗在其发送端或接收端进行终端阻抗匹配,从而使源反射系数或负载反射系数为零。传输线的端接通常采用两种策略:(1)使负载阻抗与传输线阻抗匹配,即并行端接( 2 )使源阻抗与传输

线阻抗匹配,即串行端接。即如果负载反射系数或源反射系数二者任一为零,反射将被消除。从系统设计的角度,应首选策略1,因其是在信号能量反射回源端之前在负载端消除反射,即使pL= 0,因而消除一

次反射,这样可以减小噪声、电磁干扰(EMI )及射频干扰(RFI),而策略2则是在源端消除由负载端

反射回来的信号,即使pS= 0和pL= 1 (负载端不加任何匹配),只是消除二次反射,在发生电平转移时,源端会出现持续时间为2TD 的半波波形,不过由于策略2 实现简单方便,在许多应用中也被广泛采用。两种端接策略各有其优缺点。

(1 )并行端接

并行端接主要是在尽量靠近负载端的位置加上拉和/或下拉阻抗以实现终端的阻抗匹配。

(2 )串行端接

串行端接是通过在尽量靠近源端的位置串行插入一个电阻RS (典型10Q到75Q )到传输线中来实现的,

如图8 所示。串行端接是匹配信号源的阻抗,所插入的串行电阻阻值加上驱动源的输出阻抗应大于等于传输线阻抗(轻微过阻尼)。

这种策略通过使源端反射系数为零从而抑制从负载反射回来的信号(负载端输入高阻,不吸收能量)再从源端反射回负载端。串行端接的优点在于:每条线只需要一个端接电阻,无需与电源相连接,消耗功率小。当驱动高容性负载时可提供限流作用,这种限流作用可以帮助减小地弹噪声。串行端接的缺点在于:当信号逻辑转换时,由于RS 的分压作用,在源端会出现半波幅度的信号,这种半波幅度的信号沿传输线传播至负载端,又从负载端反射回源端,持续时间为2TD (TD 为信号源端到终端的传输延迟),这意味着沿传输线不能加入其它的信号输入端,因为在上述2TD 时间内会出现不正确的逻辑态。并且由于在信号通路上加接了元件,增加了RC 时间常数从而减缓了负载端信号的上升时间,因而不适合用于高频信号通路(如高速时钟等)。

4.2.2 、多负载的端接在实际电路中常常会遇到单一驱动源驱动多个负载的情况,这时需要根据负载情况及电路的布线拓扑结构来确定端接方式和使用端接的数量。一般情况下可以考虑以下两种方案。

如果多个负载之间的距离较近,可通过一条传输线与驱动端连接,负载都位于这条传输线的终端,这时只需要一个端接电路。如采用串行端接,则在传输线源端加入一串行电阻即可,如图9a 所示。如采用并行

端接(以简单并行端接为例),则端接应置于离源端距离最远的负载处,同时,线网的拓扑结构应优先采

用菊花链的连接方式。

如果多个负载之间的距离较远,需要通过多条传输线与驱动端连接,这时每个负载都需要一个端接电路。

如采用串行端接,则在传输线源端每条传输线上均加入一串行电阻。如采用并行端接(以简单并行端接为

例),则应在每一负载处都进行端接。

3.2.3 、不同工艺器件的端接策略阻抗匹配与端接技术方案随着互联长度和电路中逻辑器件的家族在不同也会有所不同,只有针对具体情况,使用正确适当的端接方法才能有效地减小信号反射。

一般来说,对于一个CMOS 工艺的驱动源,其输出阻抗值较稳定且接近传输线的阻抗值,因此对于CMOS 器件使用串行端接技术就会获得较好的效果。而TTL 工艺的驱动源在输出逻辑高电平和低电平时其输出阻抗有所不同,这时,使用并行戴维宁端接方案则是一种较好的策略。ECL 器件一般都具有很低的输出阻抗,因此,在ECL 电路的接收端使用一下拉端接电阻(下拉电平需要根据实际情况选取)来吸收能量则是ECL 电路的通用端接技术。

当然,上述方法也不是绝对的,具体电路上的差别、网络拓扑结构的选取、接收端的负载数等都是可以影响端接策略的因素,因此在高速电路中实施电路的端接方案时,需要根据具体情况通过分析仿真来选取合适的端接方案以获得最佳的端接效果。

(完整版)阻抗匹配的研究

阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才 能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需 要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使 源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信 号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电 源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37?,在高电平时典型的输出阻抗为45?[4];TTL驱动器和CMOS驱动 一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考

阻抗匹配基本概念以与高频阻抗匹配

英文名称:impedance matching 基本概念 信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。 匹配条件 ①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。 ②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 共轭匹配 在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。然而阻抗匹配的概念可以推广到交流电路,当负载阻抗与信号源阻抗共轭时,能够实现功率的最大传输,如果负载阻抗不满足共轭匹配的条件,就要在负载和信号源之间加一个阻抗变换网络,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 匹配分类 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 1. 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代

高频电子线路_杨霓清_答案_第一章-选频网络与阻抗变换

第一章 选频网络与阻抗变换 思考题与习题 1.1 已知LC 串联谐振回路的C =100pF ,0f =1.5MHz ,谐振时的电阻5r =Ω,试求:L 和 0Q 。 解:由 012f LC π = 得 2 6 12 011 (2)(2 1.510)10010 L f C ππ-== ???? 6 112.6 10112.6 H H μ-=?= 6 6 002 1.510112.610 5 L Q r ωπ-????= = 212.2 = 1.2 对于收音机的中频放大器,其中心频率0f =465kHz ,0.7BW =8kHz ,回路电容C=200pF ,试计算 回路电感L 和e Q 的值。若电感线圈的0Q =100,问在回路上应并联多大的电阻才能满足要求? 解:由 012f LC π = 得 2 2 2 0012533025330585.73(μH )(2)0.465200 L f C f C π= = = ≈? 由 00.7e f BW Q = 得 00 .7 46558.1258 e f Q BW = = = 00 3 10 001 100 171(k )2246510210 eo Q R Q C f C ωππ-== = ≈Ω???? 58.125 17199.18(k ) 100 e eo Q R R Q ∑= = ?=Ω 外接电阻 017199.18 236.14(k ) 17199.18 eo e R R R R R ∑∑ ?= = ≈Ω--

1.3 有一并联回路在某频段内工作,频段最低频率为535kHz ,最高频率1605 k Hz 。现有两 个可变电容器,一个电容器的最小电容量为12pF ,最大电容量为100 pF ;另一个电容 器的最小电容量为15pF ,最大电容量为450pF 。试问: 1)应采用哪一个可变电容器,为什么? 2)回路电感应等于多少? 3)绘出实际的并联回路图。 解:1) m a x m a x m i n m i n '16053' 535 f C f C = = = 因而 m a x m i n '9'C C = 但 100912 <, 45030915 => 因此应采用m ax m in = 450PF, = 15pF C C 的电容器。 但因为 m ax m in 30C C =, 远大于9,因此还应在可变电容器旁并联一个电容C X ,以使max min C C X X C C ++=3, 解之得 C X ≈40pF 。 2) 将m ax 'C =C X +m ax C =490pF 代入 2 2 2 min max min max 1 2533025330180(μH )(2)''0.535490 L f C f C π= = = ≈? 3 )实际的并联回路如下 1.4 给定并联谐振回路的0f =5MHz ,C =50 pF ,通频带0.7BW =150kHz 。试求电感L 、品质 因数0Q 以及对信号源频率为5.5MHz 时的失调。又若把0.7BW 加宽至300kHz ,应在回路 两端再并联上一个阻值多大的电阻? 解:回路电感值为 22 2 01 253302533020.2 μH 550 L C f C ω= == =? 又 00.70 f BW Q =

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗 阻抗匹配(impedance matching)是指信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对于低频电路和高频电路,阻抗匹配有很大的不同。 在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题),另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r 的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)内阻了。 当这个电压源给负载供电时,就会有电流I 从这个负载上流过,并在这个电阻上产生I ×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能 2008-05-15 17:51:20 作者:未知来源:电子设计技术 关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel 到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输功率以及耗散功率。反射功率没有计算进去。 由此可知,这个比例就等于匹配网络工作时的功率增益GP。而工作时的功率增益完整表达式为: 这里,是负载反射系数,是匹配网络的s参数, 损失就是增益的倒数。因此,耗散损失可以定义为: Ldiss = 1/GP。 对于功率放大器而言,我们为它设计的负载一般是50Ω。通常,我们用来测量s参数的系统阻抗也是50Ω。如果系统阻抗和负载都是50Ω,那么就为0,于是,上面的表达式就可以简化为: 在计算一个匹配网络的耗散损失时,只需要知道它的传输值和反射散射参数的大小,这些可以很容易地从s参数的计算过程中得到,因为网络分析仪通常都会采用线性的方式来显示s参数的值。在评估输入和级间耗散损失时,负载的阻抗不是50Ω,但是上述的规律依然适用。 因为反射和耗散损失很容易混淆,射频工程师有时就会采用错误的方法来计算耗散损失。而最糟糕的方法就是采用未经处理的s21来进行计算。一个典型的匹配网络在1GHz(图2)时,对功率放大器而言,是数值为4+j0Ω的负载阻抗。匹配网络采用的是无损耗元件来进行模拟的,所以在匹配网络中不存在功率的耗散问题。然而,s21却是-6dB,因为在50Ω的源阻抗和4Ω的负载之间存在着巨大的不匹配问题。作为一个无损耗网络,除了一些数字噪音外,模拟的耗散损失为0dB。 在电路的模拟当中,我们可能可以采用s21来求出正确的耗散损失。这一过程包括采用复杂模拟负载线的共轭

高速通讯中阻抗匹配的研究

高速通讯中阻抗匹配的研究 反弹造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满 脸豆花呢!2.3反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。2.4上述简单的 生活细节,正可用以说明方波(SquareWave)讯号(Signal)在多层板传输线(TransmissionLine,系由讯号线、介质层、及接地层三者所共同组成)中所进 行的快速传送。此时可将传输线(常见者有同轴电缆CoaxialCable,与微带线MicrostripLine或带线StripLine等)看成软管,而握管处所施加的压力,就好比板 面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点 的特性阻抗(CharacteristicImpedance),使匹配接受端元件内部的需求。三.传 输线之终端控管技术(Termination)3.1由上可知当“讯号”在传输线中飞驰旅行 而到达终点,欲进入接受元件(如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端元件内部的电子阻抗相互匹配 才行,如此才不致任务失败白忙一场。用术语说就是正确执行指令,减少杂讯干 扰,避免错误动作”。一旦彼此未能匹配时,则必将会有少许能量回头朝向“发送端” 反弹,进而形成反射杂讯(Noise)的烦恼。3.2当传输线本身的特性阻抗(Z0) 被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm, 如此才能协助传输线对Z0的保持,使整体得以稳定在28ohm的设计数值。也唯 有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(SignalIntegrity,为讯号品质之专用术语)也才最好。四.特性阻抗(CharacteristicImpedance)4.1当某讯号方波,在传输线组合体的讯号线中,以高准位(HighLevel)的正压讯号向前推进时,则距其最近的参考层(如接地层) 中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的

输入阻抗、输出阻抗、阻抗匹配分析_.

输入阻抗、输出阻抗、阻抗匹配分析 输入阻抗 四端网络、传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配,从信号源、传感器等获取输入信号。阻抗是电路或设备对交流电流的阻力,输入阻抗是在入口处测得的阻抗。高输入阻抗能够减小电路连接时信号的变化,因而也是最理想的。在给定电压下最小的阻抗就是最小输入阻抗。作为输入电流的替代或补充,它确定输入功率要求。 天线的输入阻抗定义为输入端电压和电流之比。其值表征了天线与发射机或接收机的匹配状况,体现了辐射波与导行波之间能量转换的好坏。 输出阻抗 阻抗是电路或设备对交流电流的阻力,输出阻抗是在出口处测得的阻抗。阻抗越小,驱动更大负载的能力就越高。 输入阻抗和输出阻抗在很多地方都用到,非常重要。 首先,输入阻抗和输出阻抗是相对的,我们先要明白阻抗的意思。 阻抗,简单的说就是阻碍作用,甚至可以说就是电阻,即一种另一层意思上的等效电阻。 引入输入阻抗和输出阻抗这两个词,最大的目的是在设计电路中,要提高效率,即要达到阻抗匹配,达到最佳效果。 有了输入输出阻抗这两个词,还可以方便两个电路独立的分开来设计。当A电路中输入阻抗和B电路的输出阻抗相同(或者在一定范围时,两个电路就可不作任何更改,直接组合成一个更复杂的电路(或者系统。

由上也可以得出:输入阻抗和输出阻抗实际上就是等效电阻,单位自然就是欧姆了。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对 信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源,内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配

阻抗匹配和阻抗变换是什么-阻抗变换和阻抗匹配的详细概述

阻抗匹配和阻抗变换是什么?阻抗变换和阻抗匹配的详细概述阻抗匹配是无线电技术中常见的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真.因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输入、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路. 下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分。1、纯电阻电路在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上(见图1),在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2、电抗电路电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感.元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示.其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而.容

完整版阻抗匹配的研究

阻抗匹配的研究 ?>分事 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具 体的系统中怎样才 能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹 配。对于什么情况下需 要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、串联终端匹配 串联终端匹配的理论岀发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间 串接一个电阻R,使 源端的输岀阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射 串联终端匹配后的信号传输具有以下特点: A由于串联匹配电阻的作用,驱动信号传播时以其幅度的50 %向负载端传播; B信号在负载端的反射系数接近+ 1,因此反射信号的幅度接近原始信号幅度的50 %。 C反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输岀阻抗之和与传输线的特征阻 抗相等。理想的信 号驱动器的输岀阻抗为零,实际的驱动器总是有比较小的输岀阻抗,而且在信号的电平发生变化时,输岀 阻抗可能不同。比如电 源电压为+ 4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37?,在高电平时典型的输出阻抗为45?[4] ;TTL驱动器和CMOS驱动 一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考

阻抗匹配与阻抗线线宽设置_1129

一、阻抗匹配概念 定义: 1、指信号源或者传输线跟负载之间的一种合适的搭配方式;阻抗匹配分为低频和高频两种情况讨论。 2、阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 我们以下例(软管送水浇花)来感性认识一下阻抗匹配的功用 A、一端于手握处加压使其射出水柱,另一端接在水龙头,。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区.如下图所示: B、然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源。也有可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱(阻抗太高);如下图所示: C、反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。(阻抗太低),如下图所示;唯有拿捏恰到好处才能符合实际需求的距离。(阻抗匹配)

二、PCB走线的阻抗匹配与阻抗控制 (1)定义 阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路。传输线阻抗和负载阻抗达到匹配的定义,简单说就是:Z0=ZL。在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将可确保传输到最终负载的电磁能量值能达到最大量。 (2)PCB走线作阻抗控制的原因 1:针对目前高频高速的要求,及对信号失真状况越来越高的要求,在设计PCB时方波信号在多层板讯号线中,其特性阻抗值必须要和电子元件的内置电子阻抗相匹配,才能保证信号的完整的传输。 2:当特性阻抗值超出公差时,所传讯号的能量将出现反射、散失、衰减或延误等劣化现象,严重时会出现错误讯号。 3:由于元件的电子阻抗越高,其传输速率越快。总之,是为了配合电子元器件的电子阻抗,避免信号传输时失真的现象,所以要控制阻抗。 (3)、决定阻抗控制大小的因素,主要包括以下几个方面: 1、W-----线宽/线与地平面间距 2、H----绝缘介质厚度 3、T------铜厚 4、H1---绿油厚 5、Er-----介电常数 6、参考地平面层 射频信号在多层板传输线(Transmission Line,是由信号线、介质层、及接地层三者所共同组成)中所进行的快速传送;如下图所示: 三、PCB阻抗控制线计算概述 对于常见的FR4 板材的 PCB 板上, 对于微带线,线宽 W 是介质厚度 h的2 倍。对于带状线,线条两侧介质总厚度b 是线宽 W 的两倍(估算法);精确计算公式分别如下所示:

怎样理解阻抗匹配,很难得的资料

怎样理解阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R 越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的

匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是"短线",反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上

阻抗变换器的设计与仿真

摘要 射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。本文介绍了一种中心频率为400MHz、频宽为40MHz的50~75欧姆T型阻抗变换器的设计与仿真过程。文中概述了射频阻抗变换器的种类、用途及发展。在分析了阻抗匹配理论基本知识的基础上,论述了射频阻抗变换器的设计过程,然后通过ADS软件进行设计和仿真,并对仿真结果进行了分析总结。 关键词:射频;阻抗匹配;阻抗圆图;VSWR(电压驻波比);ADS 目录 摘要 (1) ABSTRACT................................................ 错误!未定义书签。第一章引言 (2) 1.1 概述 (2) 1.2 射频阻抗变换电路的类型 (2) 1.3 射频阻抗变换器的用途 (2) 1.4射频阻抗变换器设计的发展 (3) 第二章基本原理 (3) 2.1 阻抗匹配 (3) 2.2 史密斯圆图 (4) 2.2.1 等反射圆 (4) 2.2.2 等电阻圆图和等电抗圆图 (5) 2.2.3 Smith圆图(阻抗圆图) (7) 2.3 电压驻波比 (8) 第三章 T型阻抗变换器的设计 (9) 3.1 T型阻抗变换器(R S

选频网络最新题库

选频网络 一、选择题 1、在调谐放大器的LC 回路两端并上一个电阻R ,可以 C 。 A .提高回路的Q 值 B .提高谐振频率 C .加宽通频带 D .减小通频带 2、在高频放大器中,多用调谐回路作为负载,其作用不包括 ( D ) A .选出有用频率 B .滤除谐波成分 C .阻抗匹配 D .产生新的频率成分 3、并联谐振回路的通频带是指其输出电压下降到谐振电压的 所对应的频率范围, 用7.02f ?表示。 ( D ) A 、1/2 B 、1/3 C 、1/3 D 、1/2 4、LC 并联谐振回路具有选频作用。回路的品质因数越高,则 ( A ) A 、回路谐振曲线越尖锐,选择性越好,但通频带越窄。 B 、回路谐振曲线越尖锐,选择性越好,通频带越宽。 C 、回路谐振曲线越尖锐,但选择性越差,通频带越窄。 D 、回路谐振曲线越尖锐,但选择性越差,通频带越宽。 5、地波传播时,传播的信号频率越高,损耗 。 ( B ) A 、越小 B 、越大 C 、不变 D 、无法确定 6、并联谐振回路谐振时,电纳为零,回路总导纳为 。 ( B ) A .最大值 B .最小值 C .零 D .不能确定 7、谐振回路与晶体管连接时,常采用部分接入方式实现阻抗匹配,控制品质因数以达到对通频带和选择性的要求,图示电路中Is 信号源的接入系数s p 为 。 ( D ) s i A .12L L B .21L L C .112L L L + D .2 12L L L + 8、电路与上题同,晶体管基极与谐振回路的接入系数L p 为 。 ( C ) A .12C C B .21 C C C .112C C C + D .2 12C C C + 9、考虑信号源内阻和负载后,LC 选频回路的通频带变 ,选择性变 。( D ) A 、小、好 B 、大、好 C 、小、差 D 、大、差

关于阻抗、阻抗匹配和电容的作用

关于阻抗、阻抗匹配和电容的作用 关于阻抗、阻抗匹配和电容的作用收藏 1. 阻抗的概念 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。常用Z来表示,它的值由交流电的频率、电阻R、电感L、电容C相互作用来决定。由此可见,一个具体的电路,其阻抗是随时变化的,它会随着电流频率的改变而改变。 2. 阻抗匹配的概念 阻抗匹配是微波电子学里的一部分,主要用于传输线上,来达到所有高频微波信号都能传至负载的目的,不会有信号反射回来源点,从而提高能源效益。如果不匹配有什么后果呢?如果不匹配,则会形成反射,能力传递不过去,降低效率,会在传输线上形成驻波,导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,则会产生震荡,辐射干扰等。其对整个系统的影响是非常严重的。而在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(因为线短,即使反射回来,跟原信号还是一样的)。 当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换。第二,可以考虑使用串联/并联电容或电感的办法,这在调试

射频电路时常使用,在一般电路设计较为少用。第三,可以考虑使用串联/并联电阻的办法,即为串联终端匹配和并联终端匹配。 下面针对第三种匹配方法做简单的介绍, 1)、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。串联匹配不要求信号驱动器具有很大的电流驱动能力。 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器

压电换能器电阻抗匹配电路的分析与研究

压电换能器电阻抗匹配电路的 分析与研究 李秋锋张兴森彭应秋 (南昌航空工业学院,南昌330034) 作者简介 李秋锋:男,南昌航空工业学院测试计量技术及仪器专业02级硕士研究牛,主要从事无损检测、超声检测及超声换能器等方面的研究。 导师简介 彭应秋:男,湖南湘乡人,南昌航空工业学院测控系教授,硕导,1969年(本科)毕业于哈尔滨军事工程学院非电量电测专业,1981年(硕士)毕业于北京航空材料研究院无损检测专业。主要从事声场、超声检测、超声换能器等方面的研究。Email:pyqniat¥sina.tom TEL,:0791—82338】7。

(}1)旺配Ij;『帕…坡l!}I(b)蚝配前的频{}}图(C)ⅡE配后的匝l波幽(d)1儿M后的颠i忤H (a)pc配腑的州渡豳图31P20Z探头匹配前后的回波及频谱I堇I (b)匹配靛蚺撷谗瞰(c)Ft犯后的l?-l波;璺(d)UL^C后的顿讲涮 圈4IOPIOZ探头匹配前后的圄波及额谱图 从圈3葶¨图4中可以看出,这两种换能器实际匹配的效果是相当不错的,匹配后.J:作频率基本得到了保证。时域上的波形比匹配前有很大的改善。而在频谱图上的波形也是很好的,没有其他的谐频成分,并去除了频域“双峰”,其它性能指标也较好,基本能够满足匹配的要求。 参考文献 【1】 敏易全近代超声原理与应用南京大学出版社230~249【2】 程存弟超声技术西安:陕西师范大学出版社,1993,87~88【3】林玉书匹配F乜路对压屯脚瓷超声换能器振动性能的影响捧电与声光 1995.8:27~30 [31美国无损检测手册超声卷(上)世界图书出版公司112~116 —244——

(完整版)ADS软件学习及阻抗匹配电路的仿真设计

ADS软件学习及阻抗匹配电路的仿真设计 专业班级:电子信息科学与技术3班 姓名: 学号: 一、实验内容 用分立LC设计一个L型阻抗匹配网络,实现负载阻抗(30+j*40)(欧姆) 到50(欧姆)的匹配,频率为1GHz。 二、设计原理 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。 要实现最大的功率传输,必须使负载阻抗与源阻抗匹配,这不仅仅是为了减小功率损耗,还具有其他功能,如减小噪声干扰、提高功率容量和提高频率响应的线性度等。通常认为,匹配网络的用途就是实现阻抗变换,就是将给定的阻抗值变换成其他更合适的阻抗值。 基本阻抗匹配理论: ——(1) ——(2),由(1)与(2)可得:——(3)

当RL=Rs时可获得最大输出功率,此时为阻抗匹配状态。无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。 广义阻抗匹配: 阻抗匹配概念可以推广到交流电路,当负载阻抗ZL与信号源阻抗Zs共轭时,即ZL=Zs,能够实现功率的最大传输,称作共轭匹配或广义阻抗匹配。 如果负载阻抗不满足共轭匹配条件,就要在负载和信号源之间加一个阻抗变换网络N,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 三设计过程 1、新建ADS工程,新建原理图。在元件面板列表中选择“Simulation S--param”,在原理图中放两个Term和一个S-Parameters控件,分别把Term1设置成Z=5Oohm,Term2 设置成Z=30+j*40ohm,双击S-Parameters控件,弹出设置对话框,分别把Start设置成10MHz,Stop设置成2GHz,Step-size设置成1MHz。 2、在原理图里加入Smith Chart Matching 控件,并设置相关的频率和输入输出阻抗等参数。 3、连接电路。 4、在原理图设计窗口,执行菜单命令tools->Smith Chart,弹出Smart Component,选择“Update SmartComponent from Smith Chart Utility”,单击“OK”。 5、设置Freq=0.05GHz,Z0=50ohm。单击DefineSource /load Network terminations 按钮,弹出“Network Terminations”对话框,设置源和负载阻抗,然后依次单击“Apply”和“OK”。 6、采用LC分立器件匹配。 7、单击“Build ADS Circuit”按钮,即可以生成相应的电路。 8、进行仿真,要求其显示S(1,1)和S(2,1)单位为dB的曲线。

阻抗变换变换的方法和计算

变压器和其阻抗 理想变压器是一个端口的电压与另一个端口的电压成正比,且没有功率损耗的一种互易无源二端口网络。它是根据铁心变压器的电气特性抽象出来的一种理想电路元件。 理想变压器阻抗变换作用的性质由以上的全部叙述可见,理想变压器既能变换电压和电流,也能变换阻抗,因此,人们更确切地称它为变量器。 在电子线路中,常利用理想变压器的阻抗变换作用来实现阻抗匹配,使负载获得最大功率。 1.在电子设备中,往往要求负载能获得最大输出功率。负载若要获得最大功率,必须满足负载电阻与电源电阻相等的条件,称为阻抗匹配。但在一般情况下,负载电阻是一定的,不能随意改变。而利用变压器可以进行阻抗变换,适当选择变压器的匝数比,把它接在电源与负载之间,就可实现阻抗匹配,使负载获得最大的输出功率。 如图,从变压器原绕组两端点看进去的阻抗为 从变压器副绕组两端点看进去的阻抗为 因为 表明:变比为K的变压器,可以把其副绕组的负载阻抗,变换成为对电源来说扩大到K2倍的等效阻抗。

2. 假说变压器初级/次级的匝数比为n:1,根据变压器的特性,次级电压为初级的1/n,电流为初级的n倍。 初级阻抗=初级电压/初级电流 次级阻抗=次级电压/次级电流=(1/n)初级电压/(n初级电流)=[1/(nn)]初级阻抗。或者说初级阻抗=(nn)次级阻抗。 这说明,变压器各线圈的阻抗,与线圈匝数的平方成正比。利用这一特点,可以用变压器不同匝数的线圈来变换阻抗。最简单的,就是电视机天线,用扁馈线时阻抗是300Ω,接电视机的天线输入端是75Ω,必须用一个阻抗变换插座,其中就是一个铁氧体磁芯的2:1的变压器,将300Ω与75Ω进行阻抗匹配。 3. 变压器除了可变压外还可作为一个阻抗变换器件,这在有线广播中经常用到。变压器的初次级的匝数比n=n1/n2=V1/V2,V1、V2分别是初、次级的电压,n1、n2分别为初、次级的绕组匝数。又有V1V1=PZ1、V2V2=PZ2 式中P是变压器的功率,Z1、Z2分别是初次的阻抗, 所以有Z1/Z2=V1V1/V2/V2=n1n1/n2n2 即变压器的初次级阻抗比等于初次级电压比的平方和等于匝数比的平方。

阻抗匹配的研究

阻抗匹配的研究 信号传输与端接技术 传输线上的阻抗不连续会导致信号反射,我们以图3所示的理想传输线模型来分析与信号反射有关的重要参数。 在图3中理想传输线被内阻为RS的数字信号驱动,传输线的特性阻抗为Z0,负载阻抗为RL。理想的情况是当RS=Z0=RL时,传输线的阻抗是连续的,不会发生任何反射,能量一半消耗在源内阻RS上,另一半消耗在负载电阻RL上(传输线无直流损耗)。如果负载阻抗大于传输线的特性阻抗,那么负载端多余的能量就会反射回源端,由于负载端没有吸收全部能量,故称这种情况为欠阻尼。如果负载阻抗小于传输线的特性阻抗,负载消耗比当前源端提供的能量更多的能量,故通过反射来通知源端输送更多的能量,这种情况称为过阻尼。欠阻尼和过阻尼都会引起反向传播的波形,某些情况下在传输线上会形成驻波。当Z0=RL时,负载完全吸收到达的能量,没有任何信号反射回源端,这种情况称为临界阻尼。从系统设计的角度来看,由于临界阻尼情况很难满足,所以最可靠适用的方式为轻微的过阻尼,因为这种情况没有能量反射回源端。 反射电压信号的幅值由源端反射系数ρs和负载反射系数ρL 决定 ρL = (RL - Z0) / (RL + Z0) 和ρS = (RS - Z0) / (RS + Z0) 在上式中,若RL=Z0则负载反射系数ρL=0。若 RS=Z0源端反射系数ρS=0。 由于普通的传输线阻抗Z0通常在 50Ω左右,而负载阻抗通常在几千欧姆到几十千欧姆。因此,在负载端实现阻抗匹配比较困难。然而,由于信号源端(输出)阻抗通常比较小,大致为十几欧姆。因此在源端实现阻抗匹配要容易的多。

在高速设计中,阻抗的匹配与否关系到信号质量的优务。阻抗匹配技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统设计中,很多采用的是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。例如差分的匹配多数采用终端的匹配;时钟采用源端匹配。 1、终端串联匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS 驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS 电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2、并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播; B 所有的反射都被匹配电阻吸收; C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值

相关主题
文本预览
相关文档 最新文档