当前位置:文档之家› 压电换能器电阻抗匹配电路的分析与研究

压电换能器电阻抗匹配电路的分析与研究

压电换能器电阻抗匹配电路的分析与研究
压电换能器电阻抗匹配电路的分析与研究

压电换能器电阻抗匹配电路的

分析与研究

李秋锋张兴森彭应秋

(南昌航空工业学院,南昌330034)

作者简介

李秋锋:男,南昌航空工业学院测试计量技术及仪器专业02级硕士研究牛,主要从事无损检测、超声检测及超声换能器等方面的研究。

导师简介

彭应秋:男,湖南湘乡人,南昌航空工业学院测控系教授,硕导,1969年(本科)毕业于哈尔滨军事工程学院非电量电测专业,1981年(硕士)毕业于北京航空材料研究院无损检测专业。主要从事声场、超声检测、超声换能器等方面的研究。Email:pyqniat¥sina.tom

TEL,:0791—82338】7。

(}1)旺配Ij;『帕…坡l!}I(b)蚝配前的频{}}图(C)ⅡE配后的匝l波幽(d)1儿M后的颠i忤H

(a)pc配腑的州渡豳图31P20Z探头匹配前后的回波及频谱I堇I

(b)匹配靛蚺撷谗瞰(c)Ft犯后的l?-l波;璺(d)UL^C后的顿讲涮

圈4IOPIOZ探头匹配前后的圄波及额谱图

从圈3葶¨图4中可以看出,这两种换能器实际匹配的效果是相当不错的,匹配后.J:作频率基本得到了保证。时域上的波形比匹配前有很大的改善。而在频谱图上的波形也是很好的,没有其他的谐频成分,并去除了频域“双峰”,其它性能指标也较好,基本能够满足匹配的要求。

参考文献

【1】

敏易全近代超声原理与应用南京大学出版社230~249【2】

程存弟超声技术西安:陕西师范大学出版社,1993,87~88【3】林玉书匹配F乜路对压屯脚瓷超声换能器振动性能的影响捧电与声光

1995.8:27~30

[31美国无损检测手册超声卷(上)世界图书出版公司112~116

—244——

压电换能器静态匹配电路的研究

第21卷第3期 纺织高校基础科学学报Vol.21,No.3 2008年9月BASIC SC IENCES JOURNAL OF TEXTILE UNIVERSITIES Sept.,2008 文章编号:1006-8341(2008)03-0361-03 收稿日期:2008-03-21 基金项目:国家自然科学基金资助项目(10674090) 通讯作者:林书玉(1963-),男,山东省莱州县人,陕西师范大学教授,博士生导师,主要从事换能器的研究.E -mail:sx s - dsx s@https://www.doczj.com/doc/8b13768367.html, 压电换能器静态匹配电路的研究 郭林伟1,2,林书玉1,许 龙1 (1.陕西师范大学应用声学所,陕西西安710062;2.榆林学院能源工程学院,陕西榆林719000) 摘要:为了研究压电换能器的工作安全性能,提高换能器的系统效率,根据压电换能器的工作原理,利用等效电路的方法,对换能器电端常见的几种静态匹配电路的阻抗、有功电阻和匹配电感进行分析与计算,即单个电感匹配、电感-电容匹配、改进的电感-电容匹配及T 型匹配,得出各种匹配电路的最佳匹配条件.结果表明,改进的电感-电容匹配电路是一种较理想的匹配电路. 关键词:压电换能器;有功电阻;匹配电感 中图分类号:T B 559 文献标识码:A 超声频电发生器能够提供一定频率及一定功率的超声频电能,要让此电能高效率的传输给换能器,必需在超声频电发生器与换能器之间设置匹配电路[1-2],且大功率超声设备能否高效而安全地工作,很大程度上取决匹配电路的设计.匹配电路主要有静态匹配和动态匹配2种,动态匹配一般用频率跟踪与功率跟踪技术[3-8] ;静态匹配是在超声频电发生器输出频率与换能器静态谐振频率相同的条件下,电端输出阻抗与换能器静态输入阻抗的匹配,它实用于要求换能器输出频率固定的应用场合,本文将对压电换能器电端常见几种电感-电容静态匹配电路进行分析,对于压电换能器的应用有极其重要的意义.1 匹配原理 超声波电发生器与换能器的电端匹配,一般要解决2个问题:调谐与变阻,以此来提高超声波电发生器与换能器间的功率与效率的传输[9-10].所谓调谐,即采用外加电抗性元件调节换能器的输入电抗,使输入相角趋近于零,以减少功率传输中的无功分量;变阻,即改变换能器的有功电阻,使之与超声波电发生器的输出阻抗相接近,以达到最佳功率传输.在一般情况下,采用输出变压器来达到阻抗变换的目的[11].本文利用电感和电容的串、并联组合来实现调谐与阻抗变换. 任何一压电式超声换能器,在其谐振频率附近均可用图1来等效.其中C 0为静态电容,它是在远低于谐振频率的频率上测出的换能器电容,是个真实的电学量.L 1、C 1和R 1分别是动态电感、动态电容和动态电阻,它们不是真正的电学量,而是从换能器的质量、机械顺性和损耗分别折算过来的等效参数.C 0所在的支路称作并联支路,L 1,C 1和R 1所在的支路则称作串联支路.由图1可求出换能器的阻抗为 Z =[R 1+j (X L 1-1/(X C 1))]/(j X C 0)R 1+j (X L 1-1/(X C 1))+1/(j X C 0) =R +j X.(1)根据匹配原理,在机械谐振时,X =0,即X =X s =1/L 1C 1 (X s =2P f s ,f s 为串联谐振频率),串联支路中仅剩下电阻分量.可见此时的换能器为一容性负载,需要用一个电感元件来与之调谐,从而/低消0C 0产生的容抗分量.

第三章 电路的暂态分析1

第三章 电路的暂态分析 一、填空题: 1. 一阶RC 动态电路的时间常数τ=___RC____,一阶RL 动态电路的时间常数τ=__L/R______。 2. 一阶RL 电路的时间常数越__大/小 _ (选择大或小),则电路的暂态过程进行的越快 慢/快 (选择快或慢)。。 3. 在电路的暂态过程中,电路的时间常数τ愈大,则电压和电流的增长或衰减就 慢 。 4. 根据换路定律,(0)(0)c c u u +-=,()+0L i =()0L i — 5. 产生暂态过程的的两个条件为 电路要有储能元件 和 电路要换路 。 6. 换路前若储能元件未储能,则换路瞬间电感元件可看为 开路 ,电容元件可看为 短路 ;若储能元件已储能,则换路瞬间电感元件可用 恒流源 代替,电容元件可用 恒压源 代替。 7. 电容元件的电压与电流在关联参考方向下,其二者的关系式为1 u idt C = ?;电感元件的电压与电流在关联参考方向下,其二者的关系式为di u L dt =。 8. 微分电路把矩形脉冲变换为 尖脉冲 ,积分电路把矩形脉冲变换为 锯齿波 。 9.下图所示电路中,设电容的初始电压(0)10C u V -=-,试求开关由位置1打到位置2后电容电压上升到90 V 所需要的时间为 4.8*10-3 秒。 F μ100 10. 下图所示电路中,V U u C 40)0(0_==,开关S 闭合后需 0.693**10-3

秒时间C u 才能增长到80V ? + U C - 11. 下图所示电路在换路前处于稳定状态,在0t =时将开关断开,此时电路的时间常数τ为 (R 1 +R 2 )C 。 U 12. 下图所示电路开关S 闭合前电路已处于稳态,试问闭合开关的瞬间, )0(+L U 为 100V 。 1A i L 13. 下图所示电路开关S 闭合已久,t=0时将开关断开,则i L (0-)= 4A ,u C (0+)= 16V ,i C (0+)= 0 。 u c 14.下图所示电路,当t=0时将开关闭合,则该电路的时间常数为 0.05S 。

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电超声波换能器原理

超声波换能器 一种能把高频电能转化为机械能的装置。由材料的压电效应将电信号转换为机械振动。超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。 超声波换能器,要解决的技术问题是设计一种作用距离大、频带宽的超声波换能器。 换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-5压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。 压电陶瓷超声换能器工作原理 压电陶瓷是一种功能性陶瓷,所谓功能性陶瓷就是对光,电,等物理量比较敏感的陶瓷。压电陶瓷对光和压力比较敏感,对压电陶瓷施加一个外力,压电陶瓷表面会产生电荷,这就是压电陶瓷的正压电效应,是一个将机械能转化为电能的过程;对压电陶瓷外加一个电场,压电陶瓷会发生微小的形变,这就是压电陶瓷的逆压电效应,是一个将电能转化为机械能的过程。利用逆压电效应,可以把高频电压转化为高频率的振动,从而产生了超声波。 超声波换能器是将电能转换成机械能(超声波)的器件,其中最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。这种夹心换能器在负荷变化时产生稳定的超声波,是获得功率超声波驱动源的最基本最主要的方法。[1] 将非电能量转换成电能量,不需要外电源,称换能器,也称有源传感器,换能器是超声波设备的核心器件,其特性参数决定整个设备的性能。 现在用的超声波换能器,除了磁致伸缩结构以外就是常用的用前后盖板夹紧压电陶瓷的“朗之万”换能器,超声波就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,同样尺寸外形的换能器的性能和使用寿命是千差万别的。 我们主要生产大功率超声波换能器,应用与超声波塑料焊接机、超声波金属焊接机、各种手持式超声波工具、连续工作的超声波乳化均质器、雾化器、超声波雕刻机等超声波焊接设备。磁致伸缩 磁致伸缩有镍片换能器和铁氧体换能器。 铁氧体换能器的电声转换效率比较低,使用一、二年后效率下降,甚至几乎丧失电声转换能力。 镍片换能器的工艺复杂,价格昂贵,所以很少使用。 压电晶体 最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。 压电效应将电信号转换为机械振动。这种换能器电声转换效率高,原材料价格便宜,制作方便,也不容易老化。 常用的材料有石英晶体、钛酸钡和锆钛酸铅。 石英晶体的伸缩量太小,3000V电压才产生0.01um以下的变形。 钛酸钡的压电效应比石英晶体大20-30倍,但效率和机械强度不如石英晶体。 锆钛酸铅具有二者的优点,可用作超声波清洗,探伤和小功率超声波加工的换能器。 压电换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。 按实现的作用分为超声波加工、超声波清洗、超声波探测以及超声波雾化等。 编辑本段外形分类

换能器知识点

概念题: 1.换能器:能够发射或接收声波,并完成声波所携带的信息和能量与电的信息和能量装换的装置,就称为电声换能器,简称换能器。 2.等效电路法:将换能器看为做机械振动的弹性体,依据波动理论可以得到它的机械振动方程,根据电路的规律可以得到电路状态方程,根据压电方程和机电类比可以建立换能器的机电等效图,换能器的工作特性和参数就可以通过机电等效图来求得。(优点:物理意义明确,缺点:通常是一维分析,适用于简单结构) 3.有限元法:是以变分原理和剖分插值原理为基础,将待分析模型想象的划分成一系列单元,构造单元插值函数,将单元内部点的状态用单元节点状态的差值函数来近似描述。 这样就将实际的物理问题转化成求解单元节点状态的代数方程组问题。(优点:分析任意结构的换能器;结果直观准确;工作状态仿真;应用广泛) 4.居里点:压电陶瓷的性能随温度变化,温度超过某一温度时压电性能会完全消失。5.自发形变:在压电陶瓷的晶格结构中,晶胞的大小形状与温度相关,t>Tc(居里温度),立方晶胞;t

超声波发生器与换能器的匹配设计

时间:2008-1-31 16:25:22来源:转载文号:大中小超声波发生器与换能器匹配包括两个方面,一是通过匹配使发生器向换能器输出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把换能器的阻抗变换成最佳负载,也即阻抗变换作用; 二是通过匹配使发生器输出效率最高,这是由于换能器有静电抗的原因,造成工作频率上的输出电压和电流有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。中国超声波论坛 二、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载阻抗。一般在D类开关型功放中其发生器变压器初级等效负载Rl'上的输出功率表达式,式中,VAm 为等效负载上的基波幅度;vcc为电源电压;vces为功放管饱和压降,故为了保证系统有一定功率余量(因输出变压器,末级匹配回路及晶体管损耗电阻都有损耗,po' 需要乘上一个约等于1.4—1.5的系数。即输出功率po为1.5Po'; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载RL’。目前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载RL进行阻抗变换。由高阻抗变换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数比进行变换。变压器次初级匝数比为n/m,则输出功率PO时的初级电阻 举例:要求一发生器输出在换能器上的功率为1000W,设直流电VCC为220V,VCES=10V,功率应留有一定余量,则 PO='=1500W。则变压器初级的Ω

第三章 医用超声换能器

第三章医用超声换能器 应用超声波进行诊断时,首先要解决的问题是如何发射和接收超声波,通过使用超声换能器可以解决这个问题。 目前医学超声设备大多采用声电换能器来实现超声波的发射与接收。 声电换能器按工作原理分为两大类,即电场式和磁场式。 电场式中,利用电场所产生的各种力效应来实现声电能量的相互转换,其内部储能元件是电容,它又分为压电式、电致伸缩式、电容式。 磁场式中,是借助磁场的力效应实现声电能量的互相转换,内部储能元件是电感,它又分为电动式、电磁式、磁致伸缩式。 在医学超声工程中,使用的最多的是压电式超声换能器。 §3.1 压电效应与压电材料特性 一、压电效应 压电效应是法国物理学家Pierre Curie 和Jacqnes Curie 兄弟于1880年发现的。 图3-1 压电效应示意图 对某些单晶体或多晶体电介质,如石英晶体、陶瓷、高分子聚合材料等,当沿着一定方向对其施加机械力而使它变形时,内部就产生极化现象,同时在它的两个对应表面上便

产生符号相反的等量电荷,并且电荷密度与机械力大小成比例;而且当外力取消后,电荷也消失,又重新恢复不带电状态,这种现象称为正压电效应,如图3-1。当作用力的方向改变时,电荷的极性也随着改变。 相反,当在电介质的极化方向上施加电场(加电压)作用时,这些电介质晶体会在一定的晶轴方向产生机械变形;外加电场消失,变形也随之消失,这种现象称为逆压电效应(电致伸缩)。 如果在电介质的两面外加交变电场时,电介质产生压缩及伸张,即产生振动,此振动加到弹性介质上,介质亦将振动,产生机械波。如外加交变电场频率高于20KHz,则这种波即是超声波。 超声接收换能器采用了正压电效应,将来自人体中的声压转变为电压。超声波发射换能器采用了逆压电效应,将电压转变为声压,并向人体发射。 压电效应是可逆的,压电材料既具有正压电效应,又具有逆压电效应。医学超声设备中,常采用同一压电换能器作为发射和接收探头,但发射与接收必须分时工作。 当外加的交变电压的频率与固有频率一致时,产生的机械振动最强;当外加的机械力的频率与固有频率一致时,所产生的电荷也最多。在超声波诊断仪中激励脉冲的频率必须与探头的固有频率相同。 实验证明,当所施加力或电的频率不与晶体固有频率一致时,压电换能器晶体产生的电信号幅度和变形振动幅度都将变小,可见,它们都是频率的函数。 二、压电材料 具有压电效应的物质称为压电材料或压电元件。 目前已发现的压电材料品种繁多,性能各异,按系列可分为三大类。 (一)压电单晶体 超声换能器应用的天然单晶体有石英、电石等,人工制造的单晶体,如硫酸锂、鈮酸锂等,都具有同样的压电特性。 石英晶体的性能相当稳定,但需使用几千伏以上的高电压,而且要求加工精密度高,机电耦合系数(灵敏度)低,故目前医用诊断探头已很少使用。 (二)压电陶瓷 压电陶瓷品种最多,它是人工制成的压电多晶体材料,

电工技术--第三章 电路的暂态分析

电工技术--第三章电路的暂态分析

第三章电路的暂态分析 一、内容提要 本章首先阐述了电路瞬变过程的概念及其产生的原因,指出了研究电路瞬变过程的目的和意义。其次介绍换路定律及电路中电压和电流初始值的计算方法。第三着重推荐用“三要素法”分析一阶RC、RL电路瞬变过程的方法。 二、基本要求 1、了解性电路的瞬变过程的概念及其产生的原因; 2、掌握换路定律,学会确定电压和电流的初始值; 3、掌握影响瞬变过程快慢的时间常数的物理意义; 4、掌握影响巡边过程快慢的时间常数的物理意义; 5、学会对RC和RL电路的瞬变过程进行分析。

三、学习指导 电路的暂态分析,实际上就是对电路的换路 进行分析。所谓换路是电路由一个稳态变化到另一个稳态,分析的重点是对含有储能元件的电路而言,若换路引起了储能元件储存的能量所谓变化,则由于能量不能突变,这一点非常重要,次之电路的两个稳态间需要暂态过程进行过渡。 在直流激励下,换路前,如果储能元件储能 有能量,并设电路已处于稳态,则在- =0t 的电路中,电容C 元件可视为开路,电感L 元件可视作短路,只有这样,2L L 2C C 2 121Li W Cu W ==及才能保证;换路前,如果储能元件没有储能(00L C ==W W 或)只能00L C ==i u 或,因此,在-=0t 和+ =0t 的电路中,可将电容元件短路,电感元件开路。 特别注意:“直流激励”,“换路前电路已处于稳态”及储能元件有无可能储能。 对一阶线性电路,求解暂态过程的方法及步骤 1、经典法

其步骤为: (1)按换路后的电路列出微分方程; (2)求微分方程式的特解,即稳态分量; (3)求微分方程式的补函数,即暂态分量 (4)按照换路定律确定暂态过程的初始值,定出积分常数。 对于比较复杂的电路,有时还需要应用戴维南定律或诺顿定理将换路后的电路简化为一个简单的电路,而后再利用上述经典法得出的式子求解,其步骤如下: (1)将储能元件(C或L)划出,而将其余部分看做一个等效电源,组成一个简单电路; (2)求等效电源的电动势(或短路电流)和内阻; (3)计算电路的时间常数;C 电路,eq C R =τL 电路eq R L =τ。 (4)将所得数据代入由经典法得出的式子。 ①RC电路的零状态响应: ;,,0R 00C τττt t t e U u e R U i e U u ----=-== ②RC电路的零状态响应: ;,),1(R C τττt t t Ue u e R U i e U u ----==-=

超声波换能器的匹配设计

超声波换能器的匹配设计 一、匹配概述 超声波发生器与换能器匹配包括两个方面,一是通过匹配使发生器向换能器输出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把换能器的阻抗变换成最佳负载,也即阻抗变换作用;二是通过匹配使发生器输出效率最高,这是由于换能器有静电抗的原因,造成工作频率上的输出电压和电流有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。二、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载阻抗。一般在D类开关型功放中其发生器变压器初级等效负载Rl'上的输出功率表达式为: 式中,V Am为等效负载上的基波幅度; vcc为电源电压;vces为功放管饱和压降,故 为了保证系统有一定功率余量(因输出变压器,末级匹配回路及晶体管损耗电阻都有损耗,po' 需要乘上一个约等于1.4—1.5的系数。即输出功率po为1.5Po'; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载RL’。目前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载RL进行阻抗变换。由高阻抗变换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数

比进行变换。变压器次初级匝数比为n/m,则输出功率PO时的初级电阻 举例:要求一发生器输出在换能器上的功率为1000W,设直流电VCC为220V,VCES=10V,功率应留有一定余量,则PO=1.5PO'=1500W。则变压器初 级的 若换能器谐振时等效电阻RL=200Ω,则输出变压器次级/初级圈数比 以上称谓阻抗变换,是通过输出变压器实行的。 输出变压器是超声波发生器阻抗匹配、传输功率的重要部件,它的设计与绕制工艺对发生器的工作安全是十分重要的。它不仅会以漏感、励磁电流等方式影响电路的工作,其漏感还是形成输出电压尖峰的主要原因。为此,在设计时,应选取具有高磁通密度B,高导磁率μ,高电阻率ρc和低矫顽力Hc的高饱和材料作铁芯。一般在防止高频变压器的瞬态饱和时,在设计时要注意如下几点:1.工作磁通密度B的选取 铁芯材料的磁感应增量ΔB愈大,所需线圈匝数愈少,直流电阻R也愈小,从而线圈的铜损Pm也愈小。ΔB取得高时,传输的脉冲前沿就愈陡。因此,在设计变压器时,选取高磁通密度的材料作铁芯,这对降低变压器的损耗、减小体积和重量都是很有利的。为了避免在稳态或过渡过程中发生饱和,一般选取工作磁通密度B≤Bs/3为宜,这里Bs为磁芯的最大和磁通密度。 2.要保证初级电感量足够大 一般要求变压器初级阻抗应满足下式关系:WLl≥15RL',其中RL' 为次级负载所算到初级边的等效电阻值,WLl为初级电感感抗,若初级电感量太小,励 6.5Ω

用ANSYS软件分析压电换能器入门

用ANSYS 软件分析压电换能器入门 A :分析过程基本步骤 一:问题描述(草稿纸上完成) 1:画出换能器几何模型,包括尺寸 2:选定材料 3:查材料手册确定材料参数 二:建立模型 1:根据对称性确定待建模型的维数 2:根据画出的几何模型确定关键点坐标,给关键点编好号码 3:建立一个文件夹用于当前分析 4:启动ANSYS 软件,指定路径到建立的文件夹, 5:定义单元类型 压电换能器分析使用的单元类型: solid5:8个节点3D 六面体耦合场单元(也可缩减为三角柱形单元或四面体单元)。无实常数。 plane13:4个节点2D 四边形耦合场单元(也可缩减为三角形单元)。无实常数。 solid98:10个节点3D 四面体耦合场单元。无实常数。 Fluid30:8个节点3D 六面体声学流体单元(也可缩减为三角柱形单元或四面体单元)。应用于近场水和远场水。实常数为参考声压,可缺省。 Fluid130:4个节点面无穷吸收水声学流体单元(也可缩减为三角形面单元)。实常数:半径,球心X ,Y ,Z 坐标值。 6:定义材料参数 对一般均匀各向同性材料要给出材料密度,杨氏模量,泊松系数。(静态分析不用密度) 对压电材料: 一般使用的压电方程:e 型压电方程,因此输入的常数为 ????????? ?????? ???? ?=E E E E E E E E E E E E E E E E E E E E E E c c c c c c c c c c c c c c c c c c c c c C 665655 464544 36353433 2625242322 161514131211对称 ???????? ??????????=6362 61 535251434241333231 232221131211 e e e e e e e e e e e e e e e e e e e ????????? ?=S S S S 3322 11εεεε 注意!一般顺序为:XX ,YY ,ZZ ,YZ ,XZ ,XY 。在ANSYS 中为XX ,YY ,ZZ ,XY ,YZ ,XZ 。因此,前两矩后三行和后三列要做相应变化。 7:建立关键点 8:把关键点连成线

超声波换能器的匹配设计

一、匹配概述 超声波发生器与换能器匹配包括两个方面,一是通过匹配使发生器向换能器输出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把换能器的阻抗变换成最佳负载,也即阻抗变换作用;二是通过匹配使发生器输出效率最高,这是由于换能器有静电抗的原因,造成工作频率上的输出电压和电流有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。二、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载阻抗。一般在D类开关型功放中其发生器变压器初级等效负载Rl'上的输出功率表达式为: 式中,VAm为等效负载上的基波幅度; vcc为电源电压;vces为功放管饱和压降,故 为了保证系统有一定功率余量(因输出变压器,末级匹配回路及晶体管损耗电阻都有损耗,po' 需要乘上一个约等于1.4—1.5的系数。即输出功率po 为1.5Po'; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载RL’。目前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载RL进行阻抗变换。由高阻抗变换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数比进行变换。变压器次初级匝数比为n/m,则输出功率PO时的初级电阻 举例:要求一发生器输出在换能器上的功率为1000W,设直流电VCC为220V,

VCES=10V,功率应留有一定余量,则PO='=1500W。则变压器初级的 Ω若换能器谐振时等效电阻RL=200Ω,则输出变压器次级/初级圈数比 以上称谓阻抗变换,是通过输出变压器实行的。 输出变压器是超声波发生器阻抗匹配、传输功率的重要部件,它的设计与绕制工艺对发生器的工作安全是十分重要的。它不仅会以漏感、励磁电流等方式影响电路的工作,其漏感还是形成输出电压尖峰的主要原因。为此,在设计时,应选取具有高磁通密度B,高导磁率μ,高电阻率ρc和低矫顽力Hc的高饱和材料作铁芯。一般在防止高频变压器的瞬态饱和时,在设计时要注意如下几点:1.工作磁通密度B的选取 铁芯材料的磁感应增量ΔB愈大,所需线圈匝数愈少,直流电阻R也愈小,从而线圈的铜损 Pm也愈小。ΔB取得高时,传输的脉冲前沿就愈陡。因此,在设计变压器时,选取高磁通密度的材料作铁芯,这对降低变压器的损耗、减小体积和重量都是很有利的。为了避免在稳态或过渡过程中发生饱和,一般选取工作磁通密度B≤Bs/3为宜,这里Bs为磁芯的最大和磁通密度。 2.要保证初级电感量足够大 一般要求变压器初级阻抗应满足下式关系:WLl≥15RL',其中RL' 为次级负载所算到初级边的等效电阻值,WLl为初级电感感抗,若初级电感量太小,励磁电流将比较大,励磁电流过大,变压器的损耗将增加,温升随之增高,从而降低Bs,使变压器进入饱和的可能性增大。 3.要考虑“集肤效应”的影响 在高频工作时,流过导线的电流会产生“集肤效应”。这相当于减少了导线有效截面积,增加了导线的电阻,从而引起导线的压降增大,导致变压器温度升高,结果增大了变压器进入饱和的危险性,建议采用小直径的多股导线并绕的方

电路的暂态分析

第8章电路的暂态分析 含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。 本章的学习重点: ●暂态、稳态、换路等基本概念; ●换路定律及其一阶电路响应初始值的求解; ●零输入响应、零状态响应及全响应的分析过程; ●一阶电路的三要素法; ●阶跃响应。 8.1 换路定律 1、学习指导 (1)基本概念 从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。 (2)基本定律 换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。此规律揭示了能量不能跃变的事实。 (3)换路定律及其响应初始值的求解 一阶电路响应初始值的求解步骤一般如下。 ①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。 ②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当 u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于u C(0+)的恒压源。

第3章--电路暂态分析-答案

第3章 电路的暂态分析 练习与思考 3.1.1 什么是稳态?什么是暂态? 答:稳态是指电路长时间工作于某一状态,电流、电压为一稳定值。暂态是指电路从一种稳态向另一种稳态转变的过渡过程。 3.1.2 在图3-3所示电路中,当开关S 闭合后,是否会产生暂态过程?为什么? 图3-3 练习与思考3.1.2图 答:不会产生暂态过程。因为电阻是一个暂态元件,其瞬间响应仅与瞬间激励有关,与以前的状态无关,所以开关S 闭合后,电路不会产生暂态过程。 3.1.3 为什么白炽灯接入电源后会立即发光,而日光灯接入电源后要经过一段时间才发光? 答:白炽灯是电阻性负载,电阻是一个暂态元件,其暂态响应仅与暂态的激励有关,与以前的状态无关;而日光灯是一个电感性负载,电感是一个记忆元件,暂态响应不仅与暂态激励有关,还与电感元件以前的工作状态有关,能量不能发生突变,所以日光灯要经过一段时间才发光。 3.2.1任何电路在换路时是否都会产生暂态过程?电路产生暂态的条件是什么? 答:不是。只有含有储能元件即电容或电感的电路,在换路时才会产生暂态过程。电路产生暂态的条件是电路中含有储能元件,并且电路发生换路。 3.2.2若一个电感元件两端电压为零,其储能是否一定为零?若一个电容元件中的电流为零,其储能是否一定为零?为什么? 答:若一个电感元件两端电压为零,其储能不一定为零,因为电感元件电压为零,由 dt di L u =只能说明电流的变化率为零,实际电流可能不为零,由2 2 1Li W L =知电感储能不为零。 若一个电容元件中的电流为零,其储能不一定为零,因为电容元件电流为零,由 dt du C i =只能说明电压变化率为零,实际电压可能不为零,由2 2 1)(Cu t W C =知电容储能不为零。 3.2.3在含有储能元件的电路中,电容和电感什么时候可视为开路?什么时候可视为短路? 答:电路达到稳定状态时,电容电压和电感电流为恒定不变的值时,电容可视为开路,电感可视为短路。 3.2.4 在图3-13所示电路中,白炽灯分别和R 、L 、C 串联。当开关S 闭合后,白炽灯1立即正常发光,白炽灯2瞬间闪光后熄灭不再亮,白炽灯3逐渐从暗到亮,最后达到最亮。请分析产生这种现象的原因。

压电换能器电阻抗匹配电路的分析与研究

压电换能器电阻抗匹配电路的 分析与研究 李秋锋张兴森彭应秋 (南昌航空工业学院,南昌330034) 作者简介 李秋锋:男,南昌航空工业学院测试计量技术及仪器专业02级硕士研究牛,主要从事无损检测、超声检测及超声换能器等方面的研究。 导师简介 彭应秋:男,湖南湘乡人,南昌航空工业学院测控系教授,硕导,1969年(本科)毕业于哈尔滨军事工程学院非电量电测专业,1981年(硕士)毕业于北京航空材料研究院无损检测专业。主要从事声场、超声检测、超声换能器等方面的研究。Email:pyqniat¥sina.tom TEL,:0791—82338】7。

(}1)旺配Ij;『帕…坡l!}I(b)蚝配前的频{}}图(C)ⅡE配后的匝l波幽(d)1儿M后的颠i忤H (a)pc配腑的州渡豳图31P20Z探头匹配前后的回波及频谱I堇I (b)匹配靛蚺撷谗瞰(c)Ft犯后的l?-l波;璺(d)UL^C后的顿讲涮 圈4IOPIOZ探头匹配前后的圄波及额谱图 从圈3葶¨图4中可以看出,这两种换能器实际匹配的效果是相当不错的,匹配后.J:作频率基本得到了保证。时域上的波形比匹配前有很大的改善。而在频谱图上的波形也是很好的,没有其他的谐频成分,并去除了频域“双峰”,其它性能指标也较好,基本能够满足匹配的要求。 参考文献 【1】 敏易全近代超声原理与应用南京大学出版社230~249【2】 程存弟超声技术西安:陕西师范大学出版社,1993,87~88【3】林玉书匹配F乜路对压屯脚瓷超声换能器振动性能的影响捧电与声光 1995.8:27~30 [31美国无损检测手册超声卷(上)世界图书出版公司112~116 —244——

动态电路的分析

动态电路的分析 摘要:动态电路的分析主要讨论含有电容和电感等储能元件的动态电路。描述着类电路的方程式是微分方程。对于只含有一个储能元件或简化后只含有一个独立储能元件的电路,它的微分方程是一阶,故称为一阶电路。其中着重讨论一阶的零输入响应、零状态响应和全响应以及一阶的阶跃响应的概念及求解概念及求解。 关键字:稳态、暂态、换路、三要素。 引言: 由于储能元件的伏安关系不是代数,而是微分关系,所以储能元件又称为动态元件,含有动态元件的电路又称为动态电路。在直流激励的稳态电路中,电容相当于开路,电感相当于短路。 正文: 电容元件和电感元件 电容:如果一个二端元件在任一时刻,其电荷与电压之间的关系由q-u平面上一条曲线所确定,则称此二端元件为电容元件。特性:动态元件,储能元件。 电感:如果一个二端原件在任意时刻,其磁链与电流之间的关系由平面上一条曲线所确定,则称此二端元件为电感元件。特性:动态元件,储能元件。 动态电路的基本概念 含有动态元件电容和电感的电路称动态电路。 特点:当动态电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。 稳态与暂态的概念 稳态:所有的响应均是恒稳不变,或是按元素周期表变动电路的这种状态称为稳定状态,简称稳态。 稳态值的计算: 稳态值是指过渡过程结束(即t=∞),电路达到新稳态时各电流、电压达到的终值。 当t=∞得到的电容电压和电感电流的终值记为Uc(∞)和iL(∞),在直流激励下,电感电压uL和电容电流iC最终都变为0,在t= ∞时,电感相当于短路,电容相当于开路,此时电路中其他各电流、电压按直流电路计算。 暂态:电路原来的稳定状态在达到另一种稳定状态之前,一个需要经历的过渡的过程,称为暂态 结论:含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称一阶电路。含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称二阶电路。电路中有多个动态元件,描述电路的方程是高阶微分方程。一阶电路的零输入响应 零输入响应:仅有初始状态所引起的响应。 特点:换路后外加激励为零,仅由动态元件初始储能产生的电压和电流。其中分为RC电路的零输入响应,rl电路的零输入响应 小结:一阶电路的零输入响应是由储能元件的初值引起的响应, 都是由初始值衰减为零的指数衰减函数。 uC (0+) = uC (0-) RC电路 iL(0+)= iL(0-) RL电路

第3章 电路的暂态分析

第3章电路的暂态分析 本章教学要求: 1.理解电路的暂态和稳态、零输入响应、零状态响应、全响应的概念,以及时间常数的物理意义。 2.掌握换路定则及初始值的求法。 3.掌握一阶线性电路分析的三要素法。 4.了解微分电路和积分电路。 重点: 1.换路定则; 2.一阶线性电路暂态分析的三要素法。 难点: 1.用换路定则求初始值; 2.用一阶线性电路暂态分析的三要素法求解暂态电路; 3.微分电路与积分电路的分析。 稳定状态:在指定条件下电路中电压、电流已达到稳定值。 暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。 换路: 电路状态的改变。如:电路接通、切断、短路、电压改变或参数改变。 电路暂态分析的内容: (1) 暂态过程中电压、电流随时间变化的规律。 (2) 影响暂态过程快慢的电路的时间常数。 研究暂态过程的实际意义: 1. 利用电路暂态过程产生特定波形的电信号,如锯齿波、三角波、尖脉冲等,应用于电子电路。 2. 控制、预防可能产生的危害,暂态过程开始的瞬间可能产生过电压、过电流使电气设备或元件损坏。 3.1 电阻元件、电感元件与电容元件 3.1.1 电阻元件

描述消耗电能的性质。 根据欧姆定律:u = R i ,即电阻元件上的电压与通过的电流成线性关系。 电阻的能量: 表明电能全部消耗在电阻上,转换为热能散发。电阻元件为耗能元件。 3.1.2 电感元件 描述线圈通有电流时产生磁场、储存磁场能量的性质。 电流通过一匝线圈产生 (磁通),电流通过N 匝线圈产生 (磁链), 电感: ,L 为常数的是线性电感。 自感电动势: 其中:自感电动势的参考方向与电流参考方向相同,或与磁通的参考方向符合右手螺旋定则。 根据基尔霍夫定律可得: 将上式两边同乘上 i ,并积分,则得:磁场能W = 即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。电感元件不消耗能量,是储能元件。 3.1.3 电容元件 描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。 电容: 当电压u 变化时,在电路中产生电流: 将上式两边同乘上 u ,并积分,则得:电场能W = 即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。电容元件不消耗能量,也是储能元件。 3.2 储能元件和换路定则 1. 电路中产生暂态过程的原因 产生暂态过程的必要条件: d d 0 ≥== ?? t Ri t ui W t 2t ΦN Φψ=i N Φi ψL ==t i L t ψe d d d )d(d )d(d d -=-=-=- =t Li t N ΦL t i L e u d d =-=L 200 2 1d d Li i Li t ui t i = = ? ? u q C = t u C i d d d d == t q 2 00 2 1 d d Cu u Cu t ui t u ==??

压电换能器的主要技术参数(V2.2)

上海谐鸣超声设备有限公司 谐鸣超声技术支持:电话013681952953(王工)、QQ 2564620565 1 压电换能器的主要技术参数 压电(超声)换能器的技术参数较多,大致有以下一些: 1、灵敏度:指换能器转化能量的效率,高灵敏度表示高的转化效率; 2、谐振(工作)频率:指换能器谐振时的频率,谐振时,换能器灵敏度趋 于最高,该参数和系统紧密相关; 3、指向性:指换能器辐射面各方向角度发射或接收信号的强度变化,一般 测试换能器主声轴的一个平行截面,测距、定位、成像时需考虑该指标; 4、盲区(余振):指换能器余振或拖尾的严重程度,即驱动信号结束后,换 能器自身惯性振动持续的时间,测距成像类换能器需检测该指标; 5、耐温性:指换能器能正常工作的高低温极限; 6、耐压力性:指换能器能正常工作的高低压力极限; 7、电参数:指换能器本身的阻抗(导纳)、容值、感值等,和系统匹配相关; 8、振幅:指换能器在固定驱动电压下的振动幅度,和灵敏度基本类似,利 用换能器的动能时需参考该指标; 9、电压极限:指换能器可加的最大电压值,大功率超声系统特别需考虑该 指标,电压长期超过该值易引起压电陶瓷的退极化; 10、密封性:指换能器在液体中的密封性,水下换能器需考虑该指标; 11、耐腐蚀性:指换能器对腐蚀性环境抵抗能力,腐蚀性环境下应用需考虑 该指标; 12、带宽:指换能器灵敏度的平坦程度,或对不同频率信号的兼容程度; 13、其他:如重量、体积、外形尺寸、外壳材料、信号引出方式、换能器安 装接口类型等。 以上罗列的是换能器主要指标参数,不同的仪器设备、不同的应用环境和场合要求不太一样,有一定的选择性,并不是指标越多、要求越高越好,如有的场合要求指向性越尖越好,而有的场合又希望指向性的开角大些好。此外,每增加一项考核指标,都会同时增加换能器制造者、使用者的工作量和成本,部分指标会导致换能器制造工作量和成本成倍的增加,这没有必要,只有选择和系统或使用场合相应的指标参数才是合理有效的。

相关主题
文本预览
相关文档 最新文档