当前位置:文档之家› 胚胎干细胞体外定向诱导分化的研究进展

胚胎干细胞体外定向诱导分化的研究进展

胚胎干细胞体外定向诱导分化的研究进展
胚胎干细胞体外定向诱导分化的研究进展

胚胎干细胞体外定向诱导分化的研究进展

(姓名:李翔单位:宁夏师范学院化学与化学工程学院11级科学教育班)

摘要:胚胎干细胞是从早期胚胎内细胞团分离培养出来的具有发育全能性或多能性的干细胞,具有多向分化潜能和自我更新的特性。胚胎干细胞可以定向诱导分化生产组织和细胞,可为细胞移植提供无免疫原性的材料,为难以治愈的疾病的细胞移植治疗提供可能。本文介绍了胚胎干细胞的诱导分化方法和应用。

关键词:胚胎干细胞;定向诱导分化;分化潜能;自我更新

胚胎干细胞(embryonic stem cell,ES 细胞)是从早期胚胎( 桑椹胚、囊胚) 或原始生殖细胞(primordial germ cell, PGCS)分离出来的能在体外永久培养的、具有多方向分化潜能和种系嵌合能力的细胞系。ES 细胞具有多向分化潜能, 可分化形成外胚层、中胚层和内胚层细胞的谱系干细胞, 再成长为不同的神经、造血、肌肉,骨骼等各种细胞基于其特性,目前普遍认为, ES细胞对体外研究动物和人胚胎的发生发育, 基因表达调控, 药物的筛选和致畸实验及作为组织细胞移植治疗, 克隆治疗和基因治疗的细胞源及产生克隆和转基因动物等领域将产生重要的影响。1998 年,T homson和Gearhart2 个研究组分别从人ICM和PGCS建立了人类ES细胞系, 在国际上引起了轰动。Science 杂志将人类ES 细胞研究成果评为1999 年世界十大科技进展之首, 美国《时代》周刊将其列为20世纪末世界十大科技成就之首, 并认为ES 细胞和人类基因组将同时成为新世纪最具发展和应用前景的领域, 由此掀起了ES细胞研究的高潮。

1体外诱导 ES 细胞的原理

在体胚胎分化过程中,组织发生和身体构造的形成具有时空顺序性和相互诱导性。在个体发育过程中,细胞分化是程序控制的有序有规律过程,程序的运行结果表现为不同发育阶段、不同组织部位的细胞表现出不同的形态、不同的生长方式和不同的生理功能。从分子水平上来看,这一结果取决于细胞在基因表达上的时空差异。这种基因表达差异除由细胞内在发育程序决定外,还受细胞外环境影响和调控,且有时这种外部控制条件或环境对形成特定细胞有着决定性作用。ES 细胞体外定向诱导分化的原理,就是选择适当的诱导剂和诱导模式,通过诱导物与细胞表面受体结合或使细胞发生轻度可逆性损伤等,使被诱导细胞按预定的细胞类型方向分化[2],然后将这些定向分化的细胞进行分离和培养传代,从而得到人们所需要的细胞类型。

2体外诱导 ES 细胞的方法

体外诱导ES 细胞的常用方法是将ES 细胞进行悬浮培养或悬滴培养,使其形成类胚体(Embry-oid Bodies,EBs),该结构的分化过程与体内胚胎的早期发育过程相似。首先将EBs 消化成单细胞,然后再贴壁培养,并于不同的培养阶段添加不同种类和不同浓度的化学物质、条件培养基或细胞因子等诱导条件,直接促进ES 细胞定向分化为某种特殊类型的细胞;或通过改变培养条件对某些类型的细胞分化起抑制作用,从而高效诱导目的细胞的分化。改变细胞的培养条件使ES细胞进行定向分化的基本策略有三种:一是向培养基中添加生长因子和化学诱导剂等;二是将ES 细胞与其它细胞一起进行培养;三是将细胞接种在适当的底物上,以促使细胞中某些特定基因的表达上调或下降,从而引发细胞沿着某一特定谱系进行分化。体外诱导胚胎干细胞的物质有化学试剂诱导法、细胞因

子诱导法和外源基因诱导法。

2.1化学试剂诱导法

一些化学试剂加入到ES 细胞中与其共培养后,会使得ES 细胞发生定向分化,因此有时用相关化学试剂对ES细胞进行定向诱导分化。例如视黄酸(又称维甲酸,RA)就是一种强烈的分化诱导剂。20纪初,人们仅仅认识到维生素A(V A)是一种重要的营养物质,特别在视循环中发挥着重要生理作用,妊娠期V A缺乏有可能导致胎儿畸形。后来发现在胚胎发育过程中,RA沿胚轴形成浓度梯度,影响胚胎背腹部和四肢的形成,从而推测其对胚胎发育起重要的激素样调节作用。维甲酸是体外诱导ES细胞定向分化的常用因子。一般认为维甲酸进入细胞后,首先与细胞质中CRABP(cellular RA binding protein)形成复合物,然后复合物进入核内,维甲酸与染色质上的受体结合,从而调控一系列基因的表达,使细胞的表型发生转变。而Forester 的实验结果表明,维甲酸不但能拮抗DIA 对ES 细胞的分化抑制作用(这提示有共同作用环节存在的可能),而且也可影响分化程序和方向的选择。除了视黄酸之外,还有维生素C(VC)、维生素K3(VK3)、过氧化氢、β- 磷酸甘油、地塞米松和2,5- 羟基维生素D3,二甲基亚砜(DMSO)等化学试剂也能诱导胚胎干细胞定向分化成为一些特种类型细胞。

2.2细胞因子诱导法

细胞因子能显著改变ES细胞的发育途径。ES-D3 细胞与骨髓基质细胞RPO.10 共培养时,单独添加重组白细胞介素-6(rIL-6)可诱导ES细胞分化为F4/80+星形巨噬细胞和成纤维细胞,不形成Thy-1+、B-220+、Joro75+淋巴祖细胞。SCF、TPO和胚胎条件培养液协同作用可诱导ESs细胞分化为造血干/ 祖细胞;神经生长因子(NGF)可促进EBs 中神经元样细胞的形成,成纤维细胞生长因子-2(FGF2)能使ES细胞分化的神经祖细胞进一步分化为功能性神经元;FGF2、EGF、血小板源生长因子(PDGF)与神经前体细胞条件培养基可协同诱导ES 细胞分化为寡树突胶质细胞;巨噬细胞集落刺激因子(M-CSF)可抑制造血细胞发育和诱导巨噬细胞分化;粒细胞-巨噬细胞集落刺激因子(GM-CSF)则使ES细胞分化为树状细胞(DC),且经IL-4、肿瘤坏死因子-α(TNF-α)和ant-CD40mAb(LPS)刺激后可转化为成熟的树状细胞。

2.3外源基因诱导 ES 细胞的定向分化法

导入外源性基因也可使ES 细胞发生定向分化。若把在特定发育阶段中起决定作用的基因导入ES 细胞基因组中,将会使细胞准确地分化为某一特定类型的细胞。但在应用这一方法时,首先必须确定决定细胞向不同方向分化的关键基因,其次还要保证在适当的时候将该基因导入ES 细胞基因组的正确位置上。目前已经有报道表明用这种方法可使ES 细胞定向分化为神经细胞、肌细胞、胰腺细胞等。

2.4转基因诱导法

转基因诱导法主要是利用基因转染技术将某些信号转导成分的基因转入胚胎干细胞中,使某个促分化基因在胚胎干细胞中过表达,从而有效地诱导胚胎干细胞发生特异性分化。沈干等将外源TGF - B基因转染小鼠胚胎干细胞,杂交实验证实转化生长因子B(TGF - B基因)整合到胚胎干细胞基因组,并表达外源

TGF- B的mRNA,然后以悬滴法培养胚胎干细胞,7d后发现胚胎干细胞被诱导为具有内皮细胞特征的细胞,作者同时发现,外源rhTGF- B在培养基中对胚胎干细胞分化有明显促进作用,这种方法诱导胚胎干细胞分化的效率高,得到的分化细胞的纯度也较高,具有应用前景。

3胚胎干细胞的定向诱导分化研究

对小鼠胚胎干细胞的研究证明,胚胎干细胞可在体外诱导分化为起源于外胚层的神经细胞、上皮细胞和表皮样干细胞,起源于中胚层的心肌细胞、造血细胞和内皮细胞,起源于内胚层的肝细胞和胰岛细胞等。目前胚胎干细胞的定向分化研究主要关注于培养方法的改进和分化诱导剂的针对性选择。

3.1由胚胎干细胞向神经细胞的诱导分化

人胚胎干细胞可以在体外诱导生成神经干细胞、成熟神经元和神经胶质细胞, 且易于在体外培养和扩增,能无限增殖。因此,人胚胎干细胞是将来神经系统细胞替代治疗的最佳“种子”细胞。目前, 各种诱导生成神经细胞的方法层出不穷, 但相关实验表明失去了分化潜能的终末细胞移植入受体后难以成功整合到受体脑组织,并会很快死亡。因而诱导分化得到的神经干细胞移植仍然是治疗的重要途径。冯树梅等采用无血清、低密度快速诱导胚胎干细胞向神经前体细胞分化的方法,在短期内得到了大量可用于移植的细胞。免疫细胞化学和RT- PCR分析表明,所得到的细胞为高纯度的神经前体细胞, 其分化率接近100%。但高纯度前体细胞仍有致瘤性,可能该细胞的发育学地位更加接近于胚胎干细胞, 对其发育学表型的进一步探讨,将为胚胎干细胞来源的神经前体细胞的研究奠定基础。最近,李晓丰等利用采用序贯诱导法,模仿体内胚胎细胞的生长、分化环境,按胚胎干细胞生长阶段逐步改变血清浓度和培养液成分,逐步添加生长因子、神经营养因子等,最终诱导胚胎干细胞高比率定向分化为神经元样细胞。

3.2向造血细胞的定向分化

造血细胞包括造血干细胞、造血祖细胞、谱系定型前体细胞以及各种成熟血细胞。自20世纪80年代初小鼠的胚胎干细胞建立细胞系以来,人们就开始了从胚胎干细胞向造血系统分化的研究。习佳飞等利用形成拟胚体的方法诱导人胚胎干细胞分化为造血干/祖细胞和更早期的血液血管干细胞。同时以脐带血来源的造血干细胞作为起始细胞高效特异地诱导其向红系祖细胞分化, 获得了在体外能够大规模扩增的红系祖细胞,并最终用24周胎龄的人胎肝基质细胞与红系祖细胞共培养实现了红系祖细胞的高效脱核生成成熟红细胞,为人胚胎干细胞体外诱导分化为成熟红细胞奠定了实验基础。人胚胎干细胞体外分化为造血细胞不仅具有应用前景,而且对于研究造血发育研究具有重要的意义。

3.3向心肌细胞定向分化

自从Doestschman等发现胚胎干细胞在一定条件下可以分化形成心肌细胞后,胚胎干细胞便成为研究心脏基因表达和功能的有用工具。Kehat等在体外将人的胚胎干细胞成功诱导分化成心肌细胞,这些细胞中有8.1%可自发收缩,收缩时间最长可持续5周。Chen 的研究结果显示, 给心肌梗死鼠注入胚胎干细胞不仅可使病鼠的存活率提高,而且注入的干细胞可以分化成心肌细胞,但是分化作用不具有选择性。

3.4向内皮细胞的定向分化

内皮细胞对组织修复、再生和组织工程移植物内皮化或再血管化有重要作用, 但是成熟内皮细胞体外增殖能力有限,很难满足再血管化的需要。张斌等应用简单贴壁培养法, 单纯采用血管内皮生长因子(VEGF)诱导,使胚胎干细胞贴壁分化、生长,通过传代、换液去除非贴壁细胞,得到较纯化的内皮样细胞。H irashmi a等的研究发现诱导胚胎干细胞生成的内皮细胞比例与VEGF 梯度浓度成正相关,表明VEGF对血管内皮发育呈剂量依赖性。

3.5向上皮细胞的定向分化

胚胎干细胞可被直接诱导分化为视网膜细胞和视网膜色素上皮, 诱导分化的视网膜细胞移植后能整合进视网膜,并表达光感受器细胞标记。2008年2月日本京都大学的Takahashi等在体外成功诱导人胚胎干细胞高效分化为多角形视网膜色素上皮,同时向培养液中添加成纤维细胞生长因子( bFGF)、牛磺酸和维生素A 酸,产生了大量的视锥细胞和视杆细胞。此研究为治疗视网膜变性疾病(如黄斑变性或色素性视网膜炎)提供了一种可能的途径。

3. 6向其他细胞的定向分化

胚胎干细胞在一定条件下可以诱导分化为生殖细胞。H?bner等用胚胎干细胞在体外分化出卵母细胞和类囊胚样结构。Feng等将胚胎干细胞体外诱导产生了精子。徐运等在体外对胚胎干细胞向毛细胞转化进行了逐步诱导分化研究,所得分化的细胞约52 %表达毛细胞特异性的分子。石伦刚等[ 10]成功诱导了人胚胎干细胞向类间充质干细胞的分化。

4胚胎干细胞诱导分化的应用

胚胎干细胞研究的科学价值在于其诱人的应用前景。如果最终能够成功诱导和调控胚胎干细胞的分化与增殖,将对胚胎干细胞的基础研究和临床应用带来积极的影响。

4.1揭示哺乳动物的发育机制及影响因素

生命最大的奥秘是生物体如何由一个细胞(受精卵)分化发育为多种复杂的组织、器官、系统乃至完整的个体。胚胎干细胞在不同发育阶段携带着丰富的发育信息,为研究胚胎干细胞的发育规律提供重要线索。胚胎干细胞体外诱导分化研究可揭示哺乳动物的发育分子机制及其影响因素,为疾病治疗提供一些有用的线索。

4.2疾病治疗

胚胎干细胞最诱人的前景和用途是生产组织和细胞,用于“细胞疗法”,为细胞移植提供无免疫原性的材料。目前,胚胎干细胞已可被定向诱导分化成神经细胞、造血细胞、心肌细胞、内皮细胞、视网膜细胞等,并已应用于临床,如诱导纯化的心肌细胞已用来治疗心衰,增强患者心脏功能,神经细胞已用于治疗脑神经变性疾病,造血细胞已用于治疗造血系统疾病等。

4.3药学研究

胚胎干细胞系发展为胚体后的生物系统,可模拟体内细胞与组织间复杂的相互作用,这在药物研究领域具有广泛的用途。胚胎干细胞有望在短期内就能体现的优势在于其在药物筛选的应用中。目前用于药物筛选的细胞都来源于动物或癌细胞这样非正常的人体细胞,而胚胎干细胞可以经体外定向诱导,为人类提供各种组织类型的人体细胞,这使得更多类型的细胞实验成为可能。虽不会完全取代在整个动物和人体的实验,但会使药品研制的过程更为有效。

5有待解决的问题

胚胎干细胞的诱导分化研究有着极其诱人的前景,但仍有许多需要解决的问题:1 胚胎干细胞的生长发育受到一个复杂、精确体系的调控,它们相互协作共同促进胚胎干细胞的生长。在胚胎干细胞的定向诱导分化过程中,许多调控机制尚未完全明了,还需要进一步深入探索。2 诱导胚胎干细胞产生的分化细胞增殖缓慢,难以获得大量分化细胞。到目前为止,所有体外诱导胚胎干细胞定向分化的物质只能提高某一分化组织在分化群落中的比例,不能诱导形成单一组织。因此将胚胎干细胞最终分化成一个复杂的组织器官尚存在技术上的困难。3。单个生物体的胚胎干细胞在适宜的条件下就可为治疗提供无限的细胞来源, 但是, 在细胞分裂前, DNA 复制过程中基因可发生突变。如何控制胚胎干细胞分裂增殖中的突变, 产生正常的分化细胞仍需大量的实验研究。4。在动物实验中, 小鼠胚胎干细胞注入成年鼠皮下可形成畸胎瘤, 目前对形成畸胎瘤所需胚胎干细胞的最少数量和最短时间还无定论。人胚胎干细胞也具有相似特性, 故而在利用人胚胎干细胞进行克隆治疗前也应考虑如何避免形成畸胎瘤。5。目前仍存在胚胎来源困难、体外培养条件复杂、免疫排斥反应以及伦理学问题等。

6参考文献:

1张斌, 谷涌泉, 佟铸, 等。2009,鼠胚胎干细胞诱导分化内皮样细胞。中国修复重建外科杂志, 23, 82 2 EvansM J, K aufmanMH。1981。Establishment in culture of pluripo-tential cells from mouse embryos。N ature, 292: 154~ 156

3Thomson JA ,Itskovitz EJ, Shapiro SS,et al。1998。Embronic stemcell lines derived from human blastocysts。Science, 282: 1145~ 1147

4石伦刚, 唐郑雅, 陆峻泓, 等。2009。人胚胎干细胞向类间充质干细胞的诱导分化及鉴定。上海交通大学学报(医学版),3( 29): 307~ 311

5 Kawano H,Cody RJ, G raf K,et a。l 2000。A ng iotensinò en-hances integrin and alpha- actinin expression in adult rat cardiacfibroblasts。Hypertension, 35 ( 1 P t 2) : 273~ 279

6 ]H?bnerK, Fuhreann G, Christensson LK,et a。l 2003。Derivationof oocytes from mouse embryonic stem cells。Science,300( 23):1251~ 1256

7沈干, 丛笑倩, 杜忠伟, 等。2002。小鼠胚胎干细胞分化为血管内皮细胞的永生化研究。实验生物学报, 35( 3): 218~ 228

8李晓丰, 顾文佳, 刘朝阳, 等。2009。序贯法诱导小鼠胚胎干细胞向神经元样细胞的分化。中国组织工程研究与临床康复, 6226~ 6242

9 Feng LX , Chen Y, D ettin L,et a。l 2002。G eneration and in vitrodifferentiation of

a spermatogonia l cell line。Science,297( 5580):392~ 395

10胡安斌, 蔡继业, 郑启昌, 等. 胚胎干细胞向肝细胞定向诱导分化的体外实验研究[J].中华医学杂志, 2003,83(18) : 1592- 1596.

胚胎干细胞的体外诱导分化模型

胚胎干细胞的体外诱导分化模型马宗源 李祺福(厦门大学生命科学学院福建厦门361005) 胚胎干细胞是具有全能性及无限制的自我更新与分化能力的一类特殊的细胞群体,它能通过祖细胞为中介,分化为各种类型的体细胞,可重演体内干细胞的分化过程。自80年代从小鼠囊胚的内细胞团分离到胚胎干细胞并建系到现在已建立了神经细胞、肌肉细胞、上皮细胞、造血细胞等体外分化体系。将胚胎干细胞体外分化成为可利用的分化模型,无论从组织结构、细胞及分子水平都体现了体内分化过程的体外重演,再加上胚胎干细胞系具有体系简单,影响因子少,可控制,便于研究等特点,因此可用于研究早期胚胎发育和细胞分化调控;可成为器官移植和修复器官的细胞来源;还可用于新型药物筛选。 1 胚胎干细胞的生物学特性 胚胎干细胞具有与早期胚胎相似的结构特征,具有较高的核质比和整倍体核型。体外培养的细胞紧密堆积,呈克隆状生长,具有发育分化的多潜能性和无限制的自我更新能力,碱性磷酸酶染色呈阳性,具有高的端粒酶活性,早期胚胎细胞均表达胚胎阶段特异性抗原SSEA-1、SSEA-3、SSEA-4、T RA-1-81、T R A-1-60等;表达种系转录因子OCT-4,并且可将O CT-4基因作为细胞多能性的一个标志;白介素6型细胞因子家族参与维持调节胚胎干细胞未分化状态。 胚胎干细胞建系的过程中要解决的问题在于体外不断增殖的过程中保持未分化的状态,但是细胞如何维持其未分化状态的机理并不清楚。研究发现主要是通过膜上的特异受体蛋白gp130来发挥作用,细胞因子受体蛋白g p130可激活JA N U S、酪氨酸激酶,JA K-ST A T、M EK/M A P K等信号途径,而JAK/ST A T3和M EK/ ERK信号途径则处于相对平衡的状态。另外,一些未知的膜结合分子也参与胚胎干细胞的增殖与分化。分离纯化及鉴定调节细胞的自我更新及分化的未知分子已成为研究的热点。 2 胚胎干细胞为基础的分化模型 胚胎干细胞要维持其未分化的状态,需要在胚胎饲养层中加入分化抑制因子。一旦改变了维持胚胎干细胞未分化状态的条件,胚胎干细胞首先形成胚胎小体,胚胎小体有外中内三胚层,继续分化可形成多种类型的细胞。在体外分化培养时,可自发形成有节律性跳动的心肌细胞,同时还形成骨骼肌、神经细胞、上皮细胞等。由于体外胚胎细胞可重演体内胚胎细胞的发育过程,并且基因的表达时相与体内的胚胎发育过程是相似的,在这一过程中加入外源的诱导分化因子并与相关的调控基因结合,可使胚胎干细胞分化为各种类型的细胞。现在已初步建立了神经细胞、肌肉细胞、上皮细胞和造血细胞等体外分化模型。 2.1 神经细胞 体外培养胚胎干细胞可模拟从未定型细胞向功能性神经元转化的过程,并且其基因的表达时相与体内的胚胎发育过程相似。在分化的早期表达N FL、N F M基因,后期则表达N eur ocan基因。维甲酸及神经生长因子可诱导胚胎干细胞定向分化为神经细胞,是常用的诱导分化物,它能上调神经元特异基因的表达,同时下调中胚层基因的表达。将神经元特异的SOX2基因转进胚胎干细胞,再经维甲酸诱导,可表达90%以上的具有神经元标志的神经细胞。可能是外源基因和维甲酸同时拮抗分化抑制因子的作用,阻碍细胞向其他的方向分化,迫使其向神经元的方向分化。维甲酸能诱导胚胎干细胞分化为C-氨基丁酸能和多巴胺能神经元,而维甲酸分别结合无血清培养基和含胎牛血清的培养基培养胚胎干细胞后发现,采用无血清培养时,几乎检测不到分化的多巴胺能神经元的存在;但在有血清培养时,却能检测到大量的多巴胺神经元。这暗示血清中的某些未知的因子和维甲酸共同起到定向诱导分化 化为特定组织细胞,将这些细胞回输体内,从而达到长期治疗的目的。干细胞的医学应用还包括体外克隆人体器官,然而这比体内移植干细胞要复杂的多。相信随着研究的不断深入,来自人体干细胞的器官应用于临床治疗已为期不远。干细胞研究与应用不仅在疾病治疗方面有着极其诱人的前景,而且将对克隆动物,转基因动物生产,发育生物学,新药物的开发与药效、毒性评估等领域产生极其重要的影响。 参考文献  1 Th omson J A,Itsk ovitz-Eldor J os eph,Shapiro S S,et al. Em bryonic s tem cell lin es d erived from human b las tocysts.S cience,1998,282:1145—1147.  2 Sh amb lott M J,Axelman J,W ang S,et al.Derivation of Plurip otent stem cells from cultured human primordial germ cell.Proc Natl Acad S ci U SA,1998,95:13726—13731.  3 Jack son K A,M i T,Goodell M A.Hematopoietic potential of s tem cells isolated from murie s keletal mus cle.Proc Natl Acad Sci USA,1999,96:14482— 14486.  4 裴雪涛.干细胞研究现状与展望.高技术通讯,2001, (6):93—95. (BH)

关于神经干细胞

.关于神经干细胞 定义是一类具有多向分化潜能, 能够自我复制, 在特定诱因下, 能够向神经元或神经胶质细胞分化的未分化细胞的总称。它是神经系统形成和发育的源泉。其主要功能是参与神经系统损伤修复或细胞凋亡的更新。 特点⑴自我更新:神经干细胞具有对称分裂及不对称分裂两种方式,从而保持干细胞库稳定。对称分裂由一个神经干细胞产生两个神经干细胞;在特定诱因下进行非对称分裂,会产生神经干细胞和神经胶质细胞(astrocyte,oligodendrocyte)。⑵多向分化潜能:神经干细胞可以向神经元、星形胶质细胞和少突胶质细胞分化,其分化与局部微环境(niche)密切相关。⑶低免疫源性:神经干细胞是未分化的原始细胞,不表达成熟的细胞抗原,可以不被免疫系统识别。⑷良好的组织融合性:可以与宿主(即接受神经干细胞移植的患者)的神经组织良好融合,并在宿主体内长期存活。 发现时间1992年,Reynodls等从成年小鼠脑纹状体中分离出能在体外不断分裂增殖,且具有多种分化潜能的细胞群,并正式提出了神经干细胞的概念,从而打破了认为神经细胞不能再生的传统理论。 产生区域神经干细胞主要产生于脑室周围的室管膜下区(SVZ,subvetricular zone)和海马齿状回的颗粒下区(SGZ,subgranular zone)。成人大脑中每天有3万个神经干细胞产生,按照从脑室周围的室管膜下区(SVZ)通过侧迁移流RMS(rostral migratory)最后到达嗅球 OB(olfactory bulb) 的方向移动。增殖时间为12~28天/代。 2.治疗机理与应用领域

神经干细胞的治疗机理 ⑴患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。 ⑵由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位。 ⑶神经干细胞可以分泌多种神经营养因子,刺激原有神经元和神经胶质细胞,促进损伤细胞的修复。 ⑷神经干细胞可以增强神经突触之间的联系,建立新的神经环路,降低脑部氧化性压力。 神经干细胞的应用领域 神经干细胞主要应用于治疗中枢神经系统疾病,包括脑部和脊髓损伤的治疗。面前可以治疗的疾病包括脑瘫,脑膜炎后遗症, 脑发育不良脑, 中风(脑出血,脑梗塞)及后遗症, 脑外伤及脊髓损伤, 运动神经元病, 肌萎缩性侧索硬化症(ALS), 帕金森病, 脑萎缩, 共济失调, 癫痫, 多系统萎缩症(MSA), 老年性痴呆及血管性痴呆, 各种舞蹈症, 急性感染性多发性神经根炎(格林巴利氏病), 神经性耳聋, 面瘫及各类周围神经病。 目前有许多研究结果证明神经干细胞的分化潜能不仅仅局限于所属组织,在特定环境(niche)中,在一些细胞因子和蛋白的作用下,可以跨过神经系统而分化成其他类型的组织细胞,即具有横向分化潜能。如神经干细胞可被诱导分化为肌细胞和造血前体细胞。这无疑在理论上扩大了神经干细胞在今后的应用范围,使得更多用现今医学手段无法治愈的患者看到希望。 3.本公司的神经干细胞

胚胎干细胞的归类

胚胎干细胞的归类 干细胞按分化潜能可分为全能干细胞、多能干细胞和专能干细胞三类,对于胚胎干细胞和造血干细胞各属于哪一类,不同的教材和资料说法不同。新课标人教版必修1教师教学用书P31“胚胎干细胞分裂速度快,并且有产生多种分化细胞类型的潜力,因此,它们也被称为多能干细胞。”选修3教师教学用书P73“全能干细胞是可以发育成一个完整个体的未分化细胞,如受精卵。多能干细胞是指能分化成除胎盘之外所有其它组织细胞的未分化细胞,如ES细胞(胚胎干细胞),他的分化能力仅次于受精卵。专能干细胞是指与特定器官和特定功能相关的一类干细胞,如神经干细胞、造血干细胞等。”从中不难看出,胚胎干细胞和造血干细胞分别属于多能干细胞和专能干细胞。 而苏教版教材上是这样解释的:“专能干细胞只能分化成一种类型或功能密切相关的两种类型的细胞,如上皮组织基底层的干细胞、肌肉中的成肌干细胞;多能干细胞具有分化成多种细胞或组织的潜能,但失去了发育成完整个体的能力,如造血干细胞等;全能干细胞可以分化为全身200多种细胞,如神经细胞,并进一步形成机体的所有组织、器官,如胚胎干细胞。” 再看中图版教材上的描述:“全能干细胞具有形成机体的任何组织或器官,直至形成完整个体的潜能。受精卵便是一个最初的全能干细胞,它可以分化出许多全能干细胞,如胚胎干细胞。提取这些细胞中的任意一个置于子宫内,就可以发育出一个完整的个体。多能干细胞具有分化出多种组织的潜能,但不能发育成完整的个体,如骨髓造血干细胞可以分化出至少12种血细胞。专能干细胞只能分化成某一类型的,如神经干细胞只可分化出各类神经细胞。” 从苏教版和中图版教材的内容中可以看出,胚胎干细胞是全能干细胞,造血干细胞是多能干细胞,这和人教版教师教学用书上的叙述相矛盾,和人

胚胎干细胞体外诱导分化综述

胚胎干细胞体外诱导分化综述 摘要:由于胚胎干细胞具有自我更新、高度增值和多向分化的潜能,因此,自20世纪90年代开始,对胚胎干细胞的研究成为生物学领域和医药工程领域研究的一个焦点。本文从胚胎干细胞的分离、体外诱导胚胎干细胞的原理和定向分化的机制、胚胎干细胞体外诱导的方法、定向分化的细胞、应用前景和研究存在的问题对胚胎干细胞进行综述。 关键词:胚胎干细胞;体外培养;诱导分化;应用 干细胞是一种具有多分化潜能和自我更新功能的早期未分化细胞。在特定条件下,它可以 分化成不同的功能细胞,形成多种组织和器官,它包括胚胎干细胞和成体干细胞。前者指早期胚胎的多能干细胞,后者是存在于胎儿和成体不同的组织内的多潜能干细胞这些细胞具有自我复制能力,并产生不同种类的具有特定表型和功能的成熟细胞的能力,能够维持机体功能的稳定,发挥生理性的细胞更新和修复组织损伤作用[4,9,10]。 胚胎干细胞(embryonic stem cell,ESC)是从着床前胚胎内内细胞团(inner cell mass,ICM)或原始生殖细胞经体外分化抑制培养分离的一种全能性细胞[1]。它能在体外长期不断自我更新,并保持多向分化潜能,可以分化为内、中、外三个胚层的几乎所有类型细胞。自1981年Evans和Kauffman[2,8]用不同的方法首次成功分离得到小鼠胚胎干细胞以来,小鼠胚胎干细胞成为近20年来人们用来研究发育分化、基因表达调控、基因治疗等最理想的模型,并且有大量研究表明小鼠胚胎干细胞可以在体外被诱导分化为绝大多数类型的成体细胞.1998年Thomson等首次成功分离并建立人胚胎干细胞系。自此,人胚胎干细胞不但提供了一个研究人类自身发育分化的良好机会,而且如果人胚胎干细胞能像小鼠胚胎干细胞一样可以在体外诱导形成各种成体细胞,那么利用这些诱导分化形成的成熟细胞将有可能进行细胞和组织替代治疗, 包括糖尿病、帕金森病、早老性痴呆、心血管疾病和肿瘤等多种目前临床上难以治愈的疾病。 1 胚胎干细胞的分离 自Thomson成功分离并建立人胚胎干细胞系后,多年以来,人们研究出很多胚胎干细胞的 分离方法,在这里主要介绍三种: 1.1 分离自胚胎内细胞团 内细胞团又称胚细胞(embryoblast),是一团于哺乳动物初期胚胎中的一个细胞团块。从早期胚胎内细胞团(inner cell mass,ICM)分离是获得胚胎干细胞的主要途径。由于不同动物的胚胎发育存在差异,因此应注意取材时间。可通过免疫外科手术法、机械剥离法、组织培 养法等方法除去胚胎滋养层细胞获得囊胚内细胞团(ICM)细胞进行体外分化抑制培养。 1.2分离自原始生殖细胞

小鼠胚胎干细胞培养实验步骤

细胞的原代培养 点击次数:540 作者:佚名发表于:2009-03-06 16:26转载请注明来自丁香园 一、原代细胞培养原理 原代细胞培养是将机体内的某组织取出,分散成单细胞,在人工条件下培养使其生存并不断生长、繁殖的方法。借助这种方法可以观察细胞的分裂繁殖、细胞的接触抑制以及细胞的衰老、死亡等生命现象。 ? 幼稚状态的组织和细胞,如:动物的胚胎、幼仔的脏器等更容易进行原代培养 ? 掌握无菌操作技术 ? 了解小鼠解剖操作技术 ? 了解原代细胞培养的一般方法与步骤 ?了解培养细胞的消化分散 ? 了解倒置显微镜的使用 二、实验材料 ? 实验动物:孕鼠或新生小鼠 ? 液体:细胞生长液(内含20%小牛血清) 0.25%胰蛋白酶 平衡盐溶液 70%乙醇 ?器材:灭菌镊子、剪刀若干把 灭菌培养皿、细胞培养瓶、小瓶、烧杯若干个 吸管若干支 酒精灯 原代细胞培养方法 三、胰酶消化法 (1)胰酶消化法操作步骤——取材 a. 用颈椎脱位法使孕鼠迅速死亡。

b. 把整个孕鼠浸入盛有75%乙醇的烧杯中数秒钟消毒,取出后放在大平皿中携入超净台。 c. 用无菌的镊子和剪子在前腿下作一腹部水平切口,用无菌镊子将皮肤扯向后腿。 d. 用另一无菌的剪刀和镊子切开腹部,取出含有胚胎的子宫,置于无菌的培养皿上。 e. 剔除胚胎周围的包膜(若胚胎较大,应剪去头、爪),将胚胎放于无菌的含有平衡盐溶液的培养皿中。 f. 漂洗胚胎,去掉平衡盐溶液。继续用平衡盐溶液漂洗胚胎直至清洗液清亮为止。 (2)胰酶消化法操作步骤——切割 a. 将部分胚胎转移至一个无菌小瓶中,用平衡盐溶液漂洗。 b. 然后用眼科手术剪刀小心地绞碎胚胎,直到成1mm3左右的小块,再用平衡盐溶液清洗,洗到组织块发白为止。 c. 静置,使组织块自然沉淀到管底,弃去上清。 (3)胰酶消化法操作步骤——消化、接种培养 a. 视组织块量加入5-6倍的0.25%胰酶液,37℃中消化20-40分钟,每隔5分钟振荡一次,或用吸管吹打一次,使细胞分离。 b. 加入3-5ml细胞生长液以终止胰酶消化作用(或加入胰酶抑制剂)。 c. 静置5-10分钟,使未分散的组织块下沉,取悬液加入到离心管中。 d. 1000rpm,离心10分钟,弃上清液。 e. 加入平衡盐溶液5ml,冲散细胞,再离心一次,弃上清液。 f. 加入细胞生长液l-2ml(视细胞量),血球计数板计数。 e. 将细胞调整到5×105/ml左右,转移至25ml细胞培养瓶中,37℃下培养。 (4)胰酶消化法操作步骤——消化、接种培养

胚胎干细胞体外定向诱导分化的研究进展

胚胎干细胞体外定向诱导分化的研究进展 (姓名:李翔单位:宁夏师范学院化学与化学工程学院11级科学教育班) 摘要:胚胎干细胞是从早期胚胎内细胞团分离培养出来的具有发育全能性或多能性的干细胞,具有多向分化潜能和自我更新的特性。胚胎干细胞可以定向诱导分化生产组织和细胞,可为细胞移植提供无免疫原性的材料,为难以治愈的疾病的细胞移植治疗提供可能。本文介绍了胚胎干细胞的诱导分化方法和应用。 关键词:胚胎干细胞;定向诱导分化;分化潜能;自我更新 胚胎干细胞(embryonic stem cell,ES 细胞)是从早期胚胎( 桑椹胚、囊胚) 或原始生殖细胞(primordial germ cell, PGCS)分离出来的能在体外永久培养的、具有多方向分化潜能和种系嵌合能力的细胞系。ES 细胞具有多向分化潜能, 可分化形成外胚层、中胚层和内胚层细胞的谱系干细胞, 再成长为不同的神经、造血、肌肉,骨骼等各种细胞基于其特性,目前普遍认为, ES细胞对体外研究动物和人胚胎的发生发育, 基因表达调控, 药物的筛选和致畸实验及作为组织细胞移植治疗, 克隆治疗和基因治疗的细胞源及产生克隆和转基因动物等领域将产生重要的影响。1998 年,T homson和Gearhart2 个研究组分别从人ICM和PGCS建立了人类ES细胞系, 在国际上引起了轰动。Science 杂志将人类ES 细胞研究成果评为1999 年世界十大科技进展之首, 美国《时代》周刊将其列为20世纪末世界十大科技成就之首, 并认为ES 细胞和人类基因组将同时成为新世纪最具发展和应用前景的领域, 由此掀起了ES细胞研究的高潮。 1体外诱导 ES 细胞的原理 在体胚胎分化过程中,组织发生和身体构造的形成具有时空顺序性和相互诱导性。在个体发育过程中,细胞分化是程序控制的有序有规律过程,程序的运行结果表现为不同发育阶段、不同组织部位的细胞表现出不同的形态、不同的生长方式和不同的生理功能。从分子水平上来看,这一结果取决于细胞在基因表达上的时空差异。这种基因表达差异除由细胞内在发育程序决定外,还受细胞外环境影响和调控,且有时这种外部控制条件或环境对形成特定细胞有着决定性作用。ES 细胞体外定向诱导分化的原理,就是选择适当的诱导剂和诱导模式,通过诱导物与细胞表面受体结合或使细胞发生轻度可逆性损伤等,使被诱导细胞按预定的细胞类型方向分化[2],然后将这些定向分化的细胞进行分离和培养传代,从而得到人们所需要的细胞类型。 2体外诱导 ES 细胞的方法 体外诱导ES 细胞的常用方法是将ES 细胞进行悬浮培养或悬滴培养,使其形成类胚体(Embry-oid Bodies,EBs),该结构的分化过程与体内胚胎的早期发育过程相似。首先将EBs 消化成单细胞,然后再贴壁培养,并于不同的培养阶段添加不同种类和不同浓度的化学物质、条件培养基或细胞因子等诱导条件,直接促进ES 细胞定向分化为某种特殊类型的细胞;或通过改变培养条件对某些类型的细胞分化起抑制作用,从而高效诱导目的细胞的分化。改变细胞的培养条件使ES细胞进行定向分化的基本策略有三种:一是向培养基中添加生长因子和化学诱导剂等;二是将ES 细胞与其它细胞一起进行培养;三是将细胞接种在适当的底物上,以促使细胞中某些特定基因的表达上调或下降,从而引发细胞沿着某一特定谱系进行分化。体外诱导胚胎干细胞的物质有化学试剂诱导法、细胞因

胚胎干细胞的定向诱导分化及应用前景

龙源期刊网 https://www.doczj.com/doc/4317295703.html, 胚胎干细胞的定向诱导分化及应用前景 作者:王士珍李雪甫陈培 来源:《科技视界》2012年第23期 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称 为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白 (cellular RA binding protein,CRABP)形成复合物,然

胚胎干细胞体外培养.

胚胎干细胞体外培养 (一)胚胎干细胞的来源 目前胚胎干细胞的主要来源有:①囊胚的ICM及受精卵发育至桑葚胚之前的早期胚胎细胞;②从胚胎生殖嵴及肠系膜中分离原始生殖细胞PGCs后培养建系的胚胎生殖细胞(embryonic germ cells,EG细胞),也具有ESCs的特性,可以分化为各种类型的成熟细胞;③体细胞核转移(somatic cell nuclear transplantation,SCNT)至去核卵母细胞后培育出来的全能细胞。其中囊胚的ICM最为常用。 (二)胚胎干细胞的分离 1.分离获取ESCs的时间:以既保证ESCs的全能性又要有足够的细胞数量为原则来确定ESCs分离获取的最佳时间。以ICM为ESCs来源时:小鼠取3~5天囊胚;猪取9~10天囊胚;羊取7~8天囊胚;牛取6~7天桑葚胚或早期囊胚;人取7~10天囊胚。以PGCs取ES细胞时:小鼠取1 2.5天胎儿生殖嵴;大鼠可取10.5天尿囊、中胚层组织块、12.5天背肠系膜或1 3.5~1 4.5天生殖嵴;牛取29~35天胎儿生殖嵴;人取35~63天的生殖嵴。 2.分离获取ESCs的方法:从PGCs分离ESCs的方法常为机械剪切与消化相结合法,即把采取的胚胎组织充分剪碎,采用EDTA、EDTA/胰酶消化。 从囊胚分离ICM的方法主要有三种: (1)免疫外科学方法:体外培养的小鼠胚泡去除透明带后,经兔抗JCR小鼠脾脏细胞抗血清(抗H-26)作用30分钟,移至1∶6稀释的新鲜豚鼠血清中作用30分钟,Hank’s液冲洗,此时胚泡的滋养外胚层呈空泡状,用眼科手术刀挑去死了的滋养层细胞,留存ICM 细胞用于培养。这种方法利用囊胚腔对抗体的不通透性,通过抗体、补体结合对细胞的毒性杀伤作用,去除滋养层细胞,保留ICM细胞进行培养。 (2)组织培养法:在小鼠受精2.5天后切除卵巢,给予外源激素,使胚胎继续发育,但延缓着床,4~6天后,由子宫冲取胚泡进行培养。结果滋养层细胞生长并推开饲养层细胞,在培养皿底壁上铺展;而ICM细胞增殖,垂直向上生长,形成卵圆柱状结构,在显微镜下用细玻璃针挑出这种柱状结构,消化传代。Evans和Kaufman采用这种方法第一个建立了小鼠ESCs系。 (3)显微外科学方法:小鼠受精后3~4天,由子宫冲取胚泡,利用显微操作系统直接从胚泡中吸出ICM细胞进行培养。 由于免疫外科学方法需要特殊的试剂去除透明带和滋养层,易对内细胞群造成损伤,而显微外科学方法需要专门的仪器设备,且对人员的技术水平要求较高,均难以推广应用。组织培养法将胚泡接种在饲养层上,模拟体内胚泡的着床,更接近自然发育过程,内细胞群增殖旺盛,较易获得胚胎干细胞样集落。 (三)胚胎干细胞的培养和建系 ESCs的分离培养和建系是其得以应用的前提。ESCs建系的原理是:将分离获取的ICM 或PGCs与饲养层共同培养,使之增殖而又保持其未分化状态,这样代代相传从而使ESCs

胚胎干细胞的定向诱导分化及应用前景

胚胎干细胞的定向诱导分化及应用前景 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白(cellular RA binding protein,CRABP)形成复合物,然后复合物进入细胞核内,与染色质上的受体结合,从而调控一系列基因的表达,使细胞的表型发生转变。二甲基亚砜(DMSO)是一种含硫的有机化合物,不仅能用于细胞的常规冻存,而且还是一种常用的细胞分化诱导剂,能够诱导ES细胞分化为骨骼肌细胞、心肌细胞等,其作用机制主要是影响c-myc基因表达,降低细胞的内源性聚腺苷二磷酸核苷表达水平。也有研究证明,DMSO能使细胞内储存的钙释放出来,而细胞内钙离子浓度升高在诱导细胞分化中可能起着重要作用。除了RA、DMSO外,还有β-磷酸甘油、维生素C(VC)、地塞米松、维生素K3(VK3)以及2,5-羟基维生素D3等化学试剂,也能诱导ES细胞定向分化为特定类型细

石墨烯加速神经干细胞成熟和分化

启示神经与基于BSC疗法的导电材料的接口:通过偶合石墨烯加速神经干细胞的生物电功能开发 为了管理在组织工程细胞特异性行为神经修复和再生,更好地理解材料- 细胞相互作用,尤其是生物电功能的,极其important.Graphene已报道是用作支架的潜在候选和神经interfacingmaterial.However,石墨烯这些导电性基板细胞膜的生物电演变在很大程度上仍然没有进行过。在这项研究中,我们使用了神经干细胞(NSC)模型,探讨膜生物电属性E包括增殖和分化conditions.We下休息膜电位和动作电位E和细胞行为上的石墨烯薄膜中使用的组合可能发生的变化 单细胞电生理记录和传统的细胞生物学技术。石墨烯不影响基本膜电参数(电容和输入电阻),但搁在石墨烯衬底细胞膜电位分别更强烈增殖和分化的条件下为负。此外,神经干细胞及其对石墨烯基片表现出的后代与对照相比,在开发过程中增加的动作电位的射击。但是,石墨烯只有轻微影响电动刻画ofmature NSC后代。石墨烯基片上的被动和主动的生物电特性Themodulation伴随着增强NSC分化。此外,棘密度,突触 突触蛋白表达和在.Modeling石墨组所有activitywere增加上导电的石墨烯衬底电场表明由该负电的细胞膜产生的电场大于上即控制它的石墨烯衬底高得多,这可以解释观察到的 通过耦合石墨烯的生物电的发展变化。我们的研究结果表明石墨烯是能够加速在开发过程中的NSC成熟,特别是在生物电发展方面。我们的发现提供对导电材料在调谐膜中的作用的基本理解石墨烯模型中的生物电性能,为未来的发展研究铺平道路方法和材料形成在基于NSC的治疗的可控通道中的膜性质。 石墨烯,碳原子的2维单层,由于材料的独特的电,机械和热特性,一直在纳米技术的最前沿。它最近被认为是一个有前途的候选人制造超快纳米电子器件,透明电极,纳米复合材料和生物医学材料[3]。 它已经用于多种生物医学应用,包括细胞成像和药物递送[4],生物分析[5],干细胞研究[6,7],甚至光热疗法治疗肿瘤 [8]。最近,我们和其他团体发现使用石墨烯作为神经接口材料的可能性,因为它可以促进人类成神经细胞瘤(SH-SY5Y)细胞培养[9],PC-12细胞[10],海马原代培养神经元[11]和直接NSC分化神经元[12,13],促进神经干细胞分化成石墨烯纳米网半导体神经元和形成神经元纤维[14,15]。此外,越来越多的研究表明石墨烯表现出操纵茎的命运的潜在能力细胞。例如,石墨烯基材料能够诱导NSC分化成神经元谱系[7,16],控制甚至加速间充质细胞的分化干细胞[6,17e22],并调节其他类型的行为干细胞,包括多能干细胞和胚胎干细胞[23e25]。这些开创性的研究清楚地证明了在细胞治疗中基于石墨烯的材料的巨大潜力。然而,改变细胞行为背后的基础机制,例如增强的分化和促进的细胞增长,仍然很大程度上未知。 细胞功能和细胞之间的强连接膜的生物电性质启发我们调查石墨烯是否可以调节NSC发育和成熟的子代通过影响其生物电特性细胞。在这项工作中,我们研究了石墨烯的影响在NSC 发育期间电生理状态的成熟,包括被动和主动生物电特性和随后的NSC命运的选择。 2。材料和方法2.1。石墨烯膜制备 根据先前公布的CVD方法[26]合成石墨烯样品。简言之,将薄铜箔(5cm×5cm)加热至1000℃并在H 2和Ar气体下退火20分钟,随后暴露于H 2和CH 4下5分钟。然后在H 2和Ar气下将膜从1000℃冷却至室温。通过在硝酸铁水溶液中蚀刻从铜箔上除去石墨烯膜。在铜膜溶解之后,使TCPS基板与石墨烯膜接触,并将其从溶液中拉出以制造石墨烯/ TCPS基板。

神经干细胞综述

神经干细胞综述 长期以来 ,人们一直认为 ,成年哺乳动物脑内神经细胞不具备更新能力 ,一旦受损乃至死亡 ,不能再生 ,这种观点使人们对帕金森病、多发性硬化及脑脊髓损伤的治疗受到了很大的限制。虽然传统的药物及手术取得了一定的进展 ,但是仍不能达到满意的效果。近年来 ,生物医学技术迅猛发展 ,神经生物学的重要进展之一是发现神经干细胞的存在 ,特别是成体脑内神经干细胞的分离和鉴定具有划时代意义。本文对神经干细胞的特点、分布、分化机制及应用等研究进展做一综述。 1 神经干细胞的特点 神经干细胞的特点如下:①神经干细胞可以分化。②通过分裂产生相同的神经干细胞来维持自身的存在 , 同时 ,也能产生子细胞并进一步分化成各种成熟细胞。干细胞可连续分裂几代 ,也可在较长时间内处于静止状态。③神经干细胞通过两种方式生长 ,一种是对称分裂 ,形成两个相同的神经干细胞 ;另一种是非对称分裂 , 由于细胞质中的调节分化蛋白不均匀的分配 ,使得一个子细胞不可逆的走向分化的终端而成为功能专一的分化 细胞 ,另一个子细胞则保持亲代的特征 ,仍作为神经干细胞保留下来。分化细胞的数目受分化前干细胞的数目和分裂次数控制。 2 神经干细胞与其它类型干细胞的关系 按分化潜能的大小 ,干细胞基本上可分为 3种类型 :第一类是全能干细胞 ,它具有形成完整个体的分化潜能 ,具有与早期胚胎细胞相似的形态特征和很强的分化能力 ,可以无限增殖并分化成全身 2 0 0多种细胞组织的潜能 ,进一步形成机体的所有组织、器官进而形成个体 ;第二类是多能干细胞 ,这种干细胞也具有分化多种细胞组织的潜能 ,但却失去了发育成完整个体的能力 ,发育潜能受到一定的限制 ;第三类是单能干细胞 ,如神经 干细胞等 ,这种细胞只能向一种类型或密切相关的两种类型的细胞分化。然而横向分化的发现 ,使这个观点受到了挑战 ,神经干细胞可以分化成造血细胞。总之 ,生命体通过干细胞的分裂来实现细胞的更新及保证持续生长。随着基因工程、胚胎工程、细胞工程及组织工程等各种生物技术的快速发展 ,按照一定的目的 ,在体外人工分离、培养干细胞 ,利用干细胞构建各种细胞、组织及器官作为移植来源 ,将成为干细胞应用的主要方向。 3 神经干细胞的分布 神经管形成以前 ,在整个神经板检测到神经干细胞的选择性标记物神经巢蛋白 (nestin),是细胞的骨架蛋白。构成小鼠神经板的细胞 ,具有高效形成神经球的能力。但目前尚不能肯定神经板与神经干细胞是否具有相同的诱导机制。神经管形成后 ,神经干细胞位于神经管的脑室壁周边。关于成脑神经干细胞的分布 ,研究显示成年嗅球、皮层、室管膜层或者室管膜下层、纹状体、海马的齿状回颗粒细胞下层等脑组织中分布着神经干细胞。研究发现脊髓、隔区也分离出神经干细胞 ,这些研究表明 ,神经干细胞广泛存在于神经系统。在中央管周围的神经干细胞培养后亦可形成神经球并产生神经元。脊髓损伤时 ,来自于神经干细胞的神经元新生受到抑制 ,而神经胶质细胞明显增多 ,其机制可能与生成神经元的微环境有关。

胚胎干细胞

1. 干细胞(stem cell): 干细胞是一类具有自我更新和分化潜能的细胞。 2.干细胞分类 (1)胚胎干细胞:指胚胎早期的干细胞。这类干细胞分化潜能宽,具有分化为机体任何组织细胞的能力。如囊胚期内细胞团的细胞。 (2)成体干细胞:指成体各组织器官中的干细胞,成体干细胞具有自我更新能力,但分化潜能窄,只能分化为相应(或相邻)组织器官组成的细胞。如神经干细胞,表皮干细胞。 第一节干细胞生物学 1. 组织自体稳定性: 特定组织通过使自身细胞死亡和增生的方式保持组织细胞数量动态平衡的特征称组织自稳定性。 2. 干细胞是个体发育和组织再生的基础。 一、干细胞的形态和生化特征 1.干细胞的形态特征 ①干细胞形态共性:细胞呈圆形或卵圆形,体积小,核质比大,增殖力强。 ②干细胞的固定组织位置:有的干细胞有固定存在部位与方式。如表皮干细胞与其周围的子细胞形成增殖结构单元。但许多组织的干细胞没有这种分布特点。 2.干细胞的生化特性 ①端粒酶活性高:如造血干细胞具癌细胞的端粒酶活性,增殖能力强。随着增殖与分化,端粒酶活性下降。 ②蛋白标志分子:不同干细胞有各异的蛋白质标志分子,可作为确定干细胞位置、分离提纯干细胞的标志。如:巢素蛋白—神经干细胞;角蛋白15—表皮干细胞。 二、干细胞的增殖特征 (一)增殖缓慢性 1.干细胞增殖速度慢:细胞动力学研究表明,干细胞的增殖速度较慢,组织中快速分裂的细胞是过渡放大细胞。 如小肠干细胞的分裂速度(Tc=11小时)比过渡放大细胞(Tc≥24小时)慢一倍。 2.过渡放大细胞: 过渡放大细胞是介于干细胞和分化细胞之间的过渡细胞,过渡放大细胞经若干次分裂产生分化细胞。 通过这种方式,机体可用较少干细胞获得较多分化细胞。 3.干细胞增殖缓慢的意义: (1)利于干细胞对外界信号作出反应,以决定细胞的发展方向—增殖或分化。 (2)减少基因突变的危险。增殖缓慢使干细胞有时间发现并纠正处于增殖周期过程中的错误。(二)干细胞的自稳定性 1.自稳定性: 自稳定性是干细胞的基本特征之一。指干细胞可在个体生命过程中自我更新并维持其自身数目恒定。 干细胞的自稳定性是区别肿瘤细胞的本质特征。 干细胞通过其特有的分裂方式维持自稳定性。 2.干细胞的分裂方式 ①干细胞有对称与不对称两种分裂方式。 不对称分裂的结果使两个子细胞一个成为功能专一的分化细胞;另一个保持干细胞的特征。 3. 不对称分裂发生原因:

神经干细胞(NSC) 标记物

神经干细胞是指具有分化为神经元细胞、星形胶质细胞、少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。神经干细胞的标记物,包括Nestin、PSA-NCAM、p75神经营养R(NTR) 、Mu-sashi1等。 ①Nestin Nestin是一种中间丝蛋白Ⅵ,它主要表达在中枢神经系统干细胞,在几乎所有成熟CNS细胞上均不表达。Nestin作为标记物已经广泛应用在识别神经系统发育中和体外细胞培养中的CNS干细胞。然而Nestin在CNS 干细胞生物学上的作用尚不明确。Nestin在体外并不形成中间丝。它的短暂表达已经证明是神经分化途径的关键一步。Nestin 有时也在非神经干细胞群表达,例如胰岛祖细胞及造血祖细胞。 ②PSA-NCAM(唾液酸-神经细胞粘附分子) 脑的神经细胞粘附分子(NCAM) 亚型的调节性表达是神经发育过程的关键所在。NCAM的胚胎型(PSA-NCAM) 主要在发育中的神经系统表达。PSA-NCAM可能同突触的重排和可塑性相关。在成年人PSA-NCAM 表达被限制在维持可塑性的地区。高表达PSA-NCAM 的神经元-限制性前体可以自我更新和分化为多种神经细胞表型。PSA-NCAM+新生脑前体细胞被限制在向神经胶质方向发展,甲状腺激素可以调控其向少突神经胶质细胞发展。唾液酸变性作用极大地降低了NCAM粘附性,因此,也有人认为PSA-NCAM是作为单一的抗粘附分子来调节大脑可塑性发展中的细胞-细胞相互作用。越来越多的证据表明,PSA-NCAM 和一些信号分子相互作用,在脑的发育中起指导性作用。 ③p75神经营养R(NTR) p75NTR也称作低亲合力神经生长因子(NGF)受体,是属于肿瘤坏死因子受体超家族的一类跨膜蛋白。它同等地结合NGF、BDNF、NT23和NT4(低亲合力) 。当被Trk活化时,p75NTR 增加对神经亲和力的反应。在神经系统发育过程中TrkC受体和p75NTR 起着重要作用。根据细胞表面表达p75NTR,现在已分离出神经脊干细胞(NCSCs)。新近从周围神经组织中分离的p75NTR+ NCSCs可以在体外和体内自我更新和形成神经元和神经胶质。另外,神经上皮来源的p75NTR+ 细胞也可以在细胞培养时分化为神经元、平滑肌和schwann 细胞。p75NTR也可以用作标记物来识别间充质前体以及肝脏的星形细胞。 ④Musashi1 Musashi1是一种进化保守的RNA-结合蛋白,在维持干细胞状态、分化和肿瘤发生方面起着重要作用。Musashi1 选择性地表达在神经前体细胞上,包括神经干细胞上。在神经系统外,Musashi1还是肠干细胞的选择性标记。这些组织干细胞或未成熟细胞Musashi1的表达,表明Musashi1在转录后基因调节阶段维持这些细胞未分化状态起重要作用。Musashi1在体内的一个靶分子是m-NumbmRNA,m-Numb在神经分化上起重要作用。用突变的方法研究证明,Musashi1通过转录抑制m-Numb的合成。因为Numb是进化保守的细胞内Notch 拮抗剂,以推测Musashi1 是Notch1 信号通路的正调节因子。Musashi1过度表达通过依赖RBP2Jk的旁路激活Notch1,而Notch信号途径功能为诱导哺乳动物神经干细胞自我更新。通过musashi1-P-小鼠培养脑细胞的Musashi蛋白产物反义去除研究,发现这些基因在维持神经干细胞未分化状态起着重要的作用。Musashi抑制m-Numb转录的分子机制尚待进一步研究。Musashi1有可能除转录调控外还参与其他调控途径。另外,Musashi1还表达在一些脑肿瘤的特殊类型(这些肿瘤可能起源自非成熟脑细胞),并且表达水平和肿瘤的恶性程度及增殖能力相关。 这些干细胞标记目前在实验室和临床广泛使用,在干细胞的进一步研究中也可能扮演重要角色。然而,干细胞标记的使用也存在着一些局限性。例如还需要寻找单一的、特异的识别多能干细胞的标记物。随着越来越多的新类型干细胞的发现,也需要有更精确的工具来满足研究的需要。在可预见的未来,干细胞标记将继续在干细胞寻找及其生物学特性分析中

骨髓间充质干细胞体外诱导分化与标记(一)

骨髓间充质干细胞体外诱导分化与标记(一) 作者:吴晓林,李冬民,马德茂,张晓田,黄石,宋天保 【关键词】骨髓 【Abstract】AIM:Tostudythedifferentiationcharacteristicsandtheoptimaldosageandtimingforbromodeoxyuridi ne(Brdu)labelingofratbonemarrowderivedmesenchymalstemcells(MSCs)invitro.METHODS:Therat marrowstemcellsisolatedbyusingPercoll(1.073kg/L)wereculturedandproliferated.Thethirdpassage cellswereinducedwithdexamethasome,βglycerophosphate,ascorbicacid2phosphate,IGF1andinsuli n.Onday21,thecellswereanalyzedbyimmunohistochemistryfortypeⅠcollagenandbyhistochemistry foralkalinephosphatase(AKP).ThepurifiedMSCswereincubatedwithBrduatdifferentconcentrations( 5,10and15μmol/L)fordifferenttimeperiods(12,24,48,72and96h),followedbyimmunohistochemistryforBrdutoidentifytheoptimalBrduconcentrationandi ncubationtimeperiod.RESULTS:Afterincubationfor21dforinduceddifferentiationintoosteoblasts,ty peⅠcollagenandAKPwerepositivelyexpressed.Theincubationwith10μmol/LBrdufor72hachievedov er98%ofthelabelingratewithoutproducingobviouscelldamages.CONCLUSION:MSCscanbeinducedt odifferentiateintoosteoblastsundercertainconditionsinvitro.TheoptimalBrdulabelingconcentration andtimeperiodare10μmol/Land72h,respectively. 【Keywords】MSCs;induceddifferentiation;osteoblast;Brdu 【摘要】目的:探讨骨髓间充质干细胞(MSCs)在体外的诱导分化及5溴脱氧尿嘧啶核苷(Brdu)标记MSCs的可行性.方法:利用密度为1.073kg/L的percoll分离骨髓的单个核细胞,体外培养与扩增MSCs;取生长良好的第3代细胞,用成骨细胞分化培养液培养21d,Ⅰ型胶原免疫组化染色和碱性磷酸酶(AKP)组化染色;分别以浓度为5,10和15μmol/L的Brdu溶液标记MSCs,孵育12,24,48,72和96h后免疫组化检测Brdu,确定最佳标记量和最佳标记时间.结果:诱导分化第21日,AKP染色呈强阳色,Ⅰ型胶原免疫染色呈阳性.10μmol/LBrdu 标记MSCs的效果最好,随着孵育时间的延长,Brdu标记率逐渐增高,标记72h后标记率在90%以上.结论:MSCs在体外一定条件下可定向诱导分化为成骨细胞,用Brdu标记MSCs的最佳浓度为10μmol/L,最佳时间是72h. 【关键词】骨髓间充质干细胞;诱导分化;成骨细胞;5溴脱氧尿嘧啶核苷 0引言 骨髓间充质干细胞(mesenchymalstemcells,MSCs)是一类具有多向分化潜能的组织干细胞.因MSCs取材方便、对机体的损伤小、具有较强的传代增殖能力和免疫耐受性等特点而受到越来越多的关注.本实验的目的是利用MSCs具有分化潜能的特点,在体外诱导该细胞定向分化为成骨细胞.并用Brdu标记连续传代的MSCs,观察最佳标记时间及标记剂量,从而为追踪Brdu标记的MSCs移植入体内后的存活、生长及分化奠定基础. 1材料和方法 1.1材料健康雄性SD大鼠,体质量55~70g.由西安交通大学医学院实验动物中心提供. 1.2方法 1.2.1大鼠骨髓MSCs的体外分离培养将大鼠引颈处死后置于750mL/L乙醇浸泡约5min,无菌条件下分离出大鼠的股骨和胫骨.用PBS冲洗出骨髓细胞,经5mL针管反复吹打制成单细胞悬液,用200目的不锈钢网过滤,收集滤液.在密度为1.073kg/L的percoll(Phamacia)分离液上缓慢加入收集的滤液,2500r/min离心20min,收集滤液与分离液之间的白膜层细胞,用DMEM(Gibco)洗涤两次,1000r/min离心5min.用加有100mL/L胎牛血清(杭州四季青公司)的DMEM重悬细胞,1×108个/L种于两个直径为6cm的培养皿中培养,2d后更换培养液,加入完全培养基.并将吸出的旧培养液分别移入另两个平皿中继续培养,再过2d更换

相关主题
文本预览
相关文档 最新文档