当前位置:文档之家› 大学物理实验 电子与场-讲义

大学物理实验 电子与场-讲义

大学物理实验 电子与场-讲义
大学物理实验 电子与场-讲义

电子与场

带电粒子在电场和磁场中运动是在近代科学技术应用的许多领域中都经常遇到的一种物理现象。在下面的实验中,主要研究电子在各种电场和磁场中的运动规律。在这个实验中,把电子看作是遵从牛顿运动定律的经典粒子。因为在下面实验中,电子的运动速度总是远小于光速(3.00×108 m/s ),所以不必考虑相对论效应,而且由于实验中电子运动的空间范围远比原子的尺度要大,也可不必考虑量子效应。

【实验目的】

1.了解示波管的构造和工作原理,研究静电场对电子的加速作用。

2.定量分析电子束在横向匀强电场作用下的偏转情况。

3.定量分析电子束在横向磁场作用下的偏转。

4.定量分析电子束在纵向磁场作用下螺旋运动,测定荷质比。

【实验仪器】

DH4521电子束测试仪、电源线、10芯专用电缆、52尼康线。

【实验原理】

1.小型电子示波管的构造

阴极射线管中,电子示波管的构造如图1所示。包括下面几个部分:

电子枪,它的作用是发射电子,把它加速到一定速度并聚成一细束;

偏转系统,由两对平板电极构成。一对上下放置的Y 轴偏转板(或称垂直偏转板),一对左右放置的X 轴偏转板(或称水平偏转板);

电子枪

偏转系统

H K

G 1G 2

Y

X

A 1A 2V 2

R 1

R 2

R 3Y X

H

调辉

辅助聚焦

荧光

图 1 示波管结构图F -灯丝 K -阴极 G 1,G 2- 控制栅极 A 1-第一阳极A 2-第二阳极 Y -竖直偏转板 X -水平偏转板

F

F

荧光屏,用以显示电子束打在示波管端面的位置。

以上这几部分都密封在一只玻璃壳之中。玻璃壳内抽成高真空,以免电子穿越整个管长时与气体分子发生碰撞,故管内的残余气压不超过6

10-大气压。

电子枪的内部构造如图2所示。电子源是阴极,图中用字母K 表示。它是一只金属圆柱筒,里面装有加热用的灯丝,两者之间用陶瓷套管绝缘。当灯丝通电时可把阴极加热到很高温度。在圆柱筒端部涂有钡和锶氧化物,此材料中的电子在加热时较容易逸出表面,并能在阴极周围空间自由运动,这种过程叫热电子发射。与阴极共轴布置着的还有四个圆筒状电极,电极1G 离阴极最近,称为控制栅,正常工作时加有相对于阴极K 大约-5~-20伏的负电压,它产生的电场是要把阴极发射出来的电子推回到阴极去。改变控制栅极的电势可以改变穿过1G 上小孔出去的电子数目,从而可以控制电子束的强度。电极2G 与2A 联在一起,两者相对于K 有约几百伏到几千伏的正电压。它产生了一个很强的电场使电子沿电子枪轴线方向加速。因此电极2A 对K 的电压又称加速电压。用2V 表示。而电极1A 对

K 的电压1V 则与2V 不同。由于K 与1A 、1A 与2A 之间电势不相等,因此使电子束在电

极筒内的纵向速度和横向速度发生改变,适当地调整1V 和2V 的电压比例,可使电子束聚焦成很细的一束电子流,使打在荧光屏上形成很小的一个光斑。聚焦程度的好坏主要取决于1V 和2V 的大小与比例。

电子束从图1中两对偏转电极间穿过。每一对电极加上的电压产生的横向电场分别可使电子束在X 方向或Y 方向发生偏转。

2.电子束的加速和电偏转原理

在示波管中,电子从被加热的阴极逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。为以下研究问题方便起见,先引入一个直角坐标,令Z 轴沿示波管的管轴方向从灯丝位置指向荧光屏,从荧光屏看,X 轴为水平方向向右,Y 轴为垂直方向向上。假定电子从阴极逸出时初速度忽略不计,则由功能原理可知,电子经过电势差为V 的空间,电场力做的功eV 应等于电子获得的动能:

21

2

Z eV mv =

(1) 显然,电子轴向速度z v 与阳极加速电压V 的平方根成正比。由于示波管有两个阳极

图2 电子枪内部构造

图3 电子束的电偏转

1A 和2A ,所以实际上示波管中电子束最后的轴向速度由第2阳极2A 的电压2V 决定,即:

2

221Z

mv eV =

或 22V m

e

v Z = (2) 如果在电子运动的垂直方向加一个横向电场,电子将在该电场作用下发生横向偏转。如图3所示:

若偏转板长l ,偏转板末端至屏距离为L ,偏转电极间距离为d ,轴向加速电压为2V ,横向偏转电压d V ,则根据电学和力学的有关推导,可以推导出荧光屏上亮斑的横向偏转量D 与其它量的关系为:

d

l

V V L d L V V l L D d d 22)2(22?

?'=??+= (3) (式中'2

l

L L =+

) 在实际的示波管中,偏转电极并非一对平行板,而是呈喇叭口形状,这是为了扩大偏转板的边缘效应,增大偏转板的有效长度。

式3表明,当2V 不变时电子束的偏转量D 随偏转电压d V 成正比,d V D ~的这一关系可以通过实验验证。

这里需要研究的是:电偏转的灵敏度与第二阳极的加速电压间存在何种关系?从前面的式2我们可知电子束沿Z 方向的速度2V v Z ∝,而电子Z 方向运动的速度越大则表示它通过偏转极板所需时间越短,因而横向偏转电场对其作用时间也越短,导致偏转灵敏度越低。事实上,式3中电子束的偏转量21V D ∝的关系已说明了此关系。本实验中若改变加速电压2V (为便于对比,在可能的范围内尽可能把2V 分别调至最大或最小),适当调节1V 到最佳聚焦,可以测定d V D ~直线随2V 改变而使斜率改变的情况。

3.电子束的磁偏转原理

图4 电子束的磁偏转

图5 偏转磁场的设置

电子束运动遇外加横向磁场时,在洛仑兹力作用下要发生偏转。如图4所示,设实线方框内有均强磁场,磁感强度B 的方向与纸面垂直指向读者,方框外磁场为零。

电子以速度z V 垂直进入磁场B 中,受洛仑兹力m F 作用,在磁场区域内作匀速圆周运动,半径为R 。电子沿弧AC穿出磁场区后,沿C点的切线方向作匀速直线运动,最后打在荧光屏的P 点。

电子进入磁场之前,其加速的电压为2V ,有 2

22

1Z

mv eV =

(4) 式中e 为电子的电量;m 为电子的质量。该式忽略电子离开阴极K 时的初动能。

电子以速度Z v 垂直进入磁场B 后,其所受的洛仑兹力B ev F Z m = (5)

据牛顿运动定律, R

v m B ev Z

Z 2= (6)

所以 eB

m v R Z

=

(7) 电子离开磁场将沿切线方向飞出,直射荧光屏。

3.磁聚焦及荷质比测定

如图6,考虑电子运动的情况,沿示波管轴方向作用有均匀磁场B 。取示波管轴为坐标轴,磁场B 沿Z 轴方向,电子从电子枪出射时具有速度为0v ,我们把它分解成沿轴向和径向两个分量。分别记作z v 和r v 。置于长直螺线管中的示波管,在不受任何偏转电压的情况下,示波管正常工作时,调节亮度和聚焦,可在荧光屏上得到一个小亮点。若第二加速阳极A 2的电压为2V ,则电子的轴向运动速度:

2

2z eV v m

=

(8)

图6 (a)电子作圆周运动 (b )电子作螺旋运动

当给其中一对偏转板加上交变电压时,电子将获得垂直于轴向的分速度r v ,此时荧光屏上便出现一条直线,随后给长直螺线管通一直流电流I ,于是螺线管内便产生磁场,其磁感应强度用B 表示。洛伦磁力使电子在垂直于磁场(即垂直于示波管轴)的平面内作圆周运动,如图6,设其圆周运动的半径为R ,则有:

R

m B e r

r 2

υυ=

即: eB m R r υ= (9) 圆周运动的周期为:

eB

m

R

T r

π2π2=

=

υ (10) 电子既在轴线方向以速度z v 作匀速直线运动,又在垂直于轴线的平面内作匀速圆周运动。它的轨道是一条螺旋线,其螺距用h 表示,则有

2

22πz mV h T B e

υ==

(11)

从(10)、(11)两式可以看出,电子运动的周期和螺距均与r v 无关。虽然各个电子的径向速度不同,但由于轴向速度相同,由一点出发的电子束,经过一个周期以后,它们又会在距离出发点相距一个螺距的地方重新相遇,这就是磁聚焦的基本原理,由(11)式可得:

2222/8/B h V m e π=

(12)

长直螺线管的磁感应强度B ,可以由下式计算。

2

2

D

l NI

B +=

ομ (13)

N 为螺丝管内的线圈匝数;l 为螺线管的长度;D 为螺线管的外径和内径的平均值;这三个参数在螺线管上标出;I 为通过螺线管的励磁电流。可以从电子和场实验仪上的电流表读出,μ0=4π×10-7

H/m=1.257×10-6

H/m 。

将(13)代入(12),可得电子荷质比为:

2222

02222/)(π8/I h N D l V m e μ+= (14)

本仪器相关参数:

螺丝管内的线圈匝数:N=535±1 螺丝管的长度:L=0.235m 螺线管的直径:D 0=0.092m

螺距(Y 偏转板至荧光屏距离)h=0.135m

【实验内容】

1. 电子束的电偏转部分:

1) 先用专用10芯电缆连接测试仪和示波管,再开启电源开关,将“电子束-荷质比”

选择开关打向电子束位置,辉度适当调节,并调节聚焦,使屏上光电聚成一细点。注意:光点不能太亮,以免烧坏荧光屏。

2) 光点调零,将面板上钮子开关打向X 偏转电压显示,调节“X 调节”旋钮,使电

压表的指针在零位,再调节X 调零旋钮,使光点位于示波管垂直中线上;同X 调零一样,将面板上钮子开关打向Y 偏转电压显示,将Y 调节后,光点位于示波管的中心原点。

3) 测量偏转量D 随电偏转电压d V 变化:调节阳极电压旋钮,给定阳极电压2V 。将

电偏转电压表显示打到显示Y 偏转调节(垂直电压),改变d V ,测一组D 值。改变2V 后再测D-d V 变化。(2V :600-1000V )

4) 求y 轴电偏转灵敏度D/d V 。并说明为什么2V 不同,D/d V 不同。 5) 同y 轴一样,也可以测量X 轴电偏转灵敏度。

表1 X 方向电子束的电偏转电压 600d V V ()

-20 -15 -10 -5 0 5 10 15 20 D 700d V V ()

-20 -15 -10 -5 0 5 10 15 20 D

表2 Y 方向电子束的电偏转电压

600d V V ()

-20 -15 -10 -5 0 5 10 15 20 D

700d V V ()

-20 -15 -10 -5 0 5 10 15 20 D

6) 在同一坐标纸上,以d V 为横坐标,D 为纵坐标,分别画出Y 偏转和X 偏转的4

根D ~d V 直线,并进行比较。(注意:在一般情况下,这4根直线不会经过直角坐标系的原点。)

7) 比较以上4条直线的斜率,讨论各不同情况下的偏转灵敏度。

2. 电子束的磁偏转部分:

1) 开启电源开关,将“电子束-荷质比”选择开关打向电子束位置,辉度适当调节,并调节聚焦,使屏上光电聚成一细点。注意:光电不能太亮,以免烧坏荧光屏。

2) 光点调零,将面板上钮子开关打向X 偏转电压显示,调节“X 调节”旋钮,使电压表的指针在零位,再调节X 调零旋钮,使光点位于示波管垂直中线上;同X 调零一样,将面板上钮子开关打向Y 偏转电压显示,将y 调节后,光点位于示波管的中心原点。

3) 测量偏转量D 随磁偏转电流I 的变化,给定2V ,将磁偏转电流输出与磁偏转电流输入相连,调节磁偏转电流调节旋钮(改变磁偏转线圈电流的大小)测量一组D 值。改变磁偏转电流方向,再测一组D-I 值。改变2V ,再测两组D-I 数据。(2V :600-1000V )。通过钮子开关切换磁偏转电流方向,再次实验。

4) 求磁偏转灵敏度D/I ,并解释为什么2V 不同,D/I 不同。

表3 记录不同2V 时磁偏转数据

2V = 600V

D(mm) 20 40 60 80 100 120 140 160 180 I(mA )

2V = 700V

D(mm) 20 40 60 80 100 120 140 160 180 I(mA )

根据磁偏转量D 与I 的关系图,用图解法测得磁偏转灵敏度 (max)2=V 时:m S = m/A

(min)2=V 时:m S = m/A 3. 磁聚焦和电子荷质比的测量:

1) 开启电源开关,将“电子束-荷质比”选择开关打向荷质比方向,此时荧光屏上出现一条直线,阳极电压调到700V 。

2) 将励磁电流部分的调节旋钮逆时针方向调节到头,并将励磁电流输出与励磁电流输入相连(螺线管)。

3) 电流换向开关打向正向,调节输出调节旋钮,逐渐加大电流使荧光屏上的直线一边旋转一边缩短,直到出现第一个小光点,读取此时对应的电流值I 正,然后将电流调为零。再将电流换向开关打向反向(改变螺线管中磁场方向),重新从零开始增加电流使屏

上的直线反方向旋转并缩短,直到再得到一个小光点,读取此时电流值I 反。(注意:调节过程中,光点亮度会增加,注意将亮度调暗,以免烧坏仪器)

4) 改变阳极电压为800V ,重复步骤3,直到阳极电压调到1000V 为止。 5) 数据记录和处理。

将所测各数据记入表中,通过(14)式,计算出电子荷质比e/m 。

表4 记录不同2V 时的励磁电流

励磁电流

阳极电压

700V 800V 900V 1000V I 正 (A) I 反 (A)

I 平均 (A)

电子荷质比e/m (C/Kg)

【注意事项】

1.在实验过程中,光点不能太亮,以免烧坏荧光屏。

2.实验通电前,用专用10芯电缆连接测试仪和示波管。

3.在改变螺线管励磁电流方向或磁偏转电流方向时,应先将电流调到最小后再换向。

4.改变阳极电压2V 后,光点亮度会改变,这时应重新调节亮度,若调节亮度后加速电压有变化,再调到现定的电压值。

5.励磁电流输出中有10A 保险丝,磁偏转电流输出和输入有0.75A 保险丝用于保护。

6.切勿在通电的情况下拆卸面板对电路进行查看或维修,以免发生意外。

【思考题】

1.从本实验所得的测量数据中,作电偏转时在X 方向和Y 方向哪一个的偏转灵敏度大?根据示波管的构造分析这是什么原因造成的?

2.当加速电压2V =900V时,电子的速度多大?若电子从阴极到荧光屏保持此速度不变,约需多少时间?(设阴极到荧光屏距离为16cm)

3.在电子束的电偏转时若偏转电压d V 同时加在X 、Y 偏转电极上,预期光点会随d V 作何变化?

4.在磁偏转实验时,若外加横向磁场后光点向上移动,这时通过改变Y 方向的电偏转电压d V 使光点的净偏转为零后,再增加2V 的加速电压,这时会发生什么情况?

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

电力电子技术A实验讲义

实验四三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作情况。 二.实验线路与原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-1。 1) 电源控制屏位于MEL-002T; 2) L平波电抗器位于NMCL-331挂件; 3) 可调电阻R位于NMEL-03/4挂件 4) G给定(Ug)位于NMCL-31调速系统控制单元中; 5) Uct位于NMCL-33F挂件; 6) 晶闸管位于NMCL-33F挂件。 图4-1 三.实验内容

1.研究三相半波可控整流电路供电给电阻性负载时的工作情况。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作情况。 四.实验设备与仪表 1.教学实验台主控制屏 2.触发电路与晶闸主回路组件 3.电阻负载组件 4.示波器 五.注意事项 整流电路与三相电源连接时,一定要注意相序。 六.实验方法 1. 三相半波可控整流电路带电阻性负载。 合上主电源,接上电阻性负载R。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。 2. 三相半波可控整流电路带电阻—电感性负载。 接入的电抗器L=700mH。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)(电阻性负载、电阻—电感性负载)、I d=f(t)(电阻—电感性负载)的波形。 实验方法的具体内容,可参照表4进行。 七. 实验报告

实验20 电子和场讲义

实验二十电子和场 带电粒子在电场和磁场中运动是在近代科学技术应用的许多领域中都经常遇到的一种物理现象。在下面的实验中,主要研究电子在各种电场和磁场中的运动规律。在这个实验中,把电子看作是遵从牛顿运动定律的经典粒子。因为在下面实验中,电子的运动速度总是远小于光速(3.00×108m/s),所以不必考虑相对论效应,而且由于实验中电子运动的空间范围远比原子的尺度要大,也可不必考虑量子效应。 【实验目的】 1.了解示波管的构造和工作原理,研究静电场对电子的加速作用。 2.定量分析电子束在横向匀强电场作用下的偏转情况。 3.定量分析电子束在横向磁场作用下的偏转(选作)。 4.定量分析电子束在纵向磁场作用下螺旋运动,测定荷质比。 【实验仪器】 EF——4S型电子和场实验仪、螺线管、磁场线圈、高压万用表。 【实验原理】 实验中采用的电子示波管型号是8SJ45J,就是示波器中的示波管。通常用在雷达中。它的工作原理与电视显像管非常相似,这种管子又名阴极射线管(CRT)或电子束示波管。它是阴极射线示波器中的主要部件,在近代科学技术许多领域中都要用到,是一种非常有用的电子器件。利用电子示波管来研究电子的运动规律非常方便,我们研究示波管中电子的运动也有助于了解示波器的工作原理。 电子示波管的结构如图20-1所示。包括下面几个部分: 图20-1 小型示波管的结构 181

(1)电子枪,它的作用是发射电子,把它加速到一定速度并聚成一细束; (2)偏转系统,由两对平板电极构成。一对上下放置的Y轴偏转板(或称垂直偏转板),一对左右放置的X轴偏转板(或称水平偏转板); (3)荧光屏,用以显示电子束打在示波管端面的位置。 以上这几部分都密封在一只玻璃壳之中。玻璃壳内抽成高真空,以免电子穿越整个管长时与气体分子发生碰撞,故管内的残余气压不超过10-6个标准大气压。 电子枪的内部构造如图20-2所示。电子源是阴极,图中用字母K表示。它是一只金属圆柱筒,里面装有加热用的灯丝,两者之间用陶瓷套管绝缘。当灯丝通电时可把阴极加热到很高温度。在圆柱筒端部涂有钡和锶的氧化物,此材料中的电子在加热时较容易逸出表面,并能在阴极周围空间自由运动,这种过程叫热电子发射。与阴极共轴布置着的还有四个圆筒状电极,电极G1离阴极最近,称为控制栅,正常工作时加有相对于阴极K大约-10~-40伏的负电压,它产生的电场是要把阴极发射出来的电子推回到阴极去。改变控制栅极的电势可以改变穿过G1上小孔出去的电子数目,从而可以控制电子束的强度。电极G2与A2联在一起,两者相对于K有约几百伏到1千余伏的正电压。它产生了一个很强的电场使电子沿电子枪轴线方向加速。因此电极A2对K的电压又称加速电压。用V2表示。电极A1为聚焦电极,在正常使用情况下相对于K具有正电压V1,其大小在200伏到400伏之间。由于K与A1、A1与A2之间电势不相等,因此使电子束在电极筒内的纵向速度和横向速度发生改变,适当地调整V1和V2的电压比例,可使电子束聚焦成很细的一束电子流,使打在荧光屏上形成很小的一个光斑。聚焦程度的好坏主要取决于V1和V2的大小与比例。 图20-2 电子枪内部构造 电子束从图20-1中两对偏转电极间穿过。每一对电极加上的电压产生的横向电场分别可使电子束在X方向或Y方向发生偏转。 在玻璃管壳的内表面还涂有石墨导电层,它有下面几方面的作用:它与极A2是连在一起,182

大学物理实验讲义(密度测定)

大学物理实验讲义(密度测定)

不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体 密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比 水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理 和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 密 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天

1 m 图3 静力 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m =ρ ( 1 ) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m 物

(空气浮力忽略不计),全部 浸没在水中(悬吊,不接触 烧杯壁和底)的表观质量为 m 1(如图3示),体积为V , 水的密度为ρ水 。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1m m V ρ-=水 被测物密度: 1m m V m m ρρ==-水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1 m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:1m 图4 静力称衡法和助待 测物块m

电力电子技术实验指导书

实验一单结晶体管触发电路及示波器使用 班级学号姓名 同组人员 实验任务 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.详细学习万用表及示波器的使用方法。 二.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.双踪示波器(自备) 6.万用表(自备) 7. 电脑、投影仪 三.实验线路及原理 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。 图1单结晶体管触发电路图 四.注意事项 双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外

壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 五.实验内容 1.实验预习 (1)画出晶闸管的电气符号图并标明各个端子的名称。 (2)简述晶闸管导通的条件。 (3)示波器在使用两个探针进行测量时需要注意的问题。 2. 晶闸管特性测试 请用万用表测试晶闸管各管脚之间的阻值,填写至下表。 + A K G - A K G 3.单结晶体管触发电路调试及各点波形的观察 按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。 合上主电源,即按下主控制屏绿色“闭合”开关按钮。这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。 合上NMCL—05E面板的右下角船形开关,用示波器观察触发电路单相半波整流输出(“1”),梯形电压(“3”),梯形电压(“4”),电容充放电电压(“5”)及单结晶体管输出电压(“6”)和脉冲输出(“G”、“K”)等波形,并绘制在下图相应位置。

大学物理实验复习资料

大学物理实验复习资料 复习要求 1.第一章实验基本知识; 2.所做的十二个实验原理、所用的仪器(准确的名称、使用方法、分度值、准确度)、实验操作步骤及其目的、思考题。 第一章练习题(答案)1.指出下列情况导致的误差属于偶然误差还是系统误 差? ⑴读数时视线与刻度尺面不垂直。——————————该误差属于偶然误差。 ⑵将待测物体放在米尺的不同位置测得的长度稍有不同。——该误差属于系统误差。 ⑶天平平衡时指针的停点重复几次都不同。——————该误差属于偶然误差。 ⑷水银温度计毛细管不均匀。——————该误差属于系统误差。 ⑸伏安法测电阻实验中,根据欧姆定律R x=U/I,电流表内接或外接法所测得电阻的阻值与实际值不相等。———————————————该误差属于系统误差。 2.指出下列各量为几位有效数字,再将各量改取成三位有效数字,并写成标准式。 测量值的尾数舍入规则:四舍六入、五之后非零则入、五之后为零则凑偶 ⑴63.74 cm ——四位有效数字,6.37 ×10cm 。 ⑵ 1.0850 cm ——五位有效数字,1.08cm , ⑶0.01000 kg ——四位有效数字, 1.00 ×10-2kg , ⑷0.86249m ——五位有效数字,8.62 ×10-1m , ⑸ 1.0000 kg ——五位有效数字,1.00kg , ⑹ 2575.0 g ——五位有效数字,2.58×103g , ⑺ 102.6 s;——四位有效数字,1.03 ×102s , ⑻0.2020 s ——四位有效数字, 2.02 ×10-1s , ⑼ 1.530×10-3 m. ——四位有效数字,1.53 ×10-3m ⑽15.35℃——四位有效数字,1.54×10℃3.实验结果表示 ⑴精密天平称一物体质量,共称五次,测量数据分别为:3.6127g,3.6122g,3.6121g,3.6120g,3.6125g, 试求 ①计算其算术平均值、算术平均误差和相对误差并写 出测量结果。 ②计算其测量列的标准误差、平均值标准误差和相对 误差并写出测量结果。 解:算术平均值 = m3 612 3 5 15 1 . ≈ ∑ =i i m (g) 算术平均误差m ? = - =∑ = 5 1 5 1 i i m m 0.00024 = 00003(g) 相对误差 m m E m ? = =0.0003/3.6123=0.000083≈0.009% 用算术平均误差表示测量结果:m = 3.6123±0.0003(g) 测量列的标准误差 ()()()( 1 5 3 2 6123 3 6121 3 2 6123 3 6122 3 2 6123 3 6127 3 - + - + - + - =. . . . . . =0.0003(g) 经检查,各次测量的偏差约小于3σ,故各测量值均 有效。 平均值的标准误差 5 0003 0. = = n m σ σ ≈0.00014(g) 相对误差 % . % . . 0004 100 6123 3 00014 ≈ ? = = m E m m σ 用标准误差表示的测量结果= m 3.61230±0.00014(g) ⑵有甲、乙、丙、丁四人,用螺旋测微器测量一铜球 的直径,各人所得的结果是: 甲:(1.3452±0.0004)cm;乙:(1.345±0.0004)cm 丙:(1.34±0.0004)cm;丁:(1.3±0.0004)cm 问哪个表示得正确?其他人的结果表达式错在哪里? 参考答案:甲:正确。 测量结果的最后一 其他三个的错误是测量结果的最后一位没有与误差所 在位对齐。 ⑶用级别为0.5、量程为10mA的电流表对某电路的 电流作10次等精度测量,测量数据如下表所示。试计

电子电荷的测量-实验讲义[1]

电子电荷的测量 ——密立根油滴实验 由美国实验物理学家密立根(R.A .Millikan)首先设计并完成的密立根油滴实验, 在近代物理学的发展史上是一个十分重要的实验。它证明了任何带电体所带的电荷都是某一最小电荷——基本电荷的整数倍;明确了电荷的不连续性;并精确地测定了基本电荷的数值,为从实验上测定其它一些基本物理量提供了可能性。 由于密立根油滴实验设计巧妙、原理清楚、设备简单、结果准确,所以它历来是一个著名而有启发性的物理实验。多少年来,在国内外许多院校的理化实验室里,为千千万万大学生(甚至中学生)重复着。通过学习密立根油滴实验的设计思想和实验技巧,以提高学生的实验能力和素质。 一、实验目的 1.通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续性,并测 定电子的电荷量e 。 2.通过实验时对仪器的调整、油滴的选择、耐心地跟踪和测量以及数据的处理等,培养学生严肃认真和一丝不苟的科学实验方法和态度。 二、实验原理 用油滴法测量电子的电荷,可以用静态(平衡)测量法或动态(非平衡)测量法。前者的测量原理、实验操作和数据处理都较简单,常为非物理专业的物理实验所采用;后者则常为物理专业的物理实验所采用。下面介绍静态(平衡)测量法。 用喷雾器将油喷入两块相距为d 的水平放置的平行极板之间。油在喷射撕裂成油滴时,一般都是带电的。设油滴的质量为m ,所带的电荷为q ,两极板间的电压为V ,则油滴在平行极板间将同时受到重力mg 和静电力qE 的作用。如图1所示。如果调节两极板间的电压V ,可使该两力达到平衡,这时 d V q qE mg == 从上式可见,为了测出油滴所带的电量q 需要测量油滴的质量m 。因m

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

实验九电子束讲义-16页文档资料

实验九电子束实验 带电粒子在电场和磁场中的运动,在近代科学技术应用中,是许多领域中都经常遇到的一种物理现象。示波器中用来显示电信号波形的示波管,电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备之中。在下面一系列实验中,我们要研究电子在各种电场和磁场中的运动规律。实验的主要内容是: 实验1:研究电场对电子的加速,电子束在匀强电场作用下的偏转。 实验2:纵向不均匀电场对电子束的聚集作用。 实验3:电子束在横向磁场作用下的偏转。 实验4:电子在纵向磁场中作螺旋运动的规律及电子荷质比的测定。 实验中采用的电子示波管型号8SJ3J,就是示波器中的示波管。电子示波管的构造如图1所示。

当加热电流通过灯丝 时,阴极K 被加热并发射电 子,栅极G 加上相对于阴极 为负的电压,调节栅极电压 的大小,可以控制阴极发射电子的多少,即控制光点的亮度。第一阳极1A 相对于阴极K 有很高的电压(约1 500V )用以加速电子;第二阳极2A 与第一阳极1A 之间构成 聚焦电场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。X 、Y 偏转板是2对分别平行且相互垂直的金属极,在平行板上加不同的电压控制荧光屏上的光点的位置。光点移动距离的大小与加在偏转板上的电压成正比。 实验1 电子束的加速和电偏转 【实验原理】 电子是带负电的粒子,电子在电场中受到库仑力的作用,力的方向和电场方向相反。本实验研究电子在电场中的加速和偏转。 若电子原来具有一定的速度。如果电场方向和电子运动方向平行,电子在电场力的作用下将加速或减速。我们取一个直角坐标系来研究电子的运动,令Z 轴沿阴极射线管的管轴方向,从荧光屏看X 轴为水平方向,Y 轴为垂直方向。 A 1-第一阳极 A 2-第二阳极 f-灯丝 G-栅极 K-阴极 X 、Y-偏

《电力电子技术》实验指导书

实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 三、实验线路及原理

单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用DK04滑线变阻器接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 图3-3单相半波可控整流电路 四、实验容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的容,弄清单结晶体管触发电路的工作原理。

(2)复习单相半波可控整流电路的有关容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、思考题 (1)单结晶体管触发电路的振荡频率与电路中电容C1的数值有什么关系? (2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决? 七、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相围能否在30°~170°围移动? (2)单相半波可控整流电路接电阻性负载 触发电路调试正常后,按图3-3电路图接线。将滑线变阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U和电源电压U2,记录于下表中。

大学物理实验讲义实验用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

大学物理实验讲义Word版

大学物理实验讲义 普通物理教研室编 班级: 学号: 姓名:

学生实验守则 1、进实验室前,必须根据每个实验的预习要求,阅读有关资料。 2、按时进入实验室,保持安静和整洁,独立完成实验。 3、实验开始前,应仔细检查仪器、设备是否齐备和完好。若有不全或损坏情况,应及时报告指导教师。 4、爱护公物,正确使用实验仪器和设备,不得随意动用与本实验无关的仪器和设备。 5、接线完毕,先自行检查,再请指导教师检查,确认无误后,方可接通电源。 6、在实验过程中必须服从教师指导,严格遵守操作规程,精力高度集中,操作认真,要有严格的科学态度。 7、实验进行中,严禁用手触摸线路中带电部分,严禁在未切断电源的情况下改接线路;若有分工合作的情况,必须要分工明确,责任分明,操作要有序,以确保人身安全和设备安全。 8、实验中若出现事故或发现异常情况,应立即关断电源,报告指导教师,共同分析事故原因。 9、实验完毕,应报请指导教师检查实验报告,认为达到要求后,方可切断电源。并整理好实验装置,经指导教师检查后才能离开实验室。

目录 序言 (1) 绪论 (2) 测量误差与实验数据处理基础知识 (4) 实验一长度的测量 (15) 实验二牛顿第二定律的验证 (20) 实验三固体和液体密度的测量 (23) 实验四测量比热容 (25) 4-1 混合法测固体比热容 (25) 4-2 冷却法测液体比热容 (26) 实验五测量冰的熔解热 (28) 实验六测量线胀系数 (30) 实验七万用电表的使用 (32) 实验八磁场的描绘 (36) 实验九惠斯登电桥测中值电阻 (40) 实验十伏安法测电阻 (43) 实验十一电位差计测电池的电动势和内阻 (45) 实验十二示波器的使用 (48) 实验十三静电场的描绘 (52) 实验十四测量薄透镜焦距 (55) 实验十五等厚干涉现象的研究 (58) 【参考文献】 (60)

电子和场(大物实验)

49电子和场综合实验(电子束实验)示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。示波管是电子示波器的心脏,与电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。因此统称它们为电子束线管。电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。本实验研究电子束的电偏转和磁偏转。通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。 【实验目的】 1.了解示波管的构造和工作原理,研究静电场对电子的加速作用。 2.定量分析电子束在横向匀强电场作用下的偏转情况。 3.研究电子束在横向磁场作用下的运动和偏转情况。 4.了解电子束磁聚焦的原理,并研究电子束在电场和磁场中的运动规律。 5.掌握一种用磁聚焦法测电子荷质比的方法。 【实验仪器】 电子和场综合实验仪 【仪器介绍】 电子和场综合实验仪面板及各个旋钮介绍如图49-1。

图49-1电子和场综合实验仪面板 1、示波管坐标板; 2、示波管 3、逸出功灯丝电流调节 4、磁控线圈 5、理想二极管 6、逸出功阳极电压调节 7、逸出功阳极电压测量端8、偏转单元(Vdx、偏转电压调节及测量端,) 9、偏转单元(Vdy、偏转电压调节及测量端,)10、点线转换开关 11、励磁电源单元12、多量程电压表(量程2V、20V、200V)单元 13、栅极电压调节及测量端14、聚焦电压调节及测量端, 15、加速电压调节及测量端16、220V电源插孔 17、电源开关单元(电源总开关、励磁电源开关、电子束开关、逸出功开关) 18、逸出功阳极电流指示19、逸出功灯丝电流指示 20、XY调零21、示波管管座(示波管插入此处,严禁用手触摸示波管座孔) 22、偏转线圈23、螺线管线圈 24、偏转电流换向开关25、偏转电流输入端 实验中采用的电子示波管型号是8SJ31J,就是示波器中的示波管。通常用在雷达中。它的工作原理与电视显像管非常相似,这种管子又名阴极射线管(CRT)或电子束示波管。它是阴极射线示波器中的主要部件,在近代科学技术许多领域中都要用到,是一种非常有用的电子器件。示波管的示意图如图49-2,包括以下几个部分: (1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束; (2)一个由两对金属板组成的偏转系统; (3)一个在管子末端的荧光屏,用来显示电子束的轰击点。 所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。接通电源后,灯丝发热,阴极发射电子。栅极加上相对于阴极的负电压,它有两个作用: ①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极; ②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在

大学物理实验讲义(密度测定)

图3 静力称衡法测密度 不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m = ρ (1) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m (空气浮力忽略不计),吊,不接触烧杯壁和底)的表观质量为m 1(如图3示),体积为水的密度为ρ水。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1 m m V ρ-= 水 密度瓶 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天平

被测物密度: 1 m m V m m ρρ= = -水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:12()Vg m m g ρ=-水,则被测物体积为: 12 m m V ρ-= 水 被测物密度为: 12 m m V m m ρρ= = -水 (3) 3、用密度瓶测定碎小固体(小石子)的密度 假设密度瓶的质量为1m ,将瓶内装满待测的小石子后的质量为2m ,则待测小石子的质量:21m m m =-。 然后将装有小石子的密度瓶加满水,再称其总质量3m ,为了得到小石子排开水的体积,还需要将密度瓶里的小石子倒出,再加满水称得其质量为4m 。 这样可得小石子排开水的质量为:43214321(())m m m m m m m m ---=-+- 图5 密度瓶法测小石子的密度 123 4图4 静力称衡法和助沉法测石蜡块的密度 待测物块(石蜡块) 2

电子跟场

电子和场 一、 电子在横向电场作用下的电偏转 【实验目的】 1. 掌握电子在电场中的运动规律; 2. 验证电子在不同加速电压V 2下,电偏移量D 与偏转电压V d 之间的近似线性关系; 3. 利用描点法将D-V d 在X-Y 坐标系中描绘出来,并依据直线斜率确定加速电压V 2与电偏 灵敏度δ电之间的关系。 【实验仪器】 ZKY-DZC 型电子和场实验仪。 图1 电子和场实验仪 图2 配件图 【实验原理】 如图1所示,ZKY-DZC 型电子和场实验仪是为大学物理实验专门设计的教学实验仪器,它主要用于研究和验证电子束在不同的电场和磁场条件下的运动规律。 从电子枪阴极K 发射出来的电子与加束电压V 2之间有如下关系: 2 212 x mv eV (1) 电子通过加有偏转电压(V d )的空间,它将获得一个横向速度v y ,但不改变轴向分量v x 。此时电子偏离轴心方向将与X 轴成一个夹角θ,如图3所示,而θ由下式决定: 图3 电子在横向电场中的电偏转

y x v tan = v θ (2) 电子在横向电场E y =V d /d 作用下受到一个大小为F y =eE y =eV d /d 的横向力。在电子从偏转板之间通过的时间ΔT 内,F y 使电子得到一个横向动量mv y ,而它等于力的冲量,即 d T eV T F mV d y y /?=??= (3) 于是: T d V m e V d y ???= (4) 在时间间隔ΔT 内,电子以轴向速度V x 通过距离l (l 等于偏转板长度),因此l =V x ΔT ,将ΔT 代入冲量一动量关系(4)可得, y v d x V e l m d v = ?? (5) 这样,偏转角可下式给出 y 2x v tan = v d x V e l d m v θ= ?? (6) 把能量关系式(1)代入上式,最后得到 d 2V tan = V 2l d θ? (7) 上式表明偏转角与偏转电压V d 及偏转板长度成正比,与加速电压2V 及偏转板间距d 成反比,由图1知,D=tan L θ,(L 为偏转板中心到荧光屏的距离)于是有 22d d V l D L V V d δ=?=?电 (δ电为电偏灵敏度) (8) 2 12Ll d V δ= ?电 【实验内容与步骤】 1. 接插线:A 2接⊥,Vd.x ±接X 2,Vd.Y ±接Y 2。 2. 灯丝钮子开关拨向“示波管”一端,接通电源,示波管亮。 3. 调焦:调节栅压V G 旋钮,将辉度控制在适当位置;调节聚焦电压旋钮,使荧光屏上光点聚成一细点,光点不要太亮,以免烧坏荧光物质。 4. 光点调零:用万用表监测偏转电压V d (X 2,Y 2对地电压),同时调节Vd.x ±Vd.Y ±旋钮将V d 调零。这时光点应在中心原点,若不在,可调整X 调零(Y 调零)旋钮,使光点处于中心原点。 5. 测加速电压V 2:用万用表直流2500V 档“+”接V 2,“-” 接K ,调整面板右上方加速电压旋钮,选择一定的加速电压V 2。

大学物理实验讲义汇总

大学物理实验讲义 ()

目录 实验1 复摆 (4) 预习报告 (8) 实验2 弦振动的研究 (9) 预习报告 (13) 实验3 速度和加速度的测量 (14) 预习报告 (21) 实验4 动量守恒定律的验证 (22) 预习报告 (27) 实验5 空气中声速的测量 (28) 预习报告...................................................... 错误!未定义书签。实验6 RLC电路的稳态特性 (24) 预习报告...................................................... 错误!未定义书签。实验报告.. (34) 实验7 油滴法测定基元电荷 (46) 预习报告 (53) 实验8 用双臂电桥测量低值电阻 (54) 预习报告...................................................... 错误!未定义书签。实验9 牛顿环. (60) 预习报告 (67) 实验10 光电效应及普朗克常数的测定 (68) 预习报告 (73) 实验11 单缝衍射 (60) 预习报告...................................................... 错误!未定义书签。实验12 多缝的夫琅和费衍射. (79) 预习报告...................................................... 错误!未定义书签。

实验报告——速度和加速度的测量 (83) 实验报告——牛顿环 (88)

电子电路综合实验讲义全

实验选题一:烟雾报警器的设计实现 一、设计任务 烟雾报警有很多应用的地方,一些特定的地方对烟雾浓度也有一定限制,比如厨房、天然气存储的地方,还有吸烟的场所。现在要设计的课题就是需要监测指定环境内的烟雾浓度,并显示浓度的等级,系统根据不同的等级选择是否开启排风机,改善室内空气质量,并对高等级的烟雾浓度进行报警。 二、设计要求及其指标 要对浓度分级显示,并根据等级选择开启排风扇,对最高浓度报警。具体的要求就是: 1.能够检测指定环境内烟雾浓度并将烟雾浓度分为三级加以显示。 2.当浓度超过第二等级时系统自动开启风扇排风。 3.当浓度超过最高等级时系统发出声音警报。 4.当浓度超过最高等级时系统发出语音提示警报。 三、设计思路 1、浓度等级就是利用QM-N5讲烟雾浓度转化为模拟电压信号; 2、然后将模电信号转化为数字信号,这样就能进行等级划分,将不同浓度 划分为三个等级; 3、并用数码管显示出来; 4、烟雾浓度大于或等于2级时,控制风扇排风; 5、三级浓度时控制蜂鸣器报警; 6、语音录放芯片录音,并在三级烟雾浓度时,控制其放音。

这个上面的等级显示不一定非得是这里标的0、1、2。学生在做的时候可以自由选择显示,但是必须实现相应的功能。 四、所需准备的知识 首先需要查阅资料熟悉器件技术指标、器件原理、器件管脚和接法。 对烟雾浓度分级部分计算理论值。 输出控制部分熟悉CD4052的原理,并分析实验中如何实现输出控制,分析其逻辑实现。 显示部分分析编码器、反相器、数码管的连接。 风扇和蜂鸣器部分掌握三极管驱动的原理和继电器的原理。 语音报警部分使用的芯片管脚比较多,需要熟悉管脚接法和如何进行语音播报。 五、参考资料 1、罗杰;谢自美.电子线路设计实验测试.电子工业出版社

相关主题
文本预览
相关文档 最新文档