当前位置:文档之家› 高速铁路桥梁新型支座介绍

高速铁路桥梁新型支座介绍

高速铁路桥梁新型支座介绍
高速铁路桥梁新型支座介绍

高速铁路桥梁新型支座

摘要:高速铁路桥梁多采用静定结构,设计比较简单,但其中的支座系统由于与道床、钢轨相互作用,构造较为复杂。根据高速铁路桥梁支座系统的特殊要求,总结高速铁路桥梁可能采用的支座布置方案及支座类型,并结合工程实例介绍中国高速铁路桥梁新型支座的结构和材料。

关键字:高速铁路、桥梁、支座

1 引言

支座系统作为高速铁路桥梁的重要组成部分,对桥梁结构设计有着非常重要的影响。高速铁路桥梁多采用静定结构,设计比较简单,但其中的支座系统由于与道床、钢轨相互作用,构造较为复杂[1]。布置图如图1所示。

图1 支座布置图

为满足高速铁路大跨度桥梁的大承载力和大位移的需要,要求支座具有大吨位大位移性能,同时还要具有一定的减隔振性能。大吨位支座除具有一般支座的基本结构外,还需考虑设置一些附加的部件来适应其特殊的要求,从而提高支座的整体性能。由于受材料设计容许应力的限制,大吨位支座的尺寸较大,不适宜运营期的更换,因此,支座设计时应充分考虑结构的耐久性;同时由于高速铁路对工后沉降的控制严格,在一些特殊地段还需采用可调高支座进行调整。

2 铁路桥梁支座设计要求

铁路规范中对桥梁支座必须满足的功效进行了规定。

2.1 铁路桥梁设计基本要求

欧洲规范EN1337-1指出:结构的支座系统是支座和结构装置的组合,这个组合提供给结构必需的活动能力并传递力。基于此铁路桥梁设计应满足以下要求:(1)与竖向响应相比,制动力或牵引力导致的水平荷载非常高,需要将水平力传递到基础上,假如必须考虑地震力,此问题就会更加突出[2]。

(2)连续钢轨与结构的相互作用,产生的纵向荷载的传递。为尽可能地避免钢轨轴向效应导致的屈曲和错位,支座系统要能以最小的可能变形传递纵向荷载,于是排除橡胶支座的使用,除非它能与刚性约束组合使用。

(3)地震中桥墩的侧向位移可能异相,桥跨可能绕着竖轴扭转,因此要求支座系统有同样的变形能力。

(4)如果遭遇非常强的地震,在下列2种情况下支座可能受拉:当列车在桥上发生侧向倾覆时和当桥面系具有很高的抗扭刚度桥墩发生异相的侧向位移时。

2.2 高速铁路支座特殊要求

高速铁路支座除能满足普通桥梁的一般要求外,还能满足下列特殊要求:

①好的横向限位性能,可使桥上线路不致产生过大的水平横向折角或纵向爬行;

②严格控制竖向刚度,尽可能减小竖向变形,使列车通过两跨桥梁连接处产生的竖向折角较小,行车平稳;

③好的活动性,可以降低列车作用产生的支座与墩顶内力及高频振动对支座与连接部位的冲击,防止支座和支承垫石的损坏;

④尽可能采取必要的构造措施,使支座充分发挥减振隔振作用,减弱动力响应,增加行车舒适性。

3 铁路桥梁支座类型

桥梁支座按所使用材料和基本结构可分为铸钢支座、板式橡胶支座、盆式橡胶支座、球型支座4大类。铁路钢桥目前广泛采用的仍是铸钢支座。铸钢支座进一步可分为弧形支座、摇轴支座、辊轴支座(铰轴支座)等几种[3]。

3.1 盆式橡胶支座

盆式橡胶支座分为固定支座和活动支座2种。如图2所示。

注:(1)下座板;(2)上座板;(3)中间钢塞;(4)橡胶板;(5)紧箍圈;(6)密封胶圈;(7)PTFE板;(8)上下支座连接板;(9)、(10)、(11)螺栓。

图2 盆式橡胶支座

3.2 球型钢支座

球型支座分为固定支座和活动支座。如图3所示。

图3 球型钢支座活动支座结构示意图

与盆式橡胶支座相比,球型支座具有使用寿命长、承载力大、转动灵活、可适应梁端大转角和大位移等优点而得到广泛应用,常用于大跨度斜拉桥、拱桥等。如图4所示。

图4 球型支座转动套示意图

3.3铰轴滑板钢支座

铁路大跨度钢桥铸钢支座多采用辊轴或铰轴支座,前者是通过平面和圆柱面滚动接触实现转动,后者则通过铰接实现转动。如图5所示。

图5 TXZ 系列滑板式铰轴支座结构示意图

3.4 特殊要求的支座

抗震支座的产品系列非常多,如高阻尼盆式橡胶支座、抗震球型钢支座、铅芯支座等。抗震原理是利用减震器和侧面摩擦板吸收墩台传来的部分水平位移,以减少梁的位移[4]。如图6所示。

注:(1)上座板;(2)不锈钢板;(3)PTFE板;(4)中支座板;(5)橡胶板;(6)下座板;(7)橡胶减震器或弹簧;(8)密封底板及制动销、防跳装置等。

图6 抗震橡胶支座示意图

4 桥梁支座新结构和新材料

短工期、严安全、高标准、保证桥梁安全等对桥梁支座的结构和材料要求极高。

4.1 专用支座砂浆材料

对于铁路客运专线现浇梁盆式橡胶支座和圆柱面钢支座的安装,支座砂浆材料具有超早强性能、良好的膨胀填充性能、后期强度不倒缩是其安全、耐久的重要保障。大量研究表明,传统早强砂浆材料主要存在新拌浆体流动性不好、硬化浆体小时强度低、收缩变形大、抗裂性能差和后期抗折强度低等缺点[5]。

4.2 新型摩擦副材

由于盆式橡胶支座、球型支座,以及带聚四氟乙烯滑板的板式橡胶支座均使

用了由聚四氟乙烯滑板与不锈钢板组成的摩擦副,由此给我们一个启示,将铰轴支座中的水平移动滚动摩擦副用聚四氟乙烯滑板与不锈钢板组成的平面摩擦副代替,既可满足水平位移的要求,也避免了辊轴部位的病害。同时由于聚四氟乙烯板对不锈钢板的摩擦系数与辊轴的滚动摩擦系数相当,因而,滑移阻力也不会增大。在有润滑脂润滑的情况下,聚四氟乙烯板与不锈钢板的摩擦系数会更低,更利于水平位移的实现[6]。

新型(聚四氟乙烯滑板式)铰轴支座目前已用于渝怀铁路长寿长江大桥和宜万铁路万州长江大桥上,它与传统的铸钢支座相比,具有传力均匀,疲劳寿命长,建筑高度低,节省钢材等优点。既保留了铸钢支座的结构特征,又运用现代减摩材料,使铸钢支座的缺点得以克服。

4.3 新型盆式橡胶支座

芜湖长江大桥是迄今为止规模较大、投资较多的公、铁两用桥,由于该桥具有大跨度和走行重载列车的特点,在设计中采用了一系列新技术。新式的盘式支座就是其中一例。

盆式橡胶支座的单向活动支座,过去采用的上支座板为槽形钢板形式,下支座板

盆环两侧设置两条挡板与上座的横向水平力并限制桥梁的横向位移[7]。

5 总结

高速铁路桥梁尽管其静力构造比较简单,但由于道床和钢轨之间的相互作用以及支座系统间的相互作用使得高速铁路桥梁支座设计需要特别考虑评估[8]。除具有一般支座的基本结构外,还需考虑设置一些附加的部件来适应其特殊的要求,如高耐久性、减隔振性及可调高性能。最后要保证支座的整体优越性能,从设计、制造到安装的质量均需得到保障,同时要方便支座的安装与维护。

参考文献

[1] 王旭芳,高速铁路桥梁支座设计要求及应用技术[J],2011

[2] 冯亚成,高速铁路桥梁支座系统[J],2011

[3] 臧晓秋,大吨位和大位移球型支座设计[J],铁道建筑,2009(4)

[4] Agostino Marioni. Bearing Systems for High Speed Railway Bridges[C].Sixth

World Congress on Joints. Bearings and Seismic Systems for Concrete

Structures. Halifax.2006: 17-21.

[5] 周华新,高速铁路专用支座砂浆材料的试验研究[M],2010

[6] 袁明, 新型摩擦副材料在铁路桥梁铰轴钢支座中的应用[J],2005

[7] 赵世运,夏建中,高速铁路桥梁盆式橡胶支座在芜湖长江大桥上的应用[J],2010

[8] 张勇,杨富民.高速铁路架梁施工中自流平支座砂浆的研究及应用[J].铁道建筑,2011

德国高速铁路线上的桥梁结构型式

德国咼速铁路线上的桥梁结构型式 1. 设计速度250 km/h、全长327 km的德国汉诺威一维尔茨堡和全长104 km的曼海姆一斯 图加特两条新干线上,共有桥梁359座,总延长37 km。在359座桥中,152座跨越公路, 139座跨越铁路,其余68座为大型山谷桥和高架桥。 2. 从桥梁总长与线路总长之比来看,德国高速铁路上的桥梁数量远小于日本新干线和我国拟 建的京沪高速铁路线。 3. 德国这两条新干线上的桥梁几乎全部是预应力混凝土和钢筋混凝土桥。其原因一方面是混 凝土桥养护维修方便、造价也较低,另一更主要的的原因则是混凝土桥在高速行车条件下的噪音远 比钢桥低。 4. 在德国的这两条新干线上,大部分桥为预应力混凝土简支梁和连续梁。 5. 简支梁的墩中心距基本上采用44 m及58 m两种,25 m的只有少数几跨。墩中心距44 m 的梁跨度为42 m,58 m的梁跨度55.75 m。 6. 为这两条新干线,德国联邦铁路管理中心组织力量制定了一套标准设计图(参考设计), 标准设计均为单室单箱形截面预应力混凝土梁,桥面的横断面按《铁路新干线上桥梁的特殊 规程》的56条办理,规定的横断面如图432所示。 432时速超过200.M线路上的铁路桥桥而横斷面(德国)(单位:in) 7. 在标准设计中,箱梁底板宽 5.0 m,桥面板宽14.3 (道床部分9.1 m)。跨度42 m 的梁高 4.0 m,5 5.75 m的梁高5.0 m ;腹板与铅垂方向成15 0.6 m,支座处0.7 m;底板的一般厚度为0.35 m,支座处0.6m;梁端还设有0.8 m厚的横隔板,横隔板设有可

供维修人员及小车通行的洞。

中国高速铁路桥梁建设发展

中国高速铁路桥梁建设的发展 摘要:随着我国经济社会的迅速发展,对各种交通方式的需求的增加,很大程度上刺激了铁路运输的发展。面对激烈的竞争,铁路运输开始转向高速化、重载化和多式运输的综合性方向发展,进而促使中国高速铁路网络的进一步完善。了解中国高速铁路桥梁建设的发展,需要在知道其具体应用的基础上,分析中国高速铁路桥梁建设的技术特点和制约因素,并对其的进一步发展加以展望。abstract: with china’s rapid economic and social development, the demands for the various transport modes are rapidly increasing, so it largely stimulated the development of rail transport. faced with fierce competition, rail transport is developing towards the comprehensive direction of high-speed, heavy and multi-modal transport, thereby promoting the further improvement of china high-speed rail network. to learn the development of china high-speed railway bridge construction, it needs to know the specific application, based on that, analyze its technical characteristics and constraints, and outlook its further development. 关键词:高速铁路;桥梁建设;技术特点;制约因素;发展 key words: high-speed rail;bridge construction;technical characteristics;constraints;development

高速铁路桥梁综述

高速铁路桥梁综述 【摘要】高速铁路桥梁在高铁建设中起到了至关重要的作用,我国高速铁路桥梁的建设发展迅速,与实际工程结合中也凸显其特色。本文全面介绍了高速铁路桥梁的特点,我国高速铁路桥梁的主要设计标准及主要结构型式,提出了在基础理论研究、新技术的应用方面与国外存在的差距及急需解决的问题。 【关键词】高速铁路桥梁;发展;特点;结构形式 前言 高速铁路桥梁可分为高架桥、谷架桥和跨越河流的一般桥梁。其中,高架桥用以穿越既有交通路网、人口稠密地区及地质不良地段,通常墩身不高,跨度较小,桥梁往往长达十余公里;谷架桥用以跨越山谷,跨度较大,墩身较高。由于桥梁建设投资规模大,列车高速运行时对桥上线路的平顺性要求高,特别是采用无渣轨道技术后,对桥梁的变形控制提出了更高的要求,因此高速铁路桥梁是我国高速铁路建设中重点研究的问题之一。 1 高速铁路桥梁的发展现状: 桥梁建设作为高速铁路土建工程的重要组成部分,主要功能是为高速列车提供平顺、稳定的桥上线路,以确保运营的安全和旅客乘坐的舒适。以京沪高速铁路为例,它经过的区域是东部经济发达地区,京沪高速铁路桥梁总长达1060km,桥梁比重为80%。我国通过借鉴德国、日本等国高速铁路桥梁先进技术和成功建设经验,逐渐完善技术的同时形成自己的特色。 2 高速铁路桥梁的特点 桥梁是高速铁路土建工程的重要组成部分,与普通铁路桥梁相比,在数量、设计理念及方法、耐久性要求、养护维修等诸多方面都存在较大差异。其特点可归纳为以下几个方面: (1)高架桥所占比例大。主要原因是在平原、软土以及人口和建筑密集地区,通常采用高架桥通过。 (2)大量采用简支箱梁结构形式。根据我国高速铁路建设规模、工期要求和技术特点,通过深入的技术比较,确定以32m简支箱梁作为标准跨度,整孔预制架设施工。 (3)大跨度桥多。据统计,在建与拟建客运专线中,100m以上跨度的高速桥梁至少在200座以上。其中,预应力混凝土连续梁桥的最大跨度为128m,预应力混凝土刚构桥的最大跨度为180m。

高速铁路桥梁高墩专项施工方案

目录 1.编制依据和原则.................................................................. - 1 - 1.1.编制依据.................................................................. - 1 - 1.2.编制原则.................................................................. - 1 - 2.工程概况........................................................................ - 1 - 2.1.工程概况.................................................................. - 1 - 2.2.气象特征.................................................................. - 2 - 2.3.水文地质.................................................................. - 2 - 3.人员及机械部署.................................................................. - 2 - 4.施工进度计划.................................................................... - 3 - 5.高墩施工方案.................................................................... - 4 - 5.1.圆端形实体高墩施工........................................................ - 4 - 5.2.圆端形空心高墩施工....................................................... - 10 - 6.安全保证措施................................................................... - 16 - 6.1制度保证措施.............................................................. - 16 - 6.2机械安全保证措施.......................................................... - 18 - 6.3高空作业安全保证措施...................................................... - 18 - 6.4桥梁施工安全基本要求...................................................... - 20 - 7.质量保证措施................................................................... - 20 - 7.1质量保证体系.............................................................. - 20 - 7.2 质量保证措施............................................................. - 23 - 7.3 冬季施工措施............................................................. - 28 - 7.4 夏季施工措施............................................................. - 31 - 8.环境保护措施................................................................... - 34 - 8.1 临时工程环保措施......................................................... - 34 - 8.2 废水、废渣处理措施....................................................... - 35 - 8.3防止空气污染和扬尘措施.................................................... - 35 - 8.4施工噪音控制措施.......................................................... - 35 - 8.5施工水土保持措施.......................................................... - 36 - 9.文明施工措施................................................................... - 36 - 9.1文明施工管理措施.......................................................... - 36 - 9.2文明施工措施.............................................................. - 37 -

铁路支座介绍

铁路桥梁球型支座产品 使 用 介 绍 中国船舶重工集团公司第七二五研究所 洛阳双瑞特种装备有限公司 二OO九年七月

目 录 一、铁路常用支座及选用 (1) 二、球型支座结构与制造流程 (2) 三、球型支座技术参数与性能 (4) 四、球型支座的运输和贮存 (5) 五、球型支座安装工艺 (5) 六、球型支座的保养及维护 (8) 七、支座安装过程中可能存在的问题及处理办法··9

铁路桥梁球型支座产品使用介绍 一、铁路常用支座及选用 1、支座产品功能与分类 桥梁支座是连接桥梁上部结构和下部结构的重要结构部件,其主要作用是将桥梁上部结构的反力(竖向力和水平力)和变形(位移和转角)可靠地传递给桥梁下部结构,从而使结构的实际受力情况与计算的理论数据相符合。 桥梁支座产品,按其结构型式可分为球型支座、盆式橡胶支座、板式橡胶支座、铰轴支座、转体球铰等;按其使用功能又可分为普通支座、抗震支座、减隔震支座、拉压支座、抗风支座等;按其使用材料及寿命,又可分为普通环境用支座、低温用支座和耐蚀支座等。 2、桥梁支座产品的选用 桥梁支座产品,主要应用于铁路桥梁、公路桥梁、城市立交桥、高架桥等项目中,也可用于大型建筑结构中。在不同类型的桥梁中,设计院一般按照桥梁的结构型式、桥梁上部结构的反力及变形大小、设置支座的位置及大小、桥梁上部行车的类型(火车或汽车)、桥梁所处地震区域、桥梁所处的环境情况来选取适当的桥梁支座产品。 1)公路桥梁 对于高速公路桥梁和一些小型公路桥梁,由于其跨径小、上部结构的反力及变形小,一般选用板式橡胶支座产品。对于跨公路、跨铁路、跨江河、跨海的桥梁,由于其跨径较大、上部结构的反力及变形大,一般选用盆式橡胶支座或球型支座产品。 2)铁路桥梁 铁路桥梁设计为保证其规范性,一般采用专图形式进行设计,各设计院在设计中直接根据实际情况进行选图设计。目前形成专图的支座产品主要有铸钢支座(包括摇轴、辊轴和铰轴支座)、盆式橡胶支座和柱面支座、球型支座等。球型支座由于其承载力高、传力均匀、耐久性好等特点,多用于连续梁及有特殊要求的桥梁设计中。 3)其它特殊支座选用 对于处于地震带上的公路、铁路桥梁,为减小地震灾害,现多选用抗震支座或减隔震支座产品。对于上部结构存在向上的反力的桥梁,一般选用拉压支座。对于悬索桥、斜拉桥等存在漂浮结构的桥梁,在梁体横向一般需要选用抗风支座产品。对于沿海及跨

高铁桥梁同步顶升更换支座施工方案

高铁桥梁同步顶升更换支座施工方案 同步顶升施工广泛应用于桥梁支座更换和桥面标高改造领域,以往的桥梁顶升施工多已手动控制和人工监测的形式进行,存在千斤顶上升和下降高度不一致,同步精度无法控制的弊病,给桥梁上部结构造成不小的安全隐患。湖南华鼎建筑科技有限公司自成立以来一直致力于桥梁智能同步顶升系统的研发,公司开发的智能同步顶升设备用PLC模块控制泵站液压阀,通过监控电脑对顶升系统主机下达指令,可对千斤顶的位移和荷载进行在线监测与控制,把各顶升点的位移差精确控制在±0.5mm以内,实现了真正意义上的桥梁同步顶升。 2013年,以我公司自主开发的智能同步顶升系统为施工设备,我们对武广高铁郴州段和沪昆高铁浏阳段几座桥梁进行了同步顶升施工,通过顶升将变形的支座上座板进行了更换,确保了高铁的安全高效运行。 高铁箱梁顶升施工的工序流程:

一、施工总体设计 1、由项目经理统一组织安排,领导指挥,成立专门的施工指挥小组。施工前还要建立完善施工组织,责任落实到人,明确各岗位责任和联络方法, 2、根据施工图纸和现场环境状况,确定顶升施工方案。 3、施工前对班组工人进行施工技术和安全交底。 二、施工准备 1、现场所需机具设备、材料等全部到位; 2、高铁工务段停电,将桥面纵向约束解除,松开墩顶连接段桥面轨道扣件和电缆槽,并在轨面设置高程监测点,测量轨面初始标高; 3、搭建施工作业平台,清理墩顶杂物; 4、在梁体设置位移和应力监测点,每孔梁设置横向和纵向位移监测点各2点,防止顶升过程中梁体发生滑移和结构破坏; 5、拧松支座连接螺栓。 三、安装千斤顶和智能同步顶升设备 1、两座大桥简支梁均采用自重900t长32m的预制箱梁,桥墩上设球形支座4个,每孔梁端两个。根据设计文件得知墩上梁体自重与二期恒载合计1700t,施工时在墩顶布置150t千斤顶20个,可以提供3000t的顶力,安全储备系数大于1.5,足以满足施工所需。 2、墩顶先用砂浆找平,千斤顶安装在专用钢垫块上,保证千斤顶轴线垂直,油缸顶在箱梁底板上。每个顶设一个位移传感器进行同步位移监测。千斤顶布置形式如图1和图2。

铁路桥梁的类型

铁路桥梁的类型 桥梁种类众多,按用途分,有铁路桥、公路桥、公铁两用桥,人行桥、运水桥(渡槽)及其他专用桥梁等。在铁路桥梁中,如果按跨越障碍来区分,有跨河桥、跨谷桥、跨线桥(又称立交桥),高架桥等。按采用材料来区分,有钢桥、钢筋混凝土桥、预应力混凝土桥、圬工桥(包括砖桥、石桥、混凝土桥)等。按桥面在桥跨结构中的不同位置来区分,有上承式桥、下承式桥和中承式桥。上承式桥,它的桥面布置在桥跨结构的顶面,也就是桥跨结构的上部承受荷载;下承式桥由桥跨结构的下部来承受荷载;而中承式桥,自然是由桥跨结构的中部来承受荷载,主要用于拱式桥跨结构。 一般而言,我们都习惯按受力特点来区分桥梁,比如梁式桥、拱式桥、悬索桥、斜拉桥、刚构桥和组合体系桥等。 铁路桥梁采用最多的是梁式桥。它是一种使用最广泛的桥梁型式,可细分为简支梁桥、连续梁桥和悬臂梁桥。所谓简支梁是指梁的两端分别为铰支(固定)端与活动端的单跨梁式桥。连续梁桥是指桥跨结构连续跨越两个以上桥孔的梁式桥。在桥墩上连续,在桥孔内中断,线路在桥孔内过渡到另一根梁上的称为悬臂梁,采用这种梁的桥称为悬臂梁桥。梁式桥的梁身可以做成实腹的,也可做为空腹的,空腹的称为桁梁。桁梁也叫桁架。桁架的类型五花八门,有三角形、双斜杆形、菱格形、米字形、多腹杆密格形、K形、W形、空腹形等。

拱式桥由拱上建筑、拱圈和墩台组成。在竖直荷载作用下,作为承重结构的拱肋主要承受压力,拱桥的支座既要承受竖向力,又要承受水平力,因此拱式桥对基础与地基的要求比梁式桥要高。拱式桥按桥面位置可分为上承式拱桥、中承式拱桥和下承式拱桥。 悬索桥,是桥面支承在悬索(也称大缆)上的桥,又称吊桥。它是以悬索跨过塔顶的鞍形支座锚固在两岸的锚锭中,作为主要承重结构。在缆索上悬挂吊杆,桥面悬挂在吊杆上。由于这种桥可充分利用悬索钢缆的高抗拉强度,具有用料省、自重轻的特点,是现在各种体系桥梁中能达到最大跨度的一种桥型。 斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。它由梁、斜拉索和塔柱三部分组成。斜拉桥是—种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。

高速铁路桥涵工程施工质量验收标准

根据最新下发的施工质量验收标准,我部将简支梁架设规范摘录出来,便于各部门学习: 《高速铁路桥涵工程施工质量验收标准》TB10752-2010 第一章架桥机架设预应力混凝土简支箱梁 1、架梁 8.4.1梁体规格和质量应符合设计要求。(P63) 8.4.2梁体存放和运输支点位置应符合设计要求。且支点应位于同一平面上,箱梁同一端支点相对高差不得大于2mm。架设时吊点位置应符合设计要求。(P64) 8.4.2预制箱梁架设落梁应采用支点反力控制,支承垫石顶面与支座底面间隙灌浆硬化前,每个支点反力与四个支点反力的平均值之差不得超过±5%。支座砂浆强度达到20MPa,千斤顶撤出后方可通过运架设备。(P64) 8.4.4预制箱梁架设后的相邻梁跨梁端桥面之间、梁端桥面与相邻桥台胸墙顶面之间的相对高差不得大于10mm。预制箱梁桥面高程不得高于设计高程,也不得低于设计高程20mm。(P64) 8.4.5 预制箱梁支承垫石顶面与支座底面间的砂浆厚度不得小于20mm,也不得大于30mm。(P64) 8.4.6梁体架设后应梁体稳固,梁缝均匀,梁体无损伤。(P64) 2、支座 15.1.1支座安装前应检查桥梁跨度、支承垫石尺寸和高程、预 留锚栓孔位置和尺寸等。支承垫石和锚栓孔应清理干净,做到无

泥土、无浮沙、无积水、无冰雪和油污等杂物,并对支承垫石顶面进行凿毛处理。(P158) 15.1.2预制箱梁架设完成后应保证每个支座反力与四个支座反力的平均值相差不超过±5%。(P158) 15.1.3支座防尘罩应及时安装,并应做到严实、牢固、栓钉齐全,防尘罩开启不应与防落梁装置或梁端限位装置相抵触。(P158) 15.2 支座安装 15.2.1支座品种、规格、质量和调商量等应符合设计要求和相关标准的规定。(P158) 15.2.2支座的安装位置及方向应符合设计要求。同一座桥梁上固定支座和纵向活动支座应安装在梁的同一侧,横向活动支座与多向活动支座应安装在梁的另一侧。(P158) 15.2.3固定支座上下座板应互相对正,活动支座上下座板横向应对正,纵向预偏量应根据支座安装施工温度与设计安装温度之差和梁体混凝土未完成收缩、徐变量及弹性压缩量计算确定,并在各施工阶段进行调整,当体系转换全部完成时梁体支座中心应符合设计要求。(P159) 15.2.4支座锚栓应拧紧,其埋置深度和外露长度应符合设计 要求。(P159) 15.2.5支座砂浆的类别和质量应符合设计要求,其施工及检验应符合铁道部现行《铁路混凝土工程施工质量验收标准》 (TB10424-2010)第9.9.6条~第9.9.13条的规定。(P159)

铁路桥梁基础知识

铁路桥梁基础知识

第一章 桥 梁 第一节 基本知识 一、概述 桥梁是跨越河流、山 谷、线路及各种障碍物的架空结构,按照不同的分类方法,桥梁可分为很多种类:按照桥梁长度分有特大桥、大桥、中桥、小桥;按使用材料分主要有木桥、钢桥、圬工桥、石桥、混合桥、结合梁桥;按梁跨结构分主要有梁桥、拱桥、斜拉桥、悬索桥;按按桥面位置分有上承式桥、下承式桥、中承式桥。 桥梁由上部的梁或(和)拱、支座、墩(台)、基础组成。也有把桥梁分为上部结构和下部结构两部分。上部结构:包括梁或(和)拱、桥面、支座等跨越桥孔的结构。下部结构:包括桥墩、桥台及下面的基础。桥梁附属建筑物:包括护锥、护坡、护底、护岸等防护建筑物;有时还需修建导流堤、拦沙坝等调节河流建筑物。 桥梁的特点:造价高,构造复杂,技术性强,一旦遭受损坏加固或修复比较困难。 二、高速铁路桥梁基本知识 高速铁路桥梁的总体要求是简洁、耐久、美观,便于施工和养护维修,具有较大的竖向、横向、纵向和抗扭刚度,小的工后沉降,具有良好的高速行车动力性能,并满足限界、通航、立交净空、渡洪、抗震要求。 高速铁路桥梁设计使用年限规定为100年,设计洪水频率百年一遇。设计活载采用ZK活载。对高速铁路桥梁首次提出在预定作用和预定的维修和使用条件下,主要承力结

钢桁拱桥 钢桁梁斜拉桥 预应力混凝土连续钢构—钢管拱组合桥 预应力混凝土连续刚构桥

预应力混凝土连续梁—钢管拱组合桥 预应力混凝土连续梁 钢箱梁系杆拱 钢箱叠合拱桥 预应力混凝土简支梁桥 预应力混凝土简支梁桥和桥上CRTSⅡ型板式轨道基本组成

第二节 高速铁路桥涵技术特点 1.墩台基础以桩基础为主 为确保高速铁路正常行车和减少维修量,墩台大量采用桩基础,以严格控制墩台基础工后沉降。常用跨度简支梁,根据墩高及地质条件采用直径1.0m或1.25m桩基础;大跨度连续梁及其它特殊形式的采用直径1.5~3.4m桩基础。 2.一字型桥台 高速铁路的设计活载ZK活载较中—活载小很多,在结构受力上,桥台力学指标不控制桥台设计,无需采用大体积重力式桥台,而大量采用一字型桥台,一字型桥台较好地适用于台后路基填土高度10m以下桥梁。 双线一字型桥台(单位:cm)

(整理)18京沪高速铁路桥梁概况.

京沪高速铁路桥梁概况 高速办王兴铎 内容摘要:本文从京沪高速铁路桥梁的特点、设计和施工三方面对京沪铁路桥梁的前期研究及现状做简要介绍。 一、京沪高速铁路桥梁的特点 高速铁路具有安全、高速、舒适的巨大优势,这也对基础设施提出了更高的要求,要求线下结构具有良好的平顺性。桥梁作为重要的基础设施和线下结构的重要组成部分,能否满足安全、高速、舒适的要求,对高速铁路全线具有举足轻重的作用。 桥梁结构如何顺应高速铁路的要求,与既有线铁路桥梁相比有那些特点。概括起来说就是:一小、二大、三重、四多。 1、一小,就是变形小。 为保证高速铁路线路的平顺性,必须要求高速铁路桥梁的变形要小。引起桥梁变形的主要因素有:梁体自重、二期恒载、列车活载、施加预应力及温度应力等。受这些内外部因素的影响桥梁结构势必要产生变形,但我们对这些变形一定要加以限制,具体的要求如下: (1)梁体的竖向挠度的要求 在ZK活载(ZK活载详见第二节)作用下梁体的竖向挠度应不小于表1所示的限值。 表1 京沪高速铁路梁体竖向挠度限值(L为桥梁跨度)

实际设计为:在设计荷载作用下1/3000----1/4000,在运营荷载作用下1/7000----1/8000。 (2)梁端竖向折角不应大于2‰;水平折角不应大于1‰。 (3)拱桥和刚架桥的竖向挠度,除考虑ZK活载的静力作用外,尚应计入温度变形的影响。此时梁体竖向挠度,按下列情况之不利者取值,并满足本条所列限值的要求。 1)ZK活载静力作用下产生的挠度值与0.5倍温度引起的挠度值之和; 2)0.63倍ZK活载静力作用下产生的挠度值与全部温度引起的挠度值之和; (4)在列车摇摆力、离心力、风力和温度的作用下,梁体横向的水平挠度应小于或等于梁体计算跨度的1/4000,为竖向的1/2。 (5)ZK活载作用下,梁体允许最大扭转角应为1‰。 (6)预应力混凝土梁的徐变上拱值应严格控制。线路铺设后,有渣桥面梁的徐变上拱值不宜大于20MM,无渣桥面梁的徐变上拱值不应大于10MM。上拱度的控制方法:a施加预应力的方法, b预应力的设置, c张拉完成后静停2个月。 (7)墩台基础的沉降量应按恒载计算,对于外静定结构,其拱后沉降量不应超过下列容许值:(墩顶位移:纵向5L1/2mm,横向4L1/2mm,并且不大于5mm) 对于有渣桥面桥梁:墩台均匀沉降量 50mm 相邻墩台沉降量之差 20mm

高速铁路设计规范条文桥梁

7 桥涵 一般规定 7.1.1 桥涵的洪水频率标准,应符合现行《铁路桥涵设计基本规范》()中Ⅰ级铁路干线的规定。 7.1.2 桥涵结构应构造简洁、美观、力求标准化、便于施工和养护维修,结构应具有足够的竖向刚度、横向刚度和抗扭刚度,并应具有足够的耐久性和良好的动力特性,满足轨道稳定性、平顺性的要求,满足高速列车安全运行和旅客乘座舒适度的要求。 7.1.3 桥涵主体结构设计使用寿命应满足100年。 7.1.4 桥涵结构所用工程材料应符合现行国家及行业标准的规定。 7.1.5 桥梁上部结构型式的选择,应根据桥梁的使用功能、河流水文条件、工程地质情况、轨道类型以及施工设备等因素综合考虑。 桥梁上部结构宜采用预应力混凝土结构,也可采用钢筋混凝土结构、钢结构和钢-混凝土结合结构。 预应力混凝土简支梁结构,宜选用箱形截面梁,也可根据具体情况选用整体性好、结构刚度大的其他截面型式。 7.1.6 桥梁结构应设计为正交。当斜交不可避免时,桥梁轴线与支承线夹角不宜小于60°,斜交桥台的台尾边线应与线路中线垂直,否则应采取特殊的与路基过渡措施。 7.1.7 桥面布置应满足轨道类型、桥面设施的设置及其养护维修的要求。 7.1.8 涵洞宜采用钢筋混凝土矩形框架涵。 7.1.9 相邻桥涵之间路堤长度,要综合考虑高速列车行车的平顺性要求、路桥(涵)过渡段的施工工艺要求以及经济造价等因素合理确定。两桥台尾之间路堤长度不应小于150m,两涵(框构)之间以及桥台尾与涵(框构)之间路堤长度不应小于30m,对于特殊情况路堤长度不满足上述长度要求时,路基应特殊处理。 7.1.10 桥涵设置应做好和自然水系、地方排灌系统的衔接,并满足铁路路

高速铁路桥梁新型支座介绍

高速铁路桥梁新型支座 摘要:高速铁路桥梁多采用静定结构,设计比较简单,但其中的支座系统由于与道床、钢轨相互作用,构造较为复杂。根据高速铁路桥梁支座系统的特殊要求,总结高速铁路桥梁可能采用的支座布置方案及支座类型,并结合工程实例介绍中国高速铁路桥梁新型支座的结构和材料。 关键字:高速铁路、桥梁、支座 1 引言 支座系统作为高速铁路桥梁的重要组成部分,对桥梁结构设计有着非常重要的影响。高速铁路桥梁多采用静定结构,设计比较简单,但其中的支座系统由于与道床、钢轨相互作用,构造较为复杂[1]。布置图如图1所示。 图1 支座布置图 为满足高速铁路大跨度桥梁的大承载力和大位移的需要,要求支座具有大吨位大位移性能,同时还要具有一定的减隔振性能。大吨位支座除具有一般支座的基本结构外,还需考虑设置一些附加的部件来适应其特殊的要求,从而提高支座的整体性能。由于受材料设计容许应力的限制,大吨位支座的尺寸较大,不适宜运营期的更换,因此,支座设计时应充分考虑结构的耐久性;同时由于高速铁路对工后沉降的控制严格,在一些特殊地段还需采用可调高支座进行调整。 2 铁路桥梁支座设计要求 铁路规范中对桥梁支座必须满足的功效进行了规定。

2.1 铁路桥梁设计基本要求 欧洲规范EN1337-1指出:结构的支座系统是支座和结构装置的组合,这个组合提供给结构必需的活动能力并传递力。基于此铁路桥梁设计应满足以下要求:(1)与竖向响应相比,制动力或牵引力导致的水平荷载非常高,需要将水平力传递到基础上,假如必须考虑地震力,此问题就会更加突出[2]。 (2)连续钢轨与结构的相互作用,产生的纵向荷载的传递。为尽可能地避免钢轨轴向效应导致的屈曲和错位,支座系统要能以最小的可能变形传递纵向荷载,于是排除橡胶支座的使用,除非它能与刚性约束组合使用。 (3)地震中桥墩的侧向位移可能异相,桥跨可能绕着竖轴扭转,因此要求支座系统有同样的变形能力。 (4)如果遭遇非常强的地震,在下列2种情况下支座可能受拉:当列车在桥上发生侧向倾覆时和当桥面系具有很高的抗扭刚度桥墩发生异相的侧向位移时。 2.2 高速铁路支座特殊要求 高速铁路支座除能满足普通桥梁的一般要求外,还能满足下列特殊要求: ①好的横向限位性能,可使桥上线路不致产生过大的水平横向折角或纵向爬行; ②严格控制竖向刚度,尽可能减小竖向变形,使列车通过两跨桥梁连接处产生的竖向折角较小,行车平稳; ③好的活动性,可以降低列车作用产生的支座与墩顶内力及高频振动对支座与连接部位的冲击,防止支座和支承垫石的损坏; ④尽可能采取必要的构造措施,使支座充分发挥减振隔振作用,减弱动力响应,增加行车舒适性。 3 铁路桥梁支座类型 桥梁支座按所使用材料和基本结构可分为铸钢支座、板式橡胶支座、盆式橡胶支座、球型支座4大类。铁路钢桥目前广泛采用的仍是铸钢支座。铸钢支座进一步可分为弧形支座、摇轴支座、辊轴支座(铰轴支座)等几种[3]。 3.1 盆式橡胶支座 盆式橡胶支座分为固定支座和活动支座2种。如图2所示。

高速铁路桥梁结构型式

高速铁路桥梁结构型式 高速铁路上的桥梁,应能在列车达到最高设计速度的条件下,满足行车安全和旅客乘坐的舒适度。因而桥梁结构必须具有足够的强度、稳定性、刚度和耐久,并且保持桥上线路的平顺状态。 (一)桥梁结构体系 1.小跨度刚架桥的截面形式以现浇板梁为宜;简支梁与连续梁桥的截面以单箱单室箱梁为宜;板梁的截面推荐用日本高架桥的截面形状,箱梁截面推荐采用德国新干线标准设计截面。钢桁架桥的桥面系以采用正交异性板为宜;组合梁桥也以箱形截面形状为宜。 2. 混凝土简支梁结构构造简单、技术成熟、架设快捷、更换方便,是我国既有铁路桥梁的主要型式,总数90%以上。近年来,拼装式移动支架造桥机研制成功,使混凝土简支梁的跨度达56。这就更 加扩大了铁路混凝土简支梁的使用范围。在特殊条件下,其它型式的混凝土简支梁,如槽形梁等,也可采用。 3. 混凝土连续梁70年代以来,在我国新线铁路上修建了大量混凝土连续梁,以扩大混凝土梁桥的使用范跨度多在40~80m之间,最大达 84m,成为中等跨度铁路混凝土梁桥的主要型式。作为一个实例,在小跨度范围内应用不多,钱塘江二桥的引桥,采用了7 ~9孔1联,共6孔跨度32 联47孔跨度32m等高度箱形截面双线铁路连续梁桥,是目前我国跨度最小的铁路预应力混凝土连续梁桥。 4. 混凝土刚架桥是一种空间超静定结构,整体性好,具有较好的刚度和抗震性能。在日本高速铁路高架桥中占有十分重要的地位。

刚架桥多为3 ~ 5 孔一联,跨度 6 ~ 8 m 左右,联间以简支挂 孔相连。填土高度7~12 m,基础多采用打入桩和扩大基础型式。与我国京沪高速铁路沪宁段的线路和地质情况相近,具有较好的参考价值。 (二)上部结构型式 1. 分离式结构与整体式结构的比较。在双线并列的情况下,梁部结构可采用两单线桥的分离式结构,也可采用双线桥整体式结构,对于中等跨度混凝土连续梁结构,考虑到一般采用悬臂灌注法施工。尤其重要的是,双线单箱整体式结构,虽不能有效降低桥梁的动力系数,但从车辆运动平稳性考虑,由于结构自重增大,旅客乘坐舒适度有进一步改善,是值得重视的。 2.箱形截面和T形截面的比较。箱形截面整体性强,抗扭刚度大是当代混凝土桥,特别是大跨度桥的主要形式。它用于高速行车的桥梁上动力性能更显得优越。这种截面形式混凝土梁的主要缺点是,在架设过程中需在桥位上进行梁片间的连结工作。特别是对于高速铁路桥梁,当需进行工地横向预应力钢筋的张拉工作,费工费时,影响架桥进度。分片式简支T梁是梁式桥构造简单,最易设计为各种标准跨径的装配式结构,施工工序少,架设程序固定,在多孔简支梁桥中,由于各跨构造和尺寸简化了施工管理工作,降低了施工费用,也便于养护和维修。整孔简支箱梁在国外高速铁路中小跨度桥梁中常被采用,整孔简支箱梁具有受力简单、明确、型式简洁、外形美观、抗扭刚度

高速铁路桥梁设计

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 高速铁路桥梁设计 主讲人: 勘察设计院 京沪北京

目录 1.概述 ........................................ 错误!未定义书签。2.高速铁路桥梁设计的一般规定和原则 ............ 错误!未定义书签。 2.1 高速铁路桥涵设计注重结构的耐久性设计....... 错误!未定义书签。 2.2 高速铁路桥涵具备良好的动力性能............. 错误!未定义书签。 2.3 高速铁路桥优先选用预应力混凝土结构......... 错误!未定义书签。 2.4 高速铁路混凝土梁部结构的形式以箱形截面为主. 错误!未定义书签。 2.4.1 中小跨混凝土梁部结构.................. 错误!未定义书签。 2.4.2 跨度16m及以下的桥梁.................. 错误!未定义书签。 2.5 高速铁路梁型的选用......................... 错误!未定义书签。 2.5.1 简支梁................................ 错误!未定义书签。 2.5.2 连续梁................................ 错误!未定义书签。 2.5.3 其它梁型.............................. 错误!未定义书签。 2.6 高速铁路梁型有关梁体斜交的规定............. 错误!未定义书签。 2.7 高速铁路桥涵建筑结构的间距................. 错误!未定义书签。3.高速铁路桥梁设计荷载 ........................ 错误!未定义书签。 3.1 荷载组合................................... 错误!未定义书签。 3.2 竖向荷载设计图式........................... 错误!未定义书签。 3.3 动力系数................................... 错误!未定义书签。 3.4 离心力折减系数............................. 错误!未定义书签。 3.5 横向摇摆力................................. 错误!未定义书签。 3.6 脱轨荷载................................... 错误!未定义书签。 3.7 汽车撞击力................................. 错误!未定义书签。 3.8 其他荷载................................... 错误!未定义书签。4.高速铁路桥梁结构变形、变位和自振频率的限值 .. 错误!未定义书签。 4.1 梁体的竖向、水平变形和扭转................. 错误!未定义书签。 4.1.1 高速列车安全性和舒适性的动力响应评判标准错误!未定义书

高速铁路桥梁主要设计原则

高速铁路桥梁主要设计原则 1. 一般原则 为了满足高速列车安全运行和旅客乘坐舒适度的要求,高速铁路桥梁结构应具有安全舒适,造型简洁,设计标准化,便于施工架设和养护维修的特点,并须具有足够的耐久性和良好的动力性能。正是基于上述基本要求,桥梁上部结构一般采用预应力混凝土结构,下部结构一般采用混凝土或钢筋混凝土结构。跨度大于或等于20m的梁部结构,采用双线整孔箱形截面梁,必要时,也可采用两个错孔布置的单线箱形截面梁。跨度小于20m的梁部结构,一般采用钢筋混凝土刚构、框构和多片式T梁,多片式T梁需施加横向联结形成整体桥面。简支梁桥的上部结构一般采用架桥机架梁,中小跨度连续梁桥一般采用架桥机架设后连续张拉的施工方法,有条件的地方,也可采用满布支架现浇施工。大跨度预应力混凝土梁采用悬臂灌注施工。 高速铁路桥梁设计主要依据《京沪高速铁路设计暂行规定》(以下简称《暂规》)、《铁路桥涵基本设计规范》、《铁路桥涵钢结构设计规范》、《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》、《铁路桥涵混凝土和砌体结构设计规范》、《铁路桥涵地基和基础设计规范》、《铁路工程抗震设计规范》、《新建铁路桥上无缝线路设计暂行规定》等规程或规范。根据上述规范,高速铁路桥梁的主要设计原则主要体现在以下几个方面: (1)设计活载采用ZK活载,动力系数、离心力、制动力、横向摇摆力、脱轨荷载等均按《暂规》计算,并考虑由于桥上铺设超长无缝线路而产生的长钢轨纵向力。 (2)为了保证桥上轨道的平顺性和结构具有良好的动力性能,对结构刚度和基频进行严格控制。 (3)为了保证桥上无缝线路保持正常的使用状态,增加了墩台最小纵向水平线刚度限值的要求。 (4)对基础工后沉降及不均匀沉降严格限制。 (5)提高桥梁结构的整体性。 (6)桥面构造更为合理,满足各种桥面设施的安装要求,采取了提高结构耐久性、减振降噪等措施,满足养护维修的要求。 2. 桥涵设计细则 (1)梁跨结构及标准跨度 1)高速正线V≥200Km/h时,标准梁跨采用京沪高速铁路标准梁;200Km/h>V≥160Km/h 时可采用秦沈线标准梁。 采用的标准梁跨有: 多片式简支T梁:L=12、16m。 简支箱梁:L=20、24、32、40m。 中小跨度连续梁:3×20、2×24、3×24、2×32、3×32、4×32、2×40。 连续箱梁:32+48+32m、40+64+40m、48+80+48m。 连续结合梁:32+40+32、40+50+40、40+56+40m。 2)高速动车段走行线、高中速联络线V≤160Km/h时,可采用采用普通梁。 (2)桥跨布置 1)除受控制点影响外,尽量按等跨布置,等跨布置以32m、24m梁跨为主。一座桥尽量采用同一梁跨类型。 2)跨越河堤的桥孔应尽量一孔跨越,堤上及边坡上不宜设墩,如确有困难,桥墩应设在背水坡。特殊困难时,另行研究。 3)斜交过路过河时,尽量采用较大跨度通过,可采用双线圆形桥墩,可采用异形墩或带洞式背靠背T台进行调孔。

高速铁路桥桥梁工程毕业设计

高速铁路桥桥梁工程毕业设计 1 绪论 1.1 概述 自1964年世界上第一条高速铁路—日本东海道新干线建成以来,日本、法国、德国、西班牙、比利时、英国、韩国等国已经建成并投入使用的时速250km 高速铁路已达6350多km。可以说铁路客运专线是一个国家经济社会发展到一定程度是适应交通运输要求的必然产物。按照国务院审议通过的?中长期铁路网规划?,到2020年,我国铁路运营里程将达到10万km,其中客运专线1.2万km。目前已经开工建设的京津、武广、郑西等高标准的铁路客运专线规模已达3200多km。铁路客运专线建设是一个庞大的系统工程,在基础工后沉降、无碴轨道技术、系统集成等方面环节多,技术难度大,虽然有秦沈客运专线建设的经验,但尚没有采用无碴轨道客运专线系统成熟的经验。在客运专线铁路建设中尚有一些问题需要统筹考虑以保证我国未来铁路客运网的安全、先进和合理。 1.2 客运专线的线路选线 铁路客运专线建设应充分体现“以人为本、服务运输、强本简末、着眼发展”的铁路建设新理念,由于其铁路建设标准,线路选线的控制因素多,难度大,但线路选线的优化与合理性直接关系铁路和地方经济社会的发展,所以,是客运专线建设重视的首要问题。 在客运专线引入特大、大城市区段的铁路,建议加强客运专线移入地下的设计方案研究。我国城市扩容的潜力很大,这是经济社会发展的需要,也是我国人口多的国情实际,铁路作为百年大计应充分考虑今后城市发展需要,不对其造成过多的制约。从国外高速铁路的经验看,轨道交通在进入大城市的主城区时,引入地下对城市的发展制约相对要小,比如日本东京、法国巴黎等国际都市的地铁和城郊铁路大多采用这种方式。由此带来的问题是铁路建设投资成本的增加,到这部分投资的增加主要受益者是城市本身,应调动相关地方政府的积极性,研究确定铁路与地方政府合理的投资比例加以解决。 1.3 京津城际轨道交通工程概况 京津城际轨道交通是环渤海京津冀地区城际轨道交通网的重要组成部分,也是沟通北京、天津两大直辖市的便捷通道。线路由北京南站东段引出,沿京津高速公路第二通道至杨村,后沿京山铁路至天津站,正线全长113.544km。2005年7月4日正式开工建设,将于2008年奥运会前正式通车运营,是我国开工建设并将最早建成的第一条高速客运专线铁路,即一流的工程质量、一流的装备水平、一流的运营管理。采用国际上最先进的无碴轨道技术,确保列车高速平稳舒适运行,使京津两地间实现30分钟到达。 京津城际轨道交通全线桥梁总长度100.171km。其中最长的桥梁为杨村特大桥,全桥长36.5km;该桥最大跨度大128m. 1.4 京津城际轨道交通桥梁工程特点 ①技术标准高 全线采用无杂轨道技术,桥梁必须满足高速客运专线无杂轨道铁路技术标准要求,桥梁的动力性能、刚度指标、变形控制等均达到目前国内铁路桥梁技术标准最高水平; ②桥梁长度占线路长度的比例高

浅谈地铁高架桥梁支座的更换

浅谈地铁高架桥梁支座的更换 摘要:随着铁路客运技术的发展,越来越多的高架桥被应用在高速铁路与地铁 客运中,而支座作为高架桥梁的一个重要组成部分,其更换存在一定难度,本文 就某地铁高架桥梁支座更换施工,对桥梁支座更换的相关工艺进行了阐述。 关键词:地铁;高架桥;支座;更换 一、前言 桥梁支座作为高架桥梁的重要构件,对传递桥墩受力,适应梁体变形起着重 要作用。随着交通运输行业的发展,客运量逐渐增加,支座承受荷载越来越大, 损耗逐年增加,会出现不同程度的损坏,对运营安全造成了影响。为了保证桥梁 正常使用,确保运营安全,需要对已损坏的桥梁支座进行更换。下面笔者将就某 地铁桥梁支座更换,对相关工艺进行阐述。 二、工程概况 某地铁四号线投入使用时间较早,55-04#-55-05#跨箱梁下55-05#墩顶支座因 使用时间过长出现损坏,需要对其进行更换。 三、施工工法与工艺流程 3.1方案概述 移除该箱梁上桥面设备,在55-04#墩、55-05#墩旁设置临时支墩,将箱梁顶 起临时支点设置在支墩上,拆除55-05#墩顶损坏支座,更换支座。待新支座安装 完成后,将该箱梁落回原位,将桥面设备恢复。 3.2施工前检查 在桥梁支座进行更换前,应对施工部分的桥梁梁体进行全面监测,主要监测 内容为梁体是否有明显开裂、混凝土是否有剥落、露筋等现象,如有上述现象存在,应对梁体进行维修加固后方可进行下一步施工。具备条件后,拆除车挡及桥 面其他设备,拆除或断开轨道连接。 3.3临时支墩搭设安装 在55-04#、55-05#墩旁设置“六五式”铁路军用临时支架,临时支墩采用2排 4列形式,由制式型钢杆件通过高强度螺栓连接而成,紧挨墩身搭设,使用[30槽钢与军用墩连接,槽钢连接采用焊接,使槽钢与军用墩包住墩身,增强军用墩的 抗倾覆性,共设置5道,第一层与第二层间距3米,其余间距为2米,上垫梁顶 面距梁底30cm,下垫梁支撑在承台上部的混凝土找平层上。在梁体腹板两侧加 方木,支撑在腹板倒角处,防止梁体倾覆,采用20cmX20cm方木,间距50cm, 每侧设4根,在顶升过程中调整方木角度,使方木顶紧梁体。在墩身两侧使用扣 件式钢管搭设工作平台,并在55-05#墩顶设置围护,工人上下采用爬梯。 3.3.1施工准备 首先用全站仪对临时墩基础的平面控制点进行精确放样,开挖后进行临时混 凝土基础的施工。 军用墩落于已完成临时混凝土基础上。临时支撑基础直接在承台上浇筑,采 用C40混凝土,宽7.5m、长2.25m、高0.44m,并在混凝土内预埋U型螺栓,与 下垫梁连接,间距0.75m,变立柱外侧各增设一根。临时墩基础上布置分配垫梁,其与混凝土面紧贴,稳妥后再安装军用墩。各种横向及斜向联系,各螺栓连接须 用扭力扳手检验。 3.3.2军用墩的安装 在施工现场采用汽车吊与人工配合组装,军用墩的拼装:拼装前要检查承台

相关主题
文本预览
相关文档 最新文档