当前位置:文档之家› 考虑轴承接触非线性的柔性轮轨耦合动力学

考虑轴承接触非线性的柔性轮轨耦合动力学

11.-无砟轨道结构动力学理论

11. 无砟轨道结构动力学理论 11.1 列车-无碴轨道耦合动力学模型 将机车车辆视为由车体、构架及轮对组成的多刚体系统,考虑车体、前后构架及轮对的垂向、横向、沉浮、点头、侧滚、摇头自由度以及车辆悬挂系统中的非线性因素。轮轨之间的法向作用力由赫兹非线性弹性接触理论确定,切向蠕滑力先由Kalker线性蠕滑理论确定,再进行非线性修正。将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,分别考虑左、右股钢轨的垂向、横向及转动自由度,钢轨支承点间隔为扣件间距。轨道板(道床板)垂向视为弹性基础上的弹性薄板,轨道板(道床板)的横向视为刚体运动,考虑平动和转动自由度,凸形挡台及CA砂浆对轨道板(道床板)的提供横向弹性约束。混凝土底座同样视为弹性地基上的弹性薄板。图11.1~图11.7为列车-无碴轨道空间耦合动力学模型。 图11.1 列车-双块式轨道耦合动力学模型(侧视图)钢轨道床板

图11.2 列车-板式轨道耦合动力学模型(侧视图) 图11.3 列车-双块式轨道耦合动力学模型端视图 图11.4 列车-板式轨道耦合动力学模型端视图钢轨 轨道板 混凝土底座

图11.5 路基上双块式轨道-有碴轨道过渡段耦合动力学模型 图11.6 路基上板式轨道-有碴轨道过渡段耦合动力学模型 图11.7 路基上板式轨道-有碴轨道过渡段耦合动力学模型(辅助轨)

11.2 无碴轨道动力学方程 将钢轨视为弹性点支承基础上Bernoulli-Euler 梁,在机车车辆荷载作用下,钢轨的垂向、横向振动以及扭转振动可表示为 ()() ()()()()4242 11,,s w N N r r r ry r r rVi Fi Vj Pj i j z x t z x t E J A F t x x P t x x x t ρδδ==??+=--+-??∑∑ (11.1) ()() ()()()()4242 11 ,,s w N N r r r rz r r rHi Fi Hj Pj i j y x t y x t E J A F t x x P t x x x t ρδδ==??+=--+-??∑∑ (11.2) ()()()22022 11 (,)(,) () s w N N r r r r r rt rTi Si Tj Pj i j x t x t J G J F t x x P t x x t x ?φ?φρδδ??==+=--+-∑∑ (11.3) 采用Ritz 法可将上述偏微分方程转换为关于钢轨正则坐标 () t q zk 、 () t q yk 、()t q tk 的二阶常微分方程组 ()4 11()()() (=1~)s w N N r y zk zk rVi k Fi Vj k Pj Z i j r r E I k q t q t F Z x P Z x k N A l πρ==??+=-+ ???∑∑ (11.4) ()4 11()()() (=1~)s w N N r z yk yk rHi k Fi Hj k Pj Y i j r r E I k q t q t F Y x P Y x k N A l πρ==?? +=-+ ???∑∑ (11.5) ()211 0()()() (=1~)s w N N r rt tk tk rTi k Si Tj k Pj T i j r r G J k q t q t F x P x k N J l πρ==?? +=-Φ+Φ ???∑∑ (11.6) 设轨道板长度为1a ,宽度为1b ,阻尼为1C ,弯曲刚度为1D ,单位面积质量为1m ,轨道板上的扣结点数为P N ,对应的扣结点枕上压力为F rv 。根据弹性薄板的振动理论,轨道板的垂向振动方程可写为 ()()()()()()()()()()()1111111111111 CA P 44424224 2N N rVi Pi Pi j Fj Fj i=1j=1 w x,y,t w x,y,t w x,y,t w x,y,t w x,y,t C m +2+++x x y y D t D t = F t x-x y-y F t x-x y-y D D δδδδ???????????-∑∑ (11.7) 采用双向梁函数组合级数逼近方法来求解轨道板振动方程,轨道板的挠度可设为

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之间的相互作用。

油液动压径向轴承设计及计算【开题报告】

毕业设计开题报告 机械设计制造及自动化 油液动压径向轴承设计及计算 1、选题的背景、意义 流体动压径向滑动轴承具有承载能力大、功耗小、耐冲击、抗振性好、运转精度高等突出的优点。所以,在高速、低速以及高速精密的旋转机械中应用十 分普遍,而且成为旋转机械的重要部件。比如在汽轮机组、舰船主动力机组、石油钻井机械、轧机及各类大型机床中都有广泛的应用,而且成为这类机械的关键部件之一。在这些机器中,径向滑动轴承的性能优劣直接影响或决定了整台机器的性能和效率。比如在汽轮发电机组中,性能优良的滑动轴承可以减少停机检修的次数,烧瓦的可能性也低得多。 轴承基本参数(轴径的长径比、半径间隙、偏心距和轴承包角等)的变化,对轴承的静动态特性会产生很大的影响。另外,实际工作中的滑动轴承,由于加工、安装误差等因数,其工况条件与理论分析时所考虑的理想工况有很大差距,这种情况下,轴承的一些性能参数会发生变化。 2、相关研究的最新成果及动态 我国轴承行业发展到现在,已具备相当的生产规模和较高的技术、质量水平。具有一定规模的轴承企业已发展到1 500余家,职工人数壮大到近80万人,轴承年产量从1 949年的1 3.8J5套增加到目前的20多亿套,轴承品种累计从1 00多个增加至7000多个,规格达28000多个。 近1 0年来国外轴承知名公司(如SKF、FAG、NSK、NBM 、 KOYO、T JM KEN、TORRlNGTON等)先后在我国投资办厂,对我国轴承设计技术水平的提高,生产工艺和生产管理的规范、生产装备水平的现代化、产品的质量和使用性能的提高等方面起到了很大的推动作用。2OO亿元,年出口量逾7.7亿套,出口创汇约达7

刚柔耦合动力学的建模方法

第42卷第11期 2008年11月 上海交通大学学报 JOU RN AL O F SH AN G HA I JIA OT O N G U N IV ERSIT Y Vol.42No.11 Nov.2008 收稿日期:2007 10 08 基金项目:国家自然科学基金资助项目(10772113);高等学校博士学科点专项科研基金资助项目(20040248013) 作者简介:洪嘉振(1944 ),男,浙江宁波市人,教授,博士生导师,研究方向:多体系统动力学与控制.电话(T el.):021 ********; E mail:jzhong@s https://www.doczj.com/doc/3b2749770.html,. 文章编号:1006 2467(2008)11 1922 05 刚柔耦合动力学的建模方法 洪嘉振, 刘铸永 (上海交通大学工程力学系,上海200240) 摘 要:对柔性多体系统动力学研究的若干阶段和研究现状进行回顾,对已有的刚柔耦合动力学建模方法进行总结.为了对已有的建模方法进行评价,提出了5项指标:科学性、通用性、识别性、兼容性和高效性,指出现有的建模方法尚无法满足工程实际应用的需要,应研究满足全部评价指标的刚柔耦合动力学建模方法.文中对今后柔性多体系统刚柔耦合动力学的几个研究方向进行展望,包括理论建模、计算方法和试验研究等方面. 关键词:刚柔耦合系统;动力学;建模方法;评价指标中图分类号:O 313 文献标识码:A Modeling Methods of Rigid Flexible Coupling Dynamics H ON G J ia z hen, L I U Zhu y ong (Department of Engineering M echanics,Shanghai Jiaotong Univ er sity,Shanghai 200240,China)Abstract:A brief review about several phases and present status o f flexible multi bo dy dynamics w as given and the ex isting m odeling m ethods o f r ig id flex ible coupling dynam ics w ere sum marized.Five indexes,in cluding scientific index,g eneral index,identifiable index,compatible index and efficient index ,w ere pro posed to evaluate the ex isted mo deling methods.It show s that the ex isted m odeling metho ds can no t satis fy the actual needs of eng ineer ing application and new modeling m ethod w hich satisfies all the evaluating index es should be inv estig ated.T he r esearch tar gets including modeling theor y,com putational methods and exper im ents w er e sugg ested for the rigid flexible co upling dynamics o f the flex ible multi body sys tems. Key words:rigid flex ible coupling sy stem s;dy nam ics;mo deling methods;evaluating index 柔性多体系统是指由多个刚体或柔性体通过一定方式相互连接构成的复杂系统,是多刚体系统动力学的自然延伸.考虑刚柔耦合效应的柔性多体系统动力学称之为刚柔耦合系统动力学,主要研究柔性体的变形与其大范围空间运动之间的相互作用或相互耦合,以及这种耦合所导致的动力学效应.这种耦合的相互作用是柔性多体系统动力学的本质特 征,使其动力学模型不仅区别于多刚体系统动力学,也区别于结构动力学.因此,柔性多体系统动力学是 与经典动力学、连续介质力学、现代控制理论及计算机技术紧密相联的一门新兴交叉学科[1 3],它对高技术、工业现代化和国防技术的发展具有重要的应用价值. 根据力学的基本原理,基于不同的建模方法,得

液体动压滑动轴承实验汇总

CQH-A液体动压滑动轴承实验台 使用说明书 本实验台用于液体动压滑动轴承实验,主要用它来观察滑动轴承的结构,测量其径向油膜压力分布和轴向油膜压力分布,测定其摩擦特征曲线和承载量。 该实验台结构简单、重量轻、体积小、外形美观大方,测量直观准确,运行稳定可靠。 一、实验台结构简介 1. 该实验台主要结构见图1所示: 图1 滑动轴承试验台结构图 1. 操纵面板 2. 电机 3. V带 4. 轴油压表接头 5. 螺旋加载杆 6. 百分表测力计装置 7. 径向油压表(7只) 8. 传感器支承板 9. 主轴10. 主轴瓦11. 主轴箱 2. 结构特点 该实验台主轴9由两个高精度的单列向心球轴承支承。 直流电机2通过V带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。 主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加

载大小由负载传感器传出,由面板上右数码管显示。 主轴瓦上装有测力杆,通过测力计装置可由百分表6读出摩擦力值。 主轴瓦前端装有7只测径向压力的油压表7,油的进口在轴瓦长度的1/2处。 在轴瓦全长的1/4处装有一个轴向油压表的接头,需要时可用内六角扳手将堵油塞旋出,再装上备用的轴向油压表。 3. 实验中如需拆下主轴瓦观察,需按下列步骤进行: a. 旋出外加载传感器插头。 b. 用内六角扳手将传感器支承板8上的两个内六角螺钉卸下,拿出传感器支承板即可将主轴瓦卸下。 二、主要技术参数 实验轴瓦:内直径d=60mm 有效长度B=125mm 表面粗糙度?7) 材料ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0~1000N(0~100kg?f) 百分表精度0.01 量程0—10mm 油压表精度 2.5% 量程0~0.6Mpa 测力杆上测力点与轴承中心距离L=120mm 测力计标定值k=0.098N/格 电机功率:355W 调速范围:2~400rpm 实验台总量:52kg 三、电气工作原理 5 4 3 图二 1—主轴转速数码管:主轴转速传感器采集的实时数据。

ZCS液体动压轴承实验指导书M

液体动压轴承实验 一、实验目的 该实验台用于机械设计中液体动压滑动轴承实验。主要利用它来观察滑动轴承的结构、测量其径向油膜压力分布、测定其摩擦特征曲线。 1、观察滑动轴承的动压油膜形成过程与现象。 2、通过实验,绘出滑动轴承的特性曲线。 3、了解摩擦系数、转速等数据的测量方法。 4、通过实验数据处理,绘制出滑动轴承径向油膜压力分布曲线与承载量曲线。 二、实验系统组成 (一)实验系统组成 图1 滑动轴承实验系统框图

轴承实验系统框图如图1所示,它由以下设备组成: 1、ZCS—I液体动压轴承实验台——轴承实验台的机械结构 2、油压表——共7个,用于测量轴瓦上径向油膜压力分布值 3、工作载荷传感器——为应变力传感器、测量外加载荷值 4、摩擦力矩传感器——为应变力传感器、测量在油膜粘力作用下轴与轴瓦间产生的磨擦力矩 5、转速传感器——为霍尔磁电式传感器、测量主轴转速 6、XC—I液体动压轴承实验仪——以单片微机为主体、完成对工作载荷传感器,磨擦力矩传感器及转速传感器信号采集,处理并将处理结果由LED数码管显示出来。 (二)轴承实验台结构特点 实验台结构如图2所示 该试验台主轴7由两高精度的单列向心球轴承支承。直流电机1通过三角带2传动主轴7 ,主轴顺时针转动.主轴上装有精密加工的轴瓦5由装在底座上的无级调速器12实现主轴的无级变速,轴的转速由装在实验台上的霍尔转速传感器测出并显示。 主轴瓦5外圆被加载装置(末画)压住,旋转加载杆即可方便地对轴瓦加载,加载力大小由工作载荷传感器6测出,由测试仪面板上显示。 主轴瓦上还装有测力杆L,在主轴回转过程中,主轴与主轴瓦之间的磨擦力矩由磨擦力矩传感器测出,并在测试仪面板上显示,由此算出磨擦系数。 主轴瓦前端装有7只测径向压力的油压表4,油的进口在轴瓦的1/2处。由油压表可读出轴与轴瓦之间径向平面内相应点的油膜压力,由此可绘制出径向油膜压力分布曲线。

轮轨接触力学

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这 一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取 得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及 其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之 间的相互作用。

实验三 动压滑动轴承实验

实验三动压滑动轴承实验 一、实验目的 1.验证动压滑动轴承油膜压力分布规律,了解影响油膜压力分布规律的因素,并根据油膜压力分布曲线确定端泄影响系数K b; 2.测定动压滑动轴承的摩擦特征曲线,并考察影响摩擦系数的因素。 二、实验设备及仪器 1.HZS-1型动压滑动轴承试验台 图1 HZS-1型动压滑动轴承实验台 图1为试验台总体布置,图中件号1为试验的轴承箱,通过联轴器与变速箱7相联,6为液压箱,装于底座9的内部,12为调速电动机,通过三角带与变速箱输入轴相联,8为调速电机控制旋钮,5为加载油腔压力表,由減压阀4控制油腔压力,2为轴承供油压力表,由减压阀控制其压力,油泵电机开关为10,主电机开关为11,试验台的总开关在其正面下方。 图2为试验轴承箱,件号31为主轴,由一对D级滚动轴承支承,32为试验轴承,空套在主轴上,轴承内径d=60mm,有效宽度=60mm。在轴承中间横剖面上,沿周向开7个测压孔,在120°范围内的均匀分布,测压表21~27通过管路分别与测压孔相联。距轴承中间剖面L/4(15mm)处,轴承上端有一个测压孔,表头28与其相联,件号33为加载盖板,固定在箱体上,加载油腔在水平面上的投影面积为60cm2在轴承外圆左侧装有测杆35,环34装在测杆上以供测量摩擦力矩用,环34与轴承中心的距离为150mm,轴承外圆上装有两个平衡锤36,用以在轴承安装前做静平衡。

图2 实验轴承箱 箱体左侧装有一个重锤式拉力计如图3所示,测量摩擦力矩时,将拉力计上的吊钩与环34联接,即可测得摩擦力矩。测杆通过环34作用在拉力计上的力F,由重锤予以平衡,其 数值可由 α sin 1 R WL F= 求得。式中R为圆盘半径,W为重锤之重量,L1为重锤重心到轴 心之距离,α为圆盘之转角,圆盘转角α通过齿轮放大,可使表头指针转角放大10倍,表头刻度即为F的实际值,单位为克。 JZT型调速电动机的可靠调速范围为120~1200转/分,为了扩大调速范围,试验台传动系统中有一个两级变速箱,当手柄向右倾斜,主轴与电机转速相同;当手柄向右倾斜,主轴为电机转速的1/6。因此主轴的可靠调速范围为20~1200转/分。 图3 重锤式拉力计工作原理图 2.测速仪表及温度计 三、实验步骤 1. 测定动压滑动轴承的油膜压力分布,确定轴承端泄影响系数K b

某火炮减速器刚柔耦合动力学仿真

某火炮减速器刚柔耦合动力学仿真 王炎,马吉胜 (军械工程学院 武器系统仿真研究所, 河北 石家庄 050003) 摘要:通过CATIA 与LMS https://www.doczj.com/doc/3b2749770.html,b Motion 无缝接口实现了实体模型的数据导入。以多刚体动力学和柔性多体动力学理论为基础,建立了包含柔性轴和柔性箱体的方向机刚柔耦合虚拟样机模型。通过仿真分析了柔性体对齿轮啮合力的影响,得到了耦合作用下箱体及齿轮轴的应力和变形,为耦合动载工况下的减速器设计提供了理论依据。 关键词:啮合力;刚柔耦合;模态综合法;https://www.doczj.com/doc/3b2749770.html,b Motion. 引言: 减速器是在原动机和工作机之间用于降低速度、增大扭矩的传动装置,其主要部件包括齿轮、轴、轴承和箱体等。减速器输出端啮合力往往很大,当箱体、轴材料刚度较小时,箱体、轴的柔性变形与输出齿轮啮合力的耦合作用不可忽略。某火炮方向减速器如图1所示,齿圈1固定不动,输出端齿轮2与齿圈1啮合带动整个减速器及炮塔绕齿圈1转动。输出端齿轮2采用悬臂梁结构,如果箱体和齿轮轴变形过大则使啮合振动更加恶劣,不能保证传动精度。在设计过程中为减轻减速器重量,欲将箱体由40CrNiMoA 改为ZL205。为探讨采用轻质箱体后,箱体、轴的柔性变形是否会使啮合振动显著增大,本文以柔性多体动力学理论为基础,综合考虑箱体、轴的变形与啮合力的耦合作用,建立了该减速器刚柔耦合动力学模型,通过分析耦合作用下载荷特性,以及箱体、轴动载下的应力和变形验证了减重设计方案的可行性,为箱体和轴等部件的选材及强度校核提供了理论依据。 图1 某火炮方向减速传动示意图 图2 齿轮扭转振动模型 1 啮合力模型 在减速器的虚拟样机建模过程中,难点在于啮合力模型的建立,在多体软件中,啮合力建模主要由以下两种模型: 1、基于齿轮参数的啮合力模型[1,2]。 该方法以齿轮系统动力学为基础,根据齿轮系统动力学中的运动方程,建立齿轮系统扭转振动模型如图2所示。根据牛顿定律可得这一系统的动力学模型: (())()(())p p p m p p g g p p p g g p I R C R R e t R K t f R R e t T θθθθθ????? +??+??= (1) (())()(())g g g m p p g g g p p g g g I R C R R e t R K t f R R e t T θθθθθ????? ??????=? (2) ()(())(())p p g g m p p g g F K t f R R e t C R R e t θθθθ??? =??+??啮合力 (3) 式中:,p g I I 为主、被动轮的转动惯量;,p g θθ为主,被动轮的扭转振动位移;,p g R R 为主、被动轮的基圆半径;()K t 为时变啮合刚度;,p g T T 为作用在主,被动轮上的外力矩;()e t 为齿轮传动误

列车轮轨接触几何参数

轮轨接触几何参数 轮轨接触几何参数(wheel-rail contact geometry parameters)由轮轨接触几何关系所确定的轮对和钢轨上的一系列几何量。主要包括下述11种参数。 车轮名义直径由于车轮踏面具有斜度,各处直径是不相同的,根据规定,车辆在离轮缘内侧面70mm处(车辆)或73mm处(机车)测量得到的直径为名义直径,该圆称为滚动圆。车轮名义直径的大小影响机车车辆的性能。中国客车标准轮径为915mm,货车标准轮径为840mm,内燃机车标准轮径为1050mm,电力机车标准轮径为1250mm。 车轮滚动接触半径车轮在钢轨上滚动时接触点处的车轮半径(图中的r1和r2)。由于轮对沿钢轨向前滚动时,会一面相对钢轨横向移动、一面又绕通过其质心的铅垂轴转动,车轮和钢轨的接触点位置是在不断变化的,车轮滚动接触半径也是在不断变化的。 轮轨接触角过轮轨接触点的公切线与车轴中心线的夹角(图中的δ1和δ2)。在车辆运行过程中它是一个不断变化的量。 车轮踏面曲率半径轮轨接触点处车轮踏面横断面外形的曲率半径(图中的R1和R2)。对于锥形踏面车轮,车轮踏面曲率半径为无穷大。 轨头截面曲率半径轮轨接触点处轨头横断面外形的曲率半径(图中RT1和RT2)。 轮对侧滚角如果轮对离开轨道中心线位置而相对于轨道横向移动时,由于车轮踏面具有锥度,轮对左右车轮的滚动接触半径具有差别,这样车轴中心线相对于其原来的水平位置会产生一个夹角,此夹角即定义为轮对侧滚角(图中的φW)。 轮对横移量由于车轮踏面有锥度,轮对沿轨道向前运动时总是会伴随轮对相对轨道中心线横向移动,此移动量即为轮对横移量(图中的yw)。 轮对摇头角由于车轮踏面锥度的存在,轮对沿轨道向前运动时除了伴随轮对相对轨道中心线横向移动外,轮对还会绕通过其质心的铅垂轴转动,转动的角度即为轮对摇头角。 轮缘内侧距轮对两轮缘的内侧面间的距离即为轮缘内侧距(图中的b),对于标准轨距,轮缘内侧距为(1 353±2)mm。 轨距两根钢轨头部内侧间与轨道中心线相垂直的水平距离,并规定在轨顶下16mm处测量。世界上大部分国家均采用1435mm的标准轨距,即准轨。大于1435mm的称为宽轨,国外有1 676mm、1 524mm的轨距。小于1 435mm的称为窄轨,如1 067mm、1 000mm等。 轨底坡由于车轮踏面是有一定锥度的,且车轮均是外侧直径小内侧直径大,为了使车轮和钢轨合理配合并具有好的轮轨接触几何关系,轨道要设置轨底坡(一般轨底坡定为1:40),使轨头内倾,以适应车轮踏面的形状。

一种流体-结构耦合计算问题的

一种流体-结构耦合计算问题的 网格数据交换方法 徐敏,史忠军,陈士橹 (西北工业大学航天工程学院,陕西西安710072) 摘要:气动/结构耦合数值模拟是研究非线性气动弹性的基础。数据交换和插值是非线性气动弹性仿真问题的关键。目前的插值方法不能满足非线性气动弹性问题。本文提出了一种有限元四节点(FEFN)插值方法。该方法是一种局部插值方法,并不依赖于结构模型带来的整体信息。以圆柱体为具体算例,插值结果与有限平板插值方法(IPS)进行了算例对比,表明FEFN方法更能代表计算物体的表面,且计算简单、计算量小、误差小,是一种适合计算流体力学(CFD)/计算结构动力学(CSD)耦合仿真的界面数据交换工具。 关键词:流固耦合,非线性气动弹性,耦合CFD/CSD界面算法 伺服气动弹性分析是多学科之间的耦合问题。其第一步最基础的问题是气动/结构耦合响应的计算。在实际计算中,气动数值计算要求计算网格从物体表面伸展到空间相对计算模型特征长度足够大处,而结构有限元计算要求计算网格从物体表面延伸到物体内部。另一方面,气动数值计算一般在物体表面斜率变化大处,网格的密度需要增大,而结构动力学计算则要求物体表面网格尽量划分均匀,以便能方便地求出刚度矩阵。由此可知,要实现气动/结构耦合计算,重要的是如何设计两网格系统的数据交换界面,即寻求一种方便的、质量高的插值方法,将计算结构动力学得到的变形网格的位移插值到气动网格上,并将气动网格上的气动载荷插值到结构网格节点上。给出一种适合解决这种数据交换界面设计问题 的插值方法是一件艰难的工作。 早在1970年,Harder和Desmarais[1]发展了无限平板样条(IPS)内插值方法,该方法是基于无限平板的偏微分平衡方程的叠加结果。Appa[2]将IPS插值方法改进为有限表面插值(FSS)。Duchon[3]通过最小能量函数法对IPS方法进行了改进,在薄板插值的基础工作方面做了大量的工作,完成了平板三维无规则表面插值。IPS方法和其它插值方法发展到如今已成为处理机翼气动弹性计算数据交换较为流行的方法[4]。然而这些样条插值仅适合于薄板处于最小弯曲能(平衡位置)所确定的位置,并且应在满足流体表面和结构表面一致的条件下才能得到理想的结果。严格地说,在气动弹性耦合仿真中,流体表面和结构表面一致的条件不可能存在。为了处理表面不匹配问题,本文提出了一种有限元四节点(FEFN)插值方法。以圆柱体为具体算例,采用无限平板样条(IPS)方法和有限元四节点(FEFN)方法直接从较稀疏的结构变形网格插值到气动网格,并进行了两种插值结果比较和误差分析。最后,文中对一机翼进行了CFD和CSD耦合计 算网格的插值计算。 1 有限元四节点(FEFN)方法

轮轨弹性接触问题的研究

轮轨弹性接触问题的研究 ——机车讲座有感 在机车专业知识讲座的学习过程中,对张老师所研究的课题颇感兴趣,课后对相关知识材料进行了收集,对此做以总结及延伸。 轮轨弹性接触问题的研究,主要分为轮轨的粘着问题,轮轨的磨耗问题,脱轨、噪声问题。其中,轮轨的磨耗问题包括轮轨的接触疲劳问题和轮轨的波浪形磨耗问题。 一、轮轨的粘着问题 具有弹性的钢质车轮在弹性的钢轨上以速度v运行时,在车轮与钢轨的接触面间会产生一种极为复杂的物理现象,车轮与钢轨承受着垂直载荷和纵横切向载荷。纵向载荷主要来自牵引及制动。稳态前进的非动力轮在不制动时,其纵向切向力平衡轴承阻力和蛇行时的惯性力。无论是动力轮对或从动轮对都存在着纵向切向力,它导致了轮轨纵向相对运动的速度差。 (一)黏着区和滑动区 传统理论认为钢轮相对钢轨滚动时,接触面是一种干摩擦的黏着状态,除非制动或牵引力大于黏着能力才会转人完全滑动的摩擦状态。现代研究表明,由于车轮和钢轨都是弹性体,滚动时轮轨间的切向力将在接触斑面上形成两个性质不同的区域:粘着区和滑动区。切向力小时主要为豁着区;随着切向力加大,滑动区扩大,黏着区缩小。当切向力超过某一极限值时,只剩下滑动区,轮子在钢轨上开始明显滑动。 (二)蠕滑与蠕滑率 由于粘滑区的存在,轮周上接触质点的水平速度与轨头上对应质点相对轮心的水平速度并不相同,存在着一个微小的滑动,称为蠕滑。宏观上轮周速度与轮心的水平速度并不一致。以同样的转速走行在硬质路面和沙地上的两辆自行车,其前进速度并不一样,也是这种道理。当车轮受到横向外力作用时,会产生微小的横向移动。 (三)蠕滑力 在不同条件下进行纵向蠕滑试验,蠕滑率与切向力的关系曲线是有差别的。清洁轮轨接触面条件下获得的蠕滑率与蠕滑力关系与Kalker的理论曲线相近,天气干燥、潮湿等因素都会影响切向力的大小。实际上过去所谓的牵引力、砧着力、制动力、切向力的概念在本质上都是蠕滑力。在小蠕滑下,蠕滑力与蠕滑率成线性关系。当轮子绕接触斑的垂向主轴旋转时,即形成旋转蠕滑率,同样会产生旋转蠕滑力矩。 (四)黏着系数 当蠕滑率较大时,切向力增值的趋势变缓,最后切向力达到饱和值。通常将极限状态下的横向切向力与垂直轮载的比值称为私着系数。 轨接触表面的状态决定了勃着能力。干净的钢轮钢轨间的茹着系数可达0.6,但有油钢轮钢轨间着系数降幅很大。由于轨道油污不可避免,黏着系数或蠕滑系数通常只能达到清洁条件的一半弱。为了使动车组发挥更大的轮周牵引力和制动力,防止黏着不足引起的车轮空转和滑动导致的车轮或钢轨的擦伤与剥离,并减少因此而产生的振动冲击及噪声,研究蠕滑的控制技术是十分必要的。 二、轮轨的磨耗问题

刚柔耦合仿真分析流程及要点

本文主要介绍使用SolidWorks、HyperMesh、ANSYS和ADAMS软件进行刚柔耦合动力学分析的主要步骤。 一、几何建模 在SolidWorks中建立几何模型,将模型调整到合适的姿态,保存。此模型的姿态不要改动,否则以后的MNF文件导入到ADAMS中装配起来麻烦。 二、ADAMS动力学仿真分析 将模型导入到ADAMS中进行动力学仿真分析。 为了方便三维模型的建立,SolidWorks中是将每个零件单独进行建模然后在装配模块中进行装配。这一特点导致三维模型导入到ADAMS软件后,每一个零件都是一个独立的part,由于工作装置三维模型比较复杂,因此part数目也就相应的比较多,这样就对仿真分析的进行产生不利影响。下面总结一下从三维建模软件SolidWorks导入到ADAMS中进行机构动力学仿真的要点。(1)首先在SolidWorks中得到装配体。(2)分析该装配体中,到底有几个构件。(3)分别隐藏其他构件而只保留一个构件,并把该构件导出为*.x_t 格式文件。(4)在ADAMS中依次导入各个*.x_t 文件,并注意是用part的形式导入的。(5)对各个构件重命名,并给定颜色,设置其质量属性。(6)对于产生相对运动的地方,建议先在此处创建一个marker,以方便后面的操作。否则,三维模型进入ADAMS后,线条繁多,在创建运动副的时候很难找到对应的点。 部件的导入如下图1所示: 图1 文件输入 File Type选择Parasolid; File To Read 找到相应的模型; 将Model Name 切换到Part Name,然后在输入框中右击,一次单击part →create 然后在弹出的新窗口中设置相应的Part Name,然后单击OK →OK 。将一个部件导入,重复以上步骤将部件依次导入。这里输入的技巧是将部件名称按顺序排列,如zpt_1、zpt_2、zpt_3. ,然后在图1中只需将zpt_1改为zpt_2、将PART_1改为PART_2即可。

滑动轴承实验报告

液体动压滑动轴承实验报告 一、实验目的 1、测量轴承的径向和轴向油膜压力分布曲线。 2、观察径向滑动轴承液体动压润滑油膜的形成过程和现象。 3、观察载荷和转速改变时的油膜压力的变化情况。 4、观察径向滑动轴承油膜的轴向压力分布情况。 5、测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。 6、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线λ的绘制方法。 二、实验设备及工具滑动轴承实验台 三、实验原理 1、油膜压力的测量 轴承实验台结构如图1所示,它主要包括:调速电动机、传动系统、液压系统和实验轴承箱等部分组成。 在轴承承载区的中央平面上,沿径向钻有8个直径为1mm 的小孔。各孔间隔为 22.50,每个小孔分别联接一个压力表。在承载区内的径向压力可通过相应的压力表直接读出。 将轴径直径(d=60mm )按比例绘在纸上,将1~8个压力表读数按比例相应标出。(建议压力以1cm 代表5kgf/cm 2)将压力向量连成一条光滑曲线,即得到轴承中央剖面油膜压力分布曲线)。 同理,读出第4和第8个压力表示数,由于轴向两端端泄影响,两端压力为零。光滑连结0‘,8’,4‘,8’和0‘各点,即得到轴向油膜压力分布曲线。 图1 轴承实验台结构图 1、操纵面板 2、电机 3、三角带 4、轴向油压传感器接头 5、外加载荷传感器 6、螺旋加载杆 7、摩擦力传感器测力装置 8、径向油压传感器(8只) 9、传感器 支撑板 10、主轴 11、主轴瓦 12、主轴箱 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆、电气课件中调试资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到

高速铁路路基结构时变系统耦合动力分析

第28卷第5期铁 道 学 报Vol.28 No.5 2006年10月J OU RNAL OF T H E CHINA RA IL WA Y SOCIET Y October2006 文章编号:100128360(2006)0520065206 高速铁路路基结构时变系统耦合动力分析 马学宁1, 梁 波2 (1.兰州交通大学土木工程学院,甘肃兰州 730070;2.重庆交通大学土木建筑学院,重庆 400074) 摘 要:在车辆的走行过程中,上部与下部是相互作用和影响的,因此,轨道交通问题实际上就是线路上下部结 构和车辆系统的体系匹配问题。本文针对列车走行的实际情况,将轨道2路基作为参振子结构纳入车辆计算模 型,建立了包含车辆、钢轨、轨枕、道床和路基作为一体的二系垂向耦合动力分析模型。作为模型的验证,结合京 秦线提速改造工程进行了列车2路基动力仿真计算,得出在不同行车速度条件下,机车车辆通过路基段加固前后 状态下的车体加速度、动轮载、轮重减载率及道床和路基主要动力性能指标,并与实车试验进行对比。试验测试 结果验证了理论模型和分析方法的有效性,为高速铁路路基的动力特性分析和设计提供一些参考。 关键词:车辆;路基;时变;耦合;动力响应 中图分类号:U211.5 文献标识码:A A Time2varying Coupling Model for Dynamic Analysis of High Speed R ail w ay Subgrade MA Xue2ning1, L IAN G Bo2 (1.School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou730070,China; 2.School of Civil Engineering and Architect ure,Chongqing Jiaotong University,Chongqing400074,China) Abstract:Track t ransportation can be divided into t he t rack system above and t he t rack system below.While t he t rain is moving,t he part s above and below are interacted and mut ually influenced.Therefore,t he p roblem of t rack t ransportation is act ually t he matching between t he vehicle and t he railway line system.In t his paper, keeping to t he conditions of t rain running and taking t he t rack2subgrade as a part of t he vibration st ruct ure of t he vehicle mode1,a vehicle2subgrade model of t he secondary suspension vertically coupled system including t he vehicle,rail,sleeper,ballast and subgrade is established.Dynamic comp uter simulation of t he vehicle2subgrade system is performed in combination wit h speed raising reconst ruction project of t he Jingqin Railway Line as t he verification of t he model.Regarding t he t rain t ravelling at different speeds and t hrough subgrade sections ahead of and subsequent to strengt hening,dynamic responses such as t he acceleration of t he vehicle,dynamic wheel load and rate of wheel load reduction and t he main dynamic characters of ballast and subgrade are calculated and compared wit h t he experimental result s.The effectiveness of t he t heoretical model and simulation analysis are verified by t he test result s.Reference is made to analysis of t he dynamic characters and design of t he subgrade of high2speed railways. K ey w ords:vehicle;subgrade;time varying;coupling;dynamic response 高速、重载已成为当今铁路发展的趋势,列车速度的提高导致机车车辆对路基结构动力作用明显增大,收稿日期:2006204205;修回日期:2006206227 基金项目:甘肃省自然科学基金资助项目(ZS0312B2520052G); 重庆市教委科学技术研究项目(K J060404); 重庆市自然基金资助项目; 兰州交通大学“青蓝工程”基金资助项目 作者简介:马学宁(1974—),男,宁夏中卫人,讲师,博士研究生。 E2m ail:mxn1974@https://www.doczj.com/doc/3b2749770.html, 因而对其提出了更高的要求。近年来对路基结构动力特性的研究,出现了各种计算模型[1~6],分别从不同角度进行了研究,在模型描述方面对机车车辆较为详细,而对轨道、路基部分较为简单,没有将车辆、轨道、路基作为一个系统来加以考虑,大多是在模拟动荷载的基础上分析轨下基础的应力、变形等问题,不能充分反映车2路体系在行进中的动力特性。文献[7,8]对于一系

相关主题
文本预览
相关文档 最新文档