当前位置:文档之家› 有机金属化合物

有机金属化合物

有机金属化合物
有机金属化合物

有机金属化合物及其应用

学校:辽宁师范大学

学院:化学化工学院

年级:2010级

班级:3班

姓名:于泳博

学号:20101129010020

有机金属化合物及其应用

于泳博

辽宁师范大学化学化工学院 2010级3班

摘要

近年来,有机金属化合物的设计、合成、结构及其应用的研究十分活跃。有机金属化合物是指分子中有机基团的碳原子和金属原子直接结合的化合物。如果含碳成分是通过某些其它原子(例如:氧、氮或硫)与金属结合,就不属于这类化合物。例如(C3H7O)4Ti 就被认为不是有机金属化合物,而C6H5Ti(OC3H7)3则是,因为后者的金属和碳有一处直接成键。实际上除稀有气体外,有机基团可以通过碳原子来用各种方式与周期表中所有元素相结合。本文仅以金属有机锂化物为例对有机金属化合物及其应用做一初步介绍。

关键词:有机金属化合物、有机锂化合物应用、有机金属化合物性质

前言

1827年丹麦Zeise制得铯的有机化合物,1849年Frankland合成出的金属σ键化合物(二丁乙基和锌结合的化合物),开始了金属有机化合物的发展。Grignard继续研究金属有机化合物,制成亲核性有机镁化合物,如甲基溴化镁等,广泛应用它作为合成其他有机化合物的试剂,称为格利雅试剂(简称格氏试剂)。

20世纪有机合成利用格氏试剂引起了人们对金属有机化合物的注意。20世纪前半叶,主族的非过渡金属有机化学研究的非常广泛,特别是美国Gilnan等人发起了锂有机化学,为研究金属有机化学打下了基础。

所谓金属有机化合物即除金属碳化物以外金属和碳结合的化合物的总称。有机金属是以金属和碳结合是按π结合和σ结合或两者皆有之来划分。把具有π结合的有机化合物叫作有机金属络合体,有不少是镍、钴、钼、钨的羰基化合物。具有σ结合的有机硅化合物主要用于高分子工业和表面加工工业。格利雅试剂和烷基铝主要应用于制药工业作中间原料和聚乙烯的聚合触媒,但是操作复杂。

近年来,对于典型金属元素的有机化合物具有的热力学不稳定、挥发性、光反应等特异性能积极地进行了应用技术研究,尤其在电子工业中取得了引人注目的进展。

正文

有机金属化合物一般不稳定,大多数和大气中的氧反应引起自燃。有机金属化合物烷基链的长度越短,这个现象越显著。如三甲基铝(CH3)3Al可引起爆炸。另外,一班的有机金属化合物与水、醇等的反应性也强,多数生成醚、胺络合物。有机金属化合物多数对热不稳定,热分解生成链烷、链烯和氢等,同时析出金属。烷基铝、烷基铟、烷基鎵主要用于电子工业作化学汽相沉积(CVD)材料。在常温常压下多呈液态,不宜分解且能气化的也不少。

有机金属化合物通常有三种类型:

1.正电性金属的离子化合物,高正电性金属的有机金属化合物,在性质上通常是离子型的,例如锂的衍生物性质上显然是共价以外,其他都是不溶于碳氢化合物溶剂、并与空气、水等很容易反应。Ca、Sr、Ba,碱土金属衍生物的性能更差,它们比碱金属的化合物反应更活泼和更不稳定,离子化合物的稳定性和活泼性能部分地决定于碳负离子的稳定性,含有不稳定阴离子,例如C n H2n+1的化合物通常具有高的反应能力,也不稳定,难以分离出来,但也确实存在相当稳定的碳负离子。

虽然它们仍然很活泼。例如(C6H5)3CNa和(C6H5)2Ca,但其金属衍生物还是比较稳定的

2.σ键化合物。这类化合物是由正电性较低的大多数金属生成,当然也包括非金属元素在内,分子内有机基团与金属通过一般的双电子共价键结合(虽然某些场合具有一些离子键的性质)通常的价键规则在这里是适用的,并且有机基团能够部分取代卤离子、氢氧离子等,例如(CH3)3SnCl、(CH3)SnCl3等。

3.非经典键的化合物,有许多化合物的金属—碳键,不能以离子键或简单意义上的M—C共价键来解释,非经典键分子中数量最多和最重要的种类,包括那些主要是由过渡元素生成,其中不饱和基团与金属原子的结合是通过π电子和金属轨道相互作用的分子。此外,少数非经典键的化合物是带有桥式烃基组成的,B、Al、Ga、In、和Tl等元素都能生成很稳定、但又很活泼的三烷基和三芳基化合物,其中B、Ga、In、Tl的化合物在蒸汽和溶液中都以单体形式存在,(CH3)3In和(CH3)Tl在晶体中形成四聚物但缔合力弱,性质不稳定,在第三族中唯一能生成几种稳定的二聚物是铝化合物,三甲基铝在苯溶液中是二聚物,甚至在气象中也有部分二聚物。

有机锂化物是常用的金属有机化合物之一。碱金属有机化合物具有高度的化学活性,它们广泛用作有机合成试剂,也用于聚合反应的催化剂。有机锂化学研究的最多,应用也最广。它的结构和反应性能在金属有机化学中是很重要的。

有机锂化合物广泛应用于有机合成,开拓了金属有机化合物广泛应用的新途径,推动了金属有机化学进一步发展。

金属锂能生成很多种有机锂化合物,主要有烷基锂、芳基锂、胺基锂等,如:三氯甲基锂(Cl3Li)、甲基锂(CH3Li)、乙基锂(C2H5Li)、乙烯基锂(C2H3Li)、环丙基锂(C3H5Li)、苯基锂等(C6H5Li)。锂能生成众多有机锂化合物这一特性,为锂在有机合成中的应用开拓了广阔的前景。有机锂化合物在精细有机合成、基本有机合成和高分子合成的理论与实践方面起着很重要的作用。有机锂化合物具有易制备、能溶于惰性溶剂中等特点,应用价值不断提高,适用范围越来越广。

其中最重要的有机锂化合物——丁基锂。在众多的有机锂化合物中,丁基锂是一种最主要的有机锂化合物。丁基锂(C4H9Li)有4种同分异构体,即正丁基锂、仲丁基锂、异丁基锂和叔丁基锂,其中以正丁基锂用途最广,是目前工业生产中最重要的有机锂化合物。

由于丁基锂的Li—C键是极性共价键,故它以液态或低熔点固态存在,易溶于如己烷、环己烷等有机溶剂中。正丁基锂是一种澄清、无色、不挥发、稍具粘性的流动液体,为六聚体,在许多碳氢化合物中有无限的溶解度。丁基锂易与空气中的氧气和水分起反应。纯态的丁基锂或其溶液暴露在空气中时,通常会自燃,在较高的温度和液态下会分解出相应的烃和氢化锂。丁基锂易被还原成碳氢化合物,与氧反应生成酯,与硫反应生

成硫酸,与固体二氧化碳反应生成羧酸,与二氧化碳气体反应生成酮,与二氧化硫反应声称磺酸。

丁基锂与格氏试剂具有许多相似之处,凡格氏试剂能发生的反应,丁基锂也能发生,但丁基锂的反应活性比格氏试剂强,有些格氏试剂不能引起的反应,丁基锂却能进行。丁基锂与格氏试剂相比还有三个优点:一是反应副产物较少,反应产物较纯净,反应进行的较完全;二十反应副产物易于分离出去;三是可制成为同浓度的碳氢化合物溶液,操作使用方便。

丁基锂的主要反应性能:

(1)易与含有活性碳氢键的有机化合物反应,即氢键交换反应,生成新的有机锂化合物。易与丁基锂发生反应的有机物有:环戊二烯、三苯甲烷、

乙炔等烷烃和烯烃、苯甲醚、二甲替苯胺、二甲胺替甲苯、邻一二氟代

苯等芳香烃化合物,噻吩、呋喃等杂环芳香族化合物、乙腈、二甲硫、

二甲基十二烷瞵等无环官能有机化合物。这些氢锂交换反应一般法僧在

被吸电子取代基活化的碳氢键上。

(2)与格氏试剂不同,丁基锂与有机卤化物反应,即所谓的锂卤交换反映,生成新的有机锂化合物。反应得到的有机锂化合物,易于转变成各种有

用的合成中间体。在这种交换反应中,锂原子和电负性较强的基团键合,

卤原子则连接在电负性较弱的基团上。反应溶剂一般用绝对乙醚,又是

也用四氢呋喃。

(3)从正丁基锂得到的有机锂化合物,能与羧基化合物发生加成反应,如与二氧化碳、酮、酚、酯等进行反应。这种有机锂化合物与二氧化碳反应

是制备羧酸最有价值的通用方法之一,一般反应产率都很高,能制取各

种羧酸产品。

(4)丁基锂与有机卤化物进行烷基化合反应,在某些情况下,控制反应条件可进行定位反应,简单的烷基氯化物也有这种反应倾向。有机锂与卤素

反应生成有机卤化物和卤化锂,生成的有机卤化物可进一步进行烷基反

应。

丁基锂的应用:

?在合成橡胶中的应用:丁基锂的最大用途是做合成橡胶聚合反应的引发剂,主要用来引发丁二烯、异戊二烯、苯乙烯的聚合反应,如引发合成丁

二烯—苯乙烯嵌段共聚物,乙烯—丁二烯嵌段聚合物、SBS热塑性弹性体、

星形丁苯热塑性弹性体(SB)nR、苯乙烯—丁二烯异形SB嵌段多臂聚合

物、中乙烯基聚丁二烯橡胶等。

?在只要和生活制品中的应用:利用丁基锂作反应中间体的合成剂,可制取许多有价值的药物和生化制品。如抗抑郁药Doxepin、抗组胺药Trproldine、

抗血小板凝聚的舒张血管药Ticlopidine、安定药Thiothixene等等。

综上,有机金属化合物主要用于:

(1)石油化学工业——聚乙烯聚合触媒

(2)电子工业——采用化学汽相沉积法制作氧化铝绝缘膜,作铝及铝合金的配线;采用化学汽相沉积法行程Ⅲ--Ⅴ族化合物半导体外延层和杂质掺杂。制

作发光二极管和半导体激光;采用化学汽相沉积法制作透明电极膜;

(3)医药工业——医药品合成的中间原料。

参考文献:

[1]路振华,《主族元素有机金属化合物结构性质和应用》,连云港职业大学学报,1994年第三期

[2]刘树仁,摘译自《金属时评》,No1235,1985.7.15

[3]游清治,《有机锂化合物及其应用》,新疆有色金属

[4]宋光辉,瓦纽可夫法直接炼铅及其进展[J],工程设计与研究,2004(1).5

[5]黄显盛,金峰铜业有限公司双侧吹炉熔池熔炼生产吹炼实践,中国有色冶金,2008、6

[6]铅锌冶金学编委会,铅锌冶金学[M],北京:科学出版社,1978

金属有机化学的产生

金属有机化学的产生、发展及应用 ——一门交叉学科的兴起 著名的物理学家普朗克曾说过:“科学是内在的整体。它被分解为单独的部门不是取决于物质的本质,而是取决于人类认识的局限性。”作为“中心的,实用的和创造性的科学”的化学,其发展过程中由于客观条件所限制而形成的认识上的局限性同样理所当然地导致了其内部学科的分化。但是人类认识的进步是必然的历史趋势,同时,科学技术的高度分化和高度综合的整体化趋势也促成了当初分化了的学科之间的交叉和渗透。金属有机化学作为化学中无机化学和有机化学两大学科的交叉从产生到发展直到今天逐渐地现代化,它始终处于化学学科和化工学科的最前线,生机勃勃,硕果累累。 化学主要是研究物质地组成、结构和性质;研究物质在各种不同聚集态下,在分子与原子水平上的变化和反应规律、结构和各种性质之间的相互关系;以及变化和反应过程中的结构变化,能量关系和对各种性质的影响的科学。金属有机化学所研究的对象一般是指其结构中存在金属-碳键的化合物。在目前为止人类发现的110多种化学元素中,金属元素占绝大部分,而碳元素所衍生出的有机物不仅数量庞大,而且增长速度也很快,将这两类以前人们认为互不相干的物质组合起来形成的金属有机化合物不仅仅是两者简单的加和关系,而应是乘积倍数关系。其中的许多金属有机化合物已经为人类进步和国民生产做出了特殊的贡献,更重要的是,金属有机化学是一门年轻的科学,是一座刚刚开始发掘的宝藏,发展及应用潜力不可估量。下面就按时间顺序来说明金属有机化学产生和发展及其规律以及在实践中的应用,并探讨学科的研究方法。 一. 金属有机化学的产生与基本成形阶段(1823~1950年) 1827年,丹麦药剂师蔡司(W.C.Zeise)在加热PtCl2/KCl的乙醇溶液时无意中得到了一种黄色的沉淀,由于当时的条件所限,他未能表征出这种黄色沉淀物质的结构。现已证明,这个化合物为金属有机化合物。蔡司可能不会想到,他无意中得到的这第一个技术有机化合物标志着的无机化学与有机化学的交叉学科金属

金属配位聚合物的研究现状_武文

金属配位聚合物的研究现状 武 文 (安徽教育出版社,安徽 合肥 230063) [摘 要]叙述了国际、国内金属配位聚合物的研究现状及应用前景。[关键词]金属配合物;聚合物;研究现状 [中图分类号]065 [文献标识码]A [文章编号]1001-5116(2007)03-0090-03 1 引言 金属配位聚合物以其复杂多变的空间结构和电子结构以及由此产生的电、磁等物理化学性质、功能及多方面的应用前景引起了各国科学家的极大重视。因此,促进了物理、化学和材料科学三大学科之间的交叉和渗透,成为各国科学家研究的热点。 目前国外许多著名学得如法国的Lehn ,美国的Yaghi ,Zubieta 、德国的Muller 、意大利的Ciani 、澳洲的Robson 、日本的Fujita 和韩国的K im 等研究组开展了卓有成效的研究[1-5]。2 金属配位聚合物的研究 2001年,美国的Yaghi 教授报道的以苯环的1, 3和5位作为三角形的第二构筑板块,即以4,4’, 4”2笨21,3,52三2苯三甲酸(B TB )得到一个层状的开 放式结构Cu 3(B TB )2(H 2O )3?(DM F )9(H 2O )2就是一个非常典型的例子[5]。这个晶体结构是由一对完全一样的骨架构成的,每个B TB 基团连接 Cu (Ⅱ)离子形成“螺旋桨式”簇的图案。每个B TB 基团连接三个这样的簇,而每个簇连接四个B TB 基团(Fig 11A 2C ),这些三角形基团(表现在羧酸的苯环 中心上)在3168!距离(与强的π2 π堆积作用相一致)内取代,在0186!距离内允许交汇成两个亚单元(Fig 11D ) 。 Fig 11 Single 2crystal st ruct ure of Cu 3(B TB )2(H 2O )3(DM F )9(H 2O )2composed of (A )square paddle -wheel and t riangular B TB SBU s ,which assemble into (B and C )a pair of augmented Pt 3O 4net s t hat are held toget her by (D )numerous p -p and C 2Hzzzp interactions to yield (E )a pair of interwoven t hree 2dimension 2al porous f rameworks 1(F )Two MOF 214f rameworks interwoven about a p -minimal surface wit hout inter 2secting t he surface 1 [收稿日期]2007-01-10 [作者简介]武文,理学硕士,安徽教育出版社副编审。 在两个苯环相到占有紧密连接在一起的B TB 基团间有六个C 2H 的π堆积作用(3169!)。在这个化合物中,两个不连续的网络在(1/2,1/2,1/2)替代另一个,也独立于双曲线表面。尽管在双曲线表面上的两个网络是分离的,但一个网络的环由于相到贯穿而有效连接另外一个(Fig.1.E ),交叉作用有效地加强了体积庞大的B TB 基团,独立的维持刚性不是很强的开放式骨架结构。该物质的一对骨架的交织贯穿占据含有很大空腔的晶体的可利用空间,球的每个空腔的直径为1614!。又如2003年,Yaghi 等人在Science 杂志上发表的“Hydrogen Storage in 92007年5月第25卷第3期 安徽教育学院学报Journal of Anhui Institute of Education May.2007 Vol.25No.3

有机金属化合物的研究

摘要:简要的评述了分别以无机物和有机物作载体的表面金属有机化合物,金属有机化合物与固体表面反应的基本规律和表面金属有机化合物的结构。 关键词:金属有机化合物;无机物;有机物;载体 表面金属有机化学(Surface Organometallic Chemistry简称SOMC)是化学、材料学及催化科学等学科的交叉融合而诞生的一门新型学科。该学科主要以分子金属有机化学、表面化学和分子配位化学为基础,以金属有机化合物与固体表面反应为研究对象,目的是通过在固体表面接枝金属有机基团制备表面组成和结构明确的、具有特殊性能的无机-有机杂化材料、表面金属原子簇、表面功能化膜等,是近年来化学和材料学学科中非常活跃的研究领域之一。金属有机化合物在固体材料表面的接枝反应性能是SOMC研究的基础,此类化合物在有机合成、烯烃聚合和氢化异构化等领域表现出卓越的性能。因而一直是当今金属有机化学研究最为活跃的一类化合物。近年来的研究表明,茂金属类催化剂一经与固体表面反应后,其所形成的表面金属有机化合物,不仅可以改善原物种的动力学性能、控制聚合物的形态,而且可以大大减少助催化剂的用量等,因此,有关表面茂锆金属有机化合物的研究已经成为人们备受关注的热点。本文简要的评述了分别以无机物和有机物作载体的表面金属有机化合物。 1 无机物载体表面金属有机化合物 1.1 氧化物载体表面金属有机化合物氧化物表面金属有机化合物分为两种反应形式,一种是金属有机化合物与氧化物表面的羟基发生反应,另一种是金属有机化合物与氧化物表面的≡M-O-M≡发生反应。 在500°C下处理的MCM-41分子筛上存在着大量的硅羟基,这些硅羟基亲电进攻金属有机化合物上的配位体,发生M-C间的断裂。一个典型的例子就是四新戊基锆化合物与MCM-41(500)表面羟基的反应[1],反应用红外光谱检测,且分析气体产物,表面接枝产物用13C NMR和化学探针反应等方法表征,结果表明Zr-C键在表面羟基的进攻下发生断裂,生成烷基锆化合物。 Michelle Jezequel[2]等用Cp*Zr(CH3)3和Cp2Zr(CH3)2分别与处理过的SiO、SiO2-Al2O、Al2O、Al2O发生反应,用红外光谱、元素分析、固态核磁、EXAFS等表征,推断出化合物的结构。这些复合材料可用作烯烃聚合反应催化剂,但发现表面化合物的结构与催化活性有很大的关系。Cp*Zr(CH3)3和Cp2Zr (CH3)2与SiO反应得到的固体无催化活性,而当接枝在SiO2-Al2O、Al2O、Al2O上时则有催化活性。 此外还有王绪绪等用四烷基锡化合物与SiO表面羟基发生反应,新戊基钛化合物与MCM-41表面羟基发生反应;丁基锡化合物分别与MCM-41、MCM-41表面羟基发生反应;四甲基锡化合物与MCM-41表面羟基发生反应。 当SiO2在高温下(>800°C)处理后,其表面羟基发生缩合形成≡Si-O-Si≡桥,可以与金属有机化合物反应并发生断裂,Bu3Sn-O-SnBu3与SiO2(1000)表面的反应是通过≡Si-O-Si≡的开环生成两个 ≡Si-O-SnBu3接枝物种[3]。并且这个反应不仅发生在四元环中的≡Si-O-Si≡上,而且还与六元环,甚至是八元环中的≡Si-O-Si≡反应。https://www.doczj.com/doc/394411429.html,lot[4]等人报道了在SiO和Cp*ZrMe3反应,主要生成两种不同的产物。 1.2 非氧化物MgCl2载体表面的金属有机化合物李现忠[5]等报道了以球型MgCl2为载体的 Ziegler-Natta催化剂与含有茂配体的硅烷化合物反应,制备了一种球型MgCl2负载型单茂钛催化剂,利用该类催化剂进行了乙烯与1-己烯共聚,茂金属配体影响催化剂活性的高低顺序为 Me4Ind>Ind>Cp>Me4Cp (其中 Me表示甲基、Ind表示茚基、Cp表示环戊二烯基)。Soga[10]等将Cl2Si(Ind)2ZrCl2负载到MgCl2上,制备了相应的负载型催化剂,该催化剂用于丙烯聚合可以制得全同立构的聚丙烯。 1.3 金属载体表面的金属有机化合物通过金属表面与金属有机化合物的反应可以制备高分散的双金属或多金属催化剂,并且在不同的催化反应中有特定的选择性。 在氢气的氛围下,四丁基锡可以与铑、镍、或铂(负载在SiO2或Al2O3上)反应制备Sn-Rh[6]、Sn-Ni 合金,这种双金属配合物金属相明显,稳定性得到很大改善,可应用到天然气催化合成中。同样,用茂铁或茂镍可以将铁或镍沉积在钯上形成铁钯合金或表面镍钯合金。 2 有机物载体表面金属有机化合物 使用载体催化剂时,无机载体被引入聚合物而影响聚烯烃的性能。和无机载体相比较,有机聚合物载

金属有机骨架材料(MOFs)简介

金属—有机骨架(MOFs)材料代表了一类杂合的有机—无机超分子材料,是通过 有机桥联配体和无机的金属离子的结合构成的有序网络结构。MOFs 呈现出目前最高的 比表面积,最低的晶体密度以及可调节的孔尺寸和功能结构,使 MOFs 可以实现一些特 殊的应用,包括气体的存储和分离,催化以及药物缓释等。通过在有机配体中引入功能 基团或者利用 MOFs 作为主体环境引入活性组分,合成功能化的 MOFs 材料,可以大大 拓宽其应用范围。-华南理工-袁碧贞 金属有机骨架(Metal-Organic Frameworks MOFs)材料是利用含氧、氮等多齿有机 配体与金属离子通过自组装形成的具有周期性网络结构的一种类沸石材料 [1]。—华南理工-袁碧贞 MoF材料是由含氧!氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金 属离子自组装而成的配位聚合物,是一种比表面积大!孔隙率高!热稳定性好! 构型多样化的类沸石材料[22一],其发展历程大致可以分为三代12.]"如图1一1所示" 最早的MoF材料是由Kattagawa/J!组在20世纪90年代中期合成的,但其合成的材 料在客体分子去除后,骨架坍塌,晶体结构遭到破坏,未形成永久性的孔隙率" 这也是第一代MOF材料"随后科学家们开始研究新型的阳离子!阴离子以及中 性的有机配体链接形成的配位聚合物"第二代材料在客体分子移走后能够留下空 位形成永久性的孔隙率"MOF材料在受到压力!光!化学刺激或者除去溶剂分 子时,材料骨架的形状会发生变化,这就是第三代MOF材料"含有梭基的阴离 子配体和金属离子链接构成的MOF材料属于我们所说的第二代MOF材料,然而 含有氮杂环的有机中性配体构建的MOF材料属于我们所说的第三代MOF。——北化-安晓辉金属-有机骨架 ( metal-organic frameworks, MOFs) 材料是由金属离子与有机配体通过自组装过 程杂化生成的一类具有周期性多维网状结构的多孔 晶体材料,具有纳米级的骨架型规整的孔道结构,大 的比表面积和孔隙率以及小的固体密度,在吸附、分 离、催化等方面均表现出了优异的性能,已成为新材 料领域的研究热点与前沿。MOFs 材料的出现可以 追溯到 1989 年以 Robson 和 Hoskins 为主要代表的 工作,他们通过 4,4',4″,4-四氰基苯基甲烷和正 一价铜盐[Cu( CH 3 CN) 4 ]·BF 4 在硝基甲烷中反应, 制备出了具有类似金刚石结构的三维网状配位聚合 物 [1] ,同时预测了该材料可能产生出比沸石分子筛 更大的孔道和空穴,从此开始了 MOFs 材料的研究 热潮。但早期合成的 MOFs 材料的骨架和孔结构不 够稳定,容易变形。直到 1995 年 Yaghi 等合成出了 具有稳定孔结构的 MOFs

有机金属化合物

有机金属化合物及其应用 学校:辽宁师范大学 学院:化学化工学院 年级:2010级 班级:3班 姓名:于泳博 学号:20101129010020

有机金属化合物及其应用 于泳博 辽宁师范大学化学化工学院 2010级3班 摘要 近年来,有机金属化合物的设计、合成、结构及其应用的研究十分活跃。有机金属化合物是指分子中有机基团的碳原子和金属原子直接结合的化合物。如果含碳成分是通过某些其它原子(例如:氧、氮或硫)与金属结合,就不属于这类化合物。例如(C3H7O)4Ti 就被认为不是有机金属化合物,而C6H5Ti(OC3H7)3则是,因为后者的金属和碳有一处直接成键。实际上除稀有气体外,有机基团可以通过碳原子来用各种方式与周期表中所有元素相结合。本文仅以金属有机锂化物为例对有机金属化合物及其应用做一初步介绍。 关键词:有机金属化合物、有机锂化合物应用、有机金属化合物性质 前言 1827年丹麦Zeise制得铯的有机化合物,1849年Frankland合成出的金属σ键化合物(二丁乙基和锌结合的化合物),开始了金属有机化合物的发展。Grignard继续研究金属有机化合物,制成亲核性有机镁化合物,如甲基溴化镁等,广泛应用它作为合成其他有机化合物的试剂,称为格利雅试剂(简称格氏试剂)。 20世纪有机合成利用格氏试剂引起了人们对金属有机化合物的注意。20世纪前半叶,主族的非过渡金属有机化学研究的非常广泛,特别是美国Gilnan等人发起了锂有机化学,为研究金属有机化学打下了基础。 所谓金属有机化合物即除金属碳化物以外金属和碳结合的化合物的总称。有机金属是以金属和碳结合是按π结合和σ结合或两者皆有之来划分。把具有π结合的有机化合物叫作有机金属络合体,有不少是镍、钴、钼、钨的羰基化合物。具有σ结合的有机硅化合物主要用于高分子工业和表面加工工业。格利雅试剂和烷基铝主要应用于制药工业作中间原料和聚乙烯的聚合触媒,但是操作复杂。 近年来,对于典型金属元素的有机化合物具有的热力学不稳定、挥发性、光反应等特异性能积极地进行了应用技术研究,尤其在电子工业中取得了引人注目的进展。 正文

金属有机膦酸配位聚合物的合成及性质

金属有机膦酸配位聚合物的合成、表征及晶体结构研究 中文摘要 金属有机膦酸配位聚合物因其结构上的多样性以及在离子交换、嵌入材料、吸附材料、质子导电材料和催化材料等领域具有潜在的应用前景,己引起人们的广泛关注。本文主要介绍了利用低温水热合成技术,以具有手性结构特征的功能性有机膦酸RP03H2为构筑单元(R为手性或非手性功能性有机基团,结构中含有一oH,一NH2或一cOOH等功能性基团中的一种或几种),通过直接反应法或引入模板剂法成功地合成的未见文献报道的新型金属有机膦酸配位聚合物的晶体材料,并利用x一射线单晶衍射、IR光谱和TG、DTA 分析对所合成材料的晶体结构及骨架热稳定性进行的研究。 关键饲 金属有机膦酸,配位聚合物,水热合成,杂化材料,晶体结构 前言 材料是人类赖以生存和发展的重要物质基础,材料的发展水平直接反映了社会的生产力水平。新型材料的发展和创新对经济、科技、国防以及综合国力的增强都具有特殊重要的作用,其研究、开发和利用能力也是一个国家科技进步和经济发展的重要标志之一。随着科学技术的发展,人们对材料提出了越来越多、新的要求。能够在设计的基础上有目的的合成指定性能的材料一直是材料科学家们的不懈追求。金属有机膦酸配位聚合物由于其在结构上与相应的无机磷酸盐相似,具有孔道及较大的比表面积,它们可以作为分子吸附剂,从而可以对进入孔道的客体分子进行识别或者为客体分子提供反应环境,已引起了人们的极大兴趣。 1.金属有机膦酸配位聚合物简介 金属有机膦酸配位聚合物作为一类新型的有机一无机杂化材料,由于其结构上的多样性以及它们在离子交换材料、嵌入材料、吸附材料、质子导电材料和催化材料等材料科学领域中具有潜在的应用前景,已引起世界各国科学家的广泛关注。金属有机膦酸配位聚合物由于其在结构上与相应的无机磷酸盐相似,具有规则孔道结构及较大的比表面积,它们可以作为分子吸附剂,从而可以对进入孔道的客体分子进行识别或者为客体分子提供反应环境。在过去的二十年中,金属有机膦酸配位聚合物在合成和结构方面的研究已得到迅速发展,并已取得许多重要的研究成果.晶体结构也己扶一维链状拓展到二维层状和三维空旷骨架结构。最近。具有沸石型结构和手性结构特征的化合物也披合成出来,并通过x-射线单晶衍射对它们的晶体结构进行了深入研究。结构和性质研究表明,该类化合物在多相不对称催化合成反应中可能具有潜在的应用前景。这些研究成果的取得,极大地刺激了人们在该领域的研究热情。近年来人们已经认识到,如能将功能性有机活性基团引入到金属有机膦酸配位聚合物的骨架结构中,将会使所合成的材料能够表现出某种选择性吸附功能、催化功能或手性识别功能。这些新型金属有机膦酸配位聚合物材料的成功合成,不仅进一步丰富了该类化合物的结构,同时这些材料将可能表现出某种功能,从而为金属有机膦酸配位聚合物的应用研究提供新的思路。 2.实验总述 2.1化合物合成方法 本论文中所述金属膦酸配位聚合物的合成均采用水热合成方法。首先制各初始凝胶,将初始凝胶转移至不锈钢反应釜中,密封后放入恒温干燥箱中,在一定晶化温度和自生压力下晶化一定时间,得到的产物冷却后经去离子水洗涤,烘干后即得金属有机麟酸配位聚台物的单晶。 2.2制备原理 水热合成是一类处于常规溶液合成技术和固相合成技术之间的温度区域的反应,它是目前多数无机功能材料、特种组成与结构的无机化合物以及特种凝聚态材料的重要合成途径。近来被用于合成各种各样的配位聚合物晶体材料。 水热合成化学侧重于研究水热与溶剂热条件下物质的反应性能、生成规律以及合成产物的结构与性质。通常在120一260℃的自生压力下。在高压釜内由于温差的存在、产生强烈对流;使底部饱和溶液在上部生长,形成过饱和溶液,在釜壁四周上形成晶体。釜内过饱和溶液分布取决于釜内对流强烈程度,不断循环,晶体就在釜内不断生长。当反应结束后,缓慢将温度降至室温,就得到晶体。 3.层状膦酸铅配位聚合物的水热合成及结构研究 3.1综述

常见金属有机化合物的合成及应用

常见金属有机化合物的合成及应用 赵 娜 (西北大学化学系05级化学基地班 西安 710069) 摘要:金属有机化学是连接有机化学和无机化学的纽带。本文介绍了格氏试剂,有机锂化合物,二茂铁和乙酰基二茂铁等金属有机化合物的合成及常见反应。 关键词:金属有机化学 格氏试剂 有机锂 二茂铁 一、引言 近年来有机化学迅速发展,分类庞杂,可分为有机合成、金属有机、元素有机、天然有机、物理有机、有机催化、有机分析、有机立体化学等。其中金属有机化学是有机与无机化学的交叉学科,随着科学理论和实验技术的提高,金属有机化学已成为当今最活跃的化学学科之一。 二、常见有机金属化合物 含有碳-金属键的化合物种类甚多,现列举一些常见有机金属化合物。 (一) 格利雅试剂(格氏试剂) 它的制备方法如下: R X RMgX +干乙醚 它在合成中的主要用途有: 1. 和活泼卤代烷反应生成烷烃。 RMgX ClCH 2CH CH 2RCH 2CH CH 2 + MgBr BrCH 2 CH 2 + 2. 用格氏试剂合成醇。 O + RMgX OMgX R OH R RMgX 与甲醛得增长一个碳链的伯醇: MgCl 2CH 2OH RMgX 与其它醛得增长碳链的仲醇: 232CH 3CH O CH 3CH OH CH(CH 3)2 RMgX 与酮得增长碳链的叔醇: CH 3 CH 3 O 232CH 3C OH CH(CH 3)2CH 3

RMgX 与甲酸酯得仲醇: H C OR' O R MgX H C OR' O MgX R +C O 2H C R OH R (二) 有机锂化合物 它的制备方法如下: R X 2Li 干乙醚+RLi LiX + 合成上的应用如: CH 2 CHLi Et 2O CH CH CH 2OLi CH CH 2 CHO + 在有机锂化合物中用途较广的是二烷基铜锂,它的制备方法如下: 2RLi +CuI R 2CuLi 合成中的应用如: RX +CH 32CuLi R CH 3 二茂铁也属于金属有机化合物,它具有芳香性,常温下为橙色晶体,有樟脑气味,熔点为173~174o C ,沸点为249 o C ,高于100 o C 就易升华,加热至400 o C 亦不分解,对碱和非氧化性酸稳定,能溶于苯、乙醚和石油醚等有机溶剂,在环上能形成多种取代基的衍生物。二茂铁可用作燃料的节能消烟剂、抗爆剂。如用于制作汽油抗爆剂、航天用固体燃料等;可用作催化剂。如用于制作合成氨催化剂;用作辐射吸收剂、热稳定剂、光稳定剂及阻烟剂;可用于生产二茂铁衍生物。 二茂铁的实验室合成方法为: (1)在无水无氧的惰性气氛下,以四氢呋喃为溶剂,用铁粉将三氯化铁还原为二氯化铁。 2FeCl 3+Fe→3FeCl 2 (2)在乙二胺的存在下,二氯化铁与环戊二烯反应生成二茂铁。 C 5H 6+FeCl 2·4H 2O→Fe(C 5H 5)2 (3)乙二胺在反应中作为碱,促使环戊二烯变成环戊二烯阴离子。 C 5H 6+NH(C 2H 5)2→C 5H 5-N +H 2(C 2H 5)2 注:本实验采用KOH 作碱合成二茂铁,反应式为: C 5H 6 + KOH→C 5H 5-K + + H 2O 乙酰基二茂铁的合成方法: 二茂铁在85%的磷酸的催化下二茂铁与乙酐发生Fridle-Crafts 酰基化反应生成二茂铁的衍生物乙酰基二茂铁。反应式如下:

金属配位化合物

第7章金属配位化合物 一、要点 1.配位化合物 是含有配位个体的由简单化合物形成的一类复杂的化合物。 配位个体由配位共价键结合起来的相对稳定的结构单元叫做配位个体。 内界和外界就配合物整体而言,配位个体的结构单元叫做配合物的内界,而配位 个体以外的部分叫做外界。 2.中心原子(离子) 处于配合物内界结构单元中心部位的原子或离子叫中心原子或中心离子。 3.配位体 配位个体中与中心原子结合的分子或离子叫做配位体,简称配体。 4.配位原子 配体中直接键合于中心原子的原子叫配位原子,它是电子对的给予体。 5.配位数 与中心原子成键的配位原子数叫做配位数。 6.单齿和多齿配位体 只含有一个配位原子的配位体叫做单齿配位体,含有两个或两个以上的配位原子的 配位体叫做多齿配位体。 7.螯合物 多齿配位体以两个或两个以上配位原子配位于中心原子形成的配合物称做螯合物。 8.配位场的价键理论 以中心原子内价电子轨道的杂化和配位体中配位原子间轨道的重叠为基石讨论配 合物的成键情形是配位场价键理论的核心。 9.外轨和内轨 配位体形成前后,中心原子的d电子排布没有变化,配位原子的孤对电子填在外层 轨道而得的杂化轨道上,这样的一类化合物叫外轨型化合物。配位体形成前后中心 原子的d电子排布发生了变化,原来由单电子占据、后腾空了的(n-1)d轨道参与杂 化,这样的一类化合物叫内轨型配合物。 10.晶体场理论 晶体场理论是一种改进了的静电理论,该理论将配位体看作点电荷或偶极子,除考 虑配位体阴离子负电荷或极性分子偶极子负端与中心原子正电荷间的静电引力外, 着重考虑配位体上述电性对中心原子d电子的静电排斥力,即着重考虑中心原子5 条价层d轨道在配位体电性作用下产生的能级分裂。 11.高自旋和低自旋 代表了晶体场理论中电子自旋的两种状态,当成对能大于分裂能,配合物中的单电 子数较多,称之为高自旋配合物;而当分裂能大于成对能时,配合物中的电子尽可 能成对,单电子数较少,称之为低自旋配合物。晶体场理论中的高自旋配合物和低 自旋配合物分别对应于价键理论中的外轨型配合物和内轨型配合物。 12.分裂能和成对能 晶体场理论中,e g和t2g两组轨道间的能量差叫八面体晶体场的分裂能,用符号10D q 或?o表示;若要将两个自旋方向相同的电子填入到一个轨道中,而填入轨道需要 克服的能量称之为成对能,以符号P表示。成对能和分裂能的相对大小是决定配

金属有机多孔配位聚合物的研究进展

金属有机多孔配位聚合物的研究进展 多孔材料在物质分离、气体储存和异相催化等领域有着广泛的应用。传统的无机多孔材料包括硅藻土和沸石等天然多孔材料和名目繁多的(如,活性炭、活性氧化铝、蛭石、微孔玻璃、多孔陶瓷等)人工多孔材料。天然无机多孔材料的结构类型有限,人造无机多孔材料虽然可克服这一缺点(通过改变制备工艺,人们可以制备从微孔、中孔到大孔等各类多孔材料),但是人造多孔材料的缺点是无法获得均匀孔结构。近年来"无机!有机杂化配合物作为一种新型的多孔材料引起了人们的广泛关注。人们将这种配合物定义为金属有机类分子筛"其孔洞处在纳米的数量级" 又称纳米微孔配位聚合物,这类材料的功能可以通过无机物种或有机桥联分子进行调节,过渡金属可以将其还原转化为沸石性主体,从而产生一些有趣的具有磁性和光谱特性的孔洞,而有机物质可以调节孔道尺寸、改变孔的内表面,还具有化学反应性或手性,可以弥补传统分子筛的许多不,在异相催化、手性拆分、气体存储、离子交换、主客体化学、荧光传感器以及光电磁多功能材料等领域显示出良好的应用前景。 和无机多孔材料相比,这类分子材料具有(1)结构多样性:MOFs是由金属离子(node)和有机配体(linker或spacer)通过配位键形成的配位聚合物,有机配体分子的多样性和金属离子配位几何的多样性导致了它们构成的配位聚合物结构的多样性(2)分子设计和分子剪裁的可行性:调节有机配体的几何性质和选择不同配位几何的金属离子可调控配位聚合物孔的结构(3)制备条件温和:在常压或几十个大气压,200度左右或更低的温度下反应等优点,因而对MOFs 的研究备受化学和材料科学工作者的关注。 由于配位聚合物的形成可以看作具有各自配位特征的配体和金属离子之间的合理识别与组装,因此,配体的几何构型和配位性能及金属离子的配位趋向和配位能力对配位聚合物的结构起着决定作用。此外,阴离子、溶剂、反应物配比、溶液的pH、合成方法(水热或溶剂热,溶液法、扩散法、溶胶法)、反应温度等也对配位聚合物的结构有重要的影响。作为一个重要组成部分,金属离子在配位聚合物的形成中起到极其重要的作用,配体的配位信息就是通过金属离子,根据它们配位点化学本性和几何学的规则来识别的。首先,金属离子本身的特性决定

浅谈金属有机化合物载体

浅谈金属有机化合物载体 摘要:简要的评述了分别金属有机化学和金属有机化合物的简要概述,以无机物和有机物作载体的表面金属有机化合物,金属有机化合物与固体表面反应的基本规律和表面金属有机化合物的结构。Abstract: Make a comment on metal organic chemistry and metal organic compound respectively carried by inorganic substance and organic substance and some foundational reaction rules of metal organic compound and solid surface and the structure of organic substance 关键词:金属有机化学,金属有机化合物;无机物;有机物;载体Key words:metal organic chemistry ;metal organic compound; inorganic substance; organic substance;carrier 引言表面金属有机化学(Surface Organometallic Chemistry简称SOMC)是化学、材料学及催化科学等学科的交叉融合而诞 生的一门新型学科。该学科主要研究对象是以分子金属有机 化学、表面化学和分子配位化学为基础,以金属有机化合物 与固体表面反应,目的是通过在固体表面接枝金属有机基团 制备表面组成和结构明确的、具有特殊性能的无机-有机杂化 材料、表面金属原子簇、表面功能化膜等,是近年来中非常 活跃的研究领域之一是化学和材料学学科,金属有机化合物 在固体材料表面的接枝反应性能的基础是SOMC研究,此类化

金属串配合物计算方法汇总

金属串配合物计算方法汇总 物质 泛函 机组 计算方法 结果 来源文章 文件位置 Cr 3(dpa )4Cl 2 用密度泛 函B3LYP 、PBE0 和BP86 方法 (a) Cr 用LANL2DZ 基组,Cl 用6 -311G* 基组,N ,C 和H 用 6 - 31G* 基组. (b) Cr 用SDD 基组,Cl 用 6 - 311G* 基组,N 、C 和H 用 6 -31G* 基组 ①用密度泛函B3LYP 、PBE0 和BP86 方法,结合2 组不同的基组对D4对称点群的[Cr3( dpa)4Cl2]配合物 1 进行几何优化,以选择最适合该体系的方法和基组: ( a) Cr 用LANL2DZ 基组,Cl 用 6 -311G* 基组,N ,C 和H 用 6 - 31G* 基组. ( b) Cr 用SDD 基组,Cl 用 6 - 311G* 基组,N 、C 和H 用 6 -31G* 基组.由于Cr( II) 的价态是3d44s0,应考虑所有的自旋态的稳定性,故对配合物 1 的单重态,三重态,五重态和七重态进行了几何优化,并对优化的构型计算其振动频率. ②选用BP86 方法,Cr 原子用LANL2DZ 基组,H 、C 、N 原子1) 中性构型1 和 2 中只形成Cr 36+的d2z 轨道组成的三中心三电子σ 键,α 电子由两端向中间的Cr 离域,β 电子由中间向两端的Cr 离 域,α 电子的离域更显著. 由于离 域和dpa - 配体的螺旋盘绕作用,Cr 36+的π 轨道中dxz 和dyz 轨道成份较小且绕金属轴( Z 轴) 发生不同程度的旋 转,难以重叠形 成 π 键. ( 2) 氧 《线性金属配 合 物Cr3( dpa)4 Cl2及其氧化态的Cr —Cr 键的理论研究》 第二页 Ⅰ计算方法 C:\Users\Ad ministrator \Desktop\科研\文献 《线性金属配 合 物 Cr_3_dpa__省略_其氧化 态的Cr_Cr 键的理论研究_麦思卉》

有机锌化合物整理研究

有机锌化合物整理研究 化学一班 20520112201383王清峰 摘要:锌金属有机化合物是金属锌与碳直接相连含有Zn-C键的化合物,其中一些物种比如烷基卤化锌被广泛用在有机合成中,在金属有机化合物的发展过程中具有里程碑式的地位。然而人们似乎对有机锌化合物的应用停留至此,锌金属有机化合物的种类屈指可数。然而作为d轨道充满的Zn元素其形成的有机化合物应该具有理论研究价值,甚至在不久的将来可能会由于金属有机框架的发展得到新一轮研究的热潮。本文就对当前所查到的比较常见的锌金属有机化合物做了一个系统的整理,并尝试对其中的一些性质进行解释,希望能够为将来可能到来的研究热潮做出一份贡献。 关键词:金属有机化合物有机锌化合物新进展 一、锌有机金属化合物简介 金属有机化合物是指含有金属-碳键(M-C)的一类化合物。因此,不含有M-C键的金属烷氧基化合物(其为M-O键)、烷硫基化合物(为M-S键)或羧酸盐(为M-O键)并不属于金属有机化合物的范畴。而通过氮、氧、硫等原子与金属配位形成配位键的化合物也不算金属有机化合物。[1]根据以上定义,对于锌来说,有机锌化合物就是指存在共价C-Zn键的锌化合物,并且在该化合物里如果有机基团通过配位原子如O或N对Zn进行配位而得到的配位化合物是不在有机锌化合物的范畴之内。 金属有机化合物(包涵磷、氟、硅、硼等的类金属有机化合物)按照M-C键的类型大体可以分为三类:第一大类包括碱金属和碱土金属有机化合物,它们一般是以离子性的M+C-形式存在;第二大类包括其他的非过渡金属有机化合物,主要是含有共价性的M-C键化合物;第三大类便是过渡金属有机物。由于Zn形成化合物时充满电子的3d轨道并不参与反应,因此Zn的性质应该是更接近于非过渡金属,被分为第二类。另一方面,Zn的4s电子层有两个电子,所以一般认为金属锌形成的金属有机化合物都是正二价的共价键化合物,而且能形成高于配位数2的化合物。 据记载,最早在有机合成上得到广泛应用的金属有机化合物是弗兰克兰于1894年由碘乙烷与锌粉作用制得的二乙基锌。二乙基锌是一个锌原子与两个乙基的碳原子以共价键的形式结合的金属有机化合物。有机锌化合物为金属有机化合物的研究作出了卓越的贡献,看起来有机锌化合物应该会得到广泛的研究,然而事实并非如此,从结构的角度来看,由于Zn 原子没有空的d轨道,在与有机物成键时不能像过渡金属元素那样丰富多彩,因此实际上人们对其有机物的研究并没有太深入,曾一度陷入冷门。实际上这在一定程度上体现了锌金属有机化合物研究的困难性而且说明过渡金属的金属有机化合物更容易研究,所成键的种类更多因此结构也更加丰富多彩。即便如此,随着纳米材料研究的兴起[2],锌的金属有机框架聚合物的研究逐渐兴起,对其形成机理的研究是个比较困难富有挑战性又十分有意义的过程,这很可能需要一定程度上从锌金属有机化合物的角度来解决。所以本文便希望能够对有机锌化合物做个系统的整理,希望能给为将来可能到来的有机锌化合物研究的热潮做出一点微薄的贡献。 二、有机锌化合物种类介绍[1][3][4] 1.烃基锌 烃基锌包括二烃基锌R2Zn及一烃基锌RZnX(X=卤素、H、OR、SR、NR2等)。 (1)制备:由碘代烃和锌金属反应然后就可以把产物二烃基锌蒸馏出来。利用格氏试

金属有机配位聚合物的研究进展

金属有机配位聚合物的研究进展 摘要金属有机配位聚合物结构多样,性质独特,含有有机配体和金属离子,结构可塑、孔隙率高、孔大小分布均匀等特点,应用前景广阔,已成为近几年来一个热门的研究领域。本文一方面系统地阐述了金属有机配位聚合物在氢气存储、催化、光学、电学和磁学材料中的应用研究进展,另一方面综述了纳米配位聚合物的研究进展。 关键词金属-有机框架结构(MOFs);配位聚合物;研究现状;展望 中图分类号O631 文献标识码 A 文章编号1673-9671-(2012)072-0204-02 金属有机配位聚合物,也称为金属-有机框架结构(Metal-Organic Frameworks,MOFs)。由于具有各种特殊的性能成为近年来各国科学家关注的焦点。MOFs中含有有机配体和金属离子,所以此类结构的物质可能同时含有金属和有机化合物的特性,还可能含有金属和有机化合物均没有的性能。因此,具有特殊气体存储、光、电、磁、吸附和催化等性能的各种新型功能材料不断涌现。近年来,配位聚合物多孔材料的结构、合成以及各种性能的研究非常热门。多孔材料普遍存在于我们的周围,在结构、缓冲、减震、过滤、隔热、消音等方面发挥着巨大的作用。芳香羧酸化合物具有多种多样的配位结构类型,被广泛用做次级构筑单元(SBU)来制备新型的超分子配位聚合物MOFs,多孔配位聚合物的热稳定性不如传统的多孔材料,但其具有孔隙率大、结构可塑性强、孔大小均匀的特点,因此,这些材料往往具有新颖的拓扑结构,并且在光、电、磁和气体存储等领域表现出广阔的应用前景。 1 MOFs用于氢气存储中 MOFs材料是一种通过将特定材料通过相互铰链形成的支架结构。MOFs对气体具有吸附性的可能原因除了来自物理吸附的贡献外,还由于MOFs材料中的孔隙大小为纳米级尺度,孔径小于 2 nm。所以其表面积大,存储空间相应增大。一般地,如果理想的孔径大小略大于待吸收的气体分子的范德华半径.那么,它们之间的作用力最大。采用缩小孔径的方法,氢分子与孔壁之间的作用力可以得到一定程度的提高。对于孔径大的MOFs,可以在大孔中插入一个客体分子来提高比表面积。例如,MOF-177n 可以在液相中引入C60等大分子,如图1所示。除了可以减小大孔中的自由体积外,这些大分子还可以提供额外的吸附位点。相比于沸石等多孔材料,结构稳定的MOFs作为吸附材料有明显的优势:孔度稳定,比表面积大,晶体中自由体积百分率高于某些传统多孔 材料。 图1 MOF-177,直径11.8 nm的笼可通过容纳C60分子来提高比表面积Yaghi教授研究组把对苯二甲酸的苯环用-NH2,-Br,-F等官能团来修饰,或者用其它有机基团来取代苯环达到增长或变宽苯环的效果,得到了与MOF-5具有相同框架的IRMOF-1-n系列,如图2所示。它们具有更高的孔道率和更大的表面积。 图2 用-NH2,-Br,-F等官能团来修饰对苯二甲酸的苯环,或者用其它有机基团取代苯环达到增长或变宽苯环的效果,得到IRMOF-1-n系列,具有更高的孔道率和更大的表面

金属有机化合物气体应用:1,2-二溴四氟乙烷参考文本

金属有机化合物气体应用:1,2-二溴四氟乙烷 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

金属有机化合物气体应用:1,2-二溴 四氟乙烷参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.别名·英文名 氟碳化合物-11482;1,2- Dibromotetrafluoroethane. 2.用途

溶剂、灭火剂、农药杀虫喷射剂。 3.制法 (1)1 ,1,2,2-四氟乙烷的溴化反应。 (2)四氟乙烯加溴。

(3)1,2一二氯四氟乙烷与HBr反应,氯原子被Br替代。 4.理化性质 分子量:259.82

熔点:-110.5℃ 沸点(101.325kPa):47.3℃ 液体密度(21.1℃):2175kg/m3 气体密度(101.325kPa,50℃):9.805kg/m3

相对密度(101.325kPa,50℃,空气=1):8.97 临界温度:214.5℃ 临界压力:3445kPa 临界密度:790kg/ma 气化热(50℃):104.73kJ/kg

金属-有机框架的发展和应用

金属-有机框架的发展和应用 摘要:近年来,由于金属-有机框架(MOFs)材料特殊的结构使得其在气体储存、催化活性、离子交换、磁性材料、分子和光学性能等方面的潜在用途,MOFs的设计与合成吸引了大家的注意力。当前,已有很多用于制备多种金属-有机框架(MOFs)的方法和相关理论。本文主要介绍了MOFs的研究进展、应用,概述了MOFs未来的趋势。 关键词:金属-有机框架,发展,应用 Abstract: In recent years, the design and synthesis of Metal-Organic Frameworks (MOFs) have attracted great interest due their potential use as gas storage, catalysis activity, ion exchange, magnetism, molecular, and optical properties. Currently, varied methods and theories have been used for the formation of metal-organic frameworks (MOFs). This paper mainly introduces the development and application of MOFs, and the future tendency. Keyword: Metal-Organic Frameworks; Development; Application 1绪论 金属-有机框架材料(Metal Organic Frameworks,MOFs)又叫金属有机配位聚合物(Metal Organic Coordination Polymers,MOCPs)已经成为一种新型的功能化晶体材料。它是由有机桥连配体同过配位键的方式将无机金属中心(金属离子或者金属离子簇)连接起来形成无限延伸的网络状结构的晶体材料。金属-有机框架材料将无机化学和有机化学两种通常视为两种完全不同的化学学科巧妙地结合在一起。根据金属-有机框架材料在空间维度延伸情况将金属有机框架材料分为一维链,二维层,三维空间网络状结构。 金属-有机框架材料的最大特点就是它是一种晶体材料具有超高的孔隙率(高达90%的自由体积)和巨大的内比表面积(超出6000平方米/克)。而且由于无机和有机不同成分组成的结构使得其结构多样并可调节,这些最终促使金属有机框架材料在许多方面有着潜在应用[1]。 2金属有机框架化合物的研究进展 金属-有机框架(Metal-Organic Frameworks,MOFs)化合物,又称金属-有机络合聚合物(metal-organic coordination polymers, MOCPs),早在20世纪90年代中期,第一类MOFs就被合成出来,但其孔隙率和化学稳定性并不高。[2]后来,MOFs开始发展,自从1978年始至2006年的剑桥结构数据库(Cambridge Structural Database,简称CSD)报道的关于金属-有机框架材料的数量变化如图2-1所示。

浅析金属有机化学的研究方向

科技信息2007年第24期 SCIENCE&TECHNOLOGYINFORMATION 近年来金属有机化学这一前沿学科有了蓬勃的发展,它的发展打破了传统的有机化学和无机化学的界限,又与理论化学、合成化学、催化、结构化学、生物无机化学、高分子科学等交织在一起,成为近代化学前沿领域之一.金属有机化学再医药、农业、工业等多领域都有广泛的应用。作为前沿学科其发展的方向对于其发展有着重要的意义。因此本文就这一论题进行了简要的论述。 1.金属有机化学概述 1.1金属有机化合物的组成 金属有机化合物,就是碳原子和金属原子直接相连的化合物。最早的金属有机化合物,比如格式试剂。而叔丁醇钾之类的化合物,由于是金属跟氧相连的化学结构,所以其不属于金属有机化合物的范畴。广义的金属有机化合物,将硫、硒、碲、磷、砷、硅、硼等带有金属性质的非金属都算成金属,实际上已经超越了经典金属有机化合物的范畴。但是由于元素有机化学和金属有机化学有着千丝万缕的联系,将其混在一起也不致引起太大的混乱。 1.2金属有机化学研究分类: 金属有机化学,就是研究金属有机化合物的科学。通常分为两大类: 1.2.1研究金属有机化合物的合成及其性质 金属有机化合物的合成及其性质的研究就是专门合成金属有机化合物,并研究这些化合物的物理学性质及其在材料学、高分子科学上的应用。 1.2.2研究金属有机合成化学 专门研究金属有机化合物在合成中的应用,虽然也合成金属有机化合物,甚至设计配体,但是目的在于探究其在有机合成学上的作用,这类研究就是研究金属有机合成化学。 通过上述的分析我们可以看出金属有机化学,是无机化学、晶体学、材料学等和有机化学的交叉学科,是不对称有机合成学的基础,是当今有机化学的热点之一。 2.我国金属有机化学研究进程 我国的金属有机化学研究开始于上世纪60年代初期,在80年代时得到了快速的发展。“金属有机化合物的合成及其在高选择性反应中的应用”是我国“七五”期间国家重大基金项目之一,这也使得我国的金属有机化学研究得到更加快速飞越。并且通过中科院上海有机所黄耀曾院士和南开大学王积涛教授带领下的科研小组,经过多年的努力研究,该项工作已经取得了阶段性的进展和可喜的成果,其中一些成果已达到国际领先水平。“金属有机化合物的反应化学”列入基金委“八五”重大项目,更为金属有机化学的发展提供了重要的条件。 3.我国金属有机化学研究方向 3.1金属有机化学研究方向一:利用已知金属有机化合物反应的规律研究新的合成反应 目前已知的金属有机化学反应主要有炔烃-α,β-不饱和羰基化合物的串联偶联反应;双取代、三取代烯烃,共轭双烯,1,3-双烯等的立体选择性合成;亚胺的烷基化反应及四异丙氧基钛促进的还原烯化反应。炔烃-α,β-不饱和羰基化合物的串联偶联反应是一个完全由我国独立发现的新反应,这种反应创造了一个全新的质解方法来淬灭C-Pd键。 双取代、三取代烯烃,共轭双烯,1,3-双烯等的立体选择性合成是以硒、碲化合物的价键结构及金属有机化合物的基元反应为理论依据,以近代有机合成方法学为指导,将金属或杂原子导入到烯基硒、碲化合物的分子中,形成碳-碳双键连有Se-Zn,Se-Sn,Se-B,Te-Br等双官能团试剂,并藉过渡金属催化下的烯烃的选择性偶联反应,发展了多种合成高立体选择性的双取代、三取代烯烃,共轭双烯,1,3-双烯等的方法。根据这一反应理论发展出现在得多种模式的反应合成子,可以合成各种不同的烯烃,如:二取代烯烃、三取代烯烃。 亚胺的烷基化反应,在我国技术有机化学研究中发展的较快,目前已经发展出若干个亚胺的烯丙基化反应。这其中包括亚胺经三甲基氯硅烷活化后和烯丙基锡的反应,在镁屑或锌粉存在下和烯丙基溴的Barbier型反应,以及氟离子引发的亚胺和三甲基烯丙基硅烷的反应。 四异丙氧基钛促进的还原烯化反应在四异丙氧基钛和三苯膦存在下,可以“一锅”法合成三氟甲基-(E)-烯丙醇,反应是高度立体选择性地得到E式。以上几种金属有机化学反应在我国的金属化学研究领域中已经极为熟悉,为了更好的发展金属有机化学这一交叉学科,利用已知的金属有机化学反应研究金属有机化学已经成为必然。 3.2金属有机化学研究方向二:对金属有机化合物的反应规律进行更加深入的研究 在我国金属有机化学研究的过程中发现了金属有机化合物的双等瓣置换及伴随加合的等瓣置换新模式及氧桥联二茚基稀土化合物的立体控制选择性合成。这两个最具有代表性的金属有机化合物的反应规律中在研究单等瓣置换反应的基础上,发现桥连双环戊二烯基双金属络负离子可以同时与两分子簇合物发生等瓣置换反应,结果制得一系列结构新颖的桥连双环戊二烯基双原子簇化合物。因此可以看出对于已知反应规律的深入研究对于金属有机化学研究有着极其重要的意义。所以对于金属有机化学反应规律更加深入的研究将是金属有机化学研究发展的方向之一。 3.3金属有机化学研究方向三:金属促进的反应的选择性 根据以往研究过程中的规律,我们发现金属有机化学中金属促进地反应选择性具有重要意义,那么将金属有机化合物促进的化学键形成反应与Lewis酸促进的化学反应结合起来;金属促进的碳-碳键或碳-杂原子键形成反应是目前合成化学中一个非常有效的方法。而Lewis酸促进的化学反应在合成化学中也非常重要。结合金属有机化合物的反应特点和Lewis酸促进的化学反应的特点,有可能发现更多更好的促进碳-碳键或碳-杂原子键切断的新途径、新方法。因此,在新的金属有机化学研究中,金属促进的反应的选择性将成为金属有机化学研究重要发展方向。 3.4金属有机化学研究方向四:对新的金属有机化合物反应机理进行研究 在新发现的金属有机化合物基元反应中,二价钯催化反应中卤离子的作用及氟离子引发的亚胺和三甲基烯丙基硅烷的反应机理是非常具有代表性的,卤离子在质解反应中起重要作用;氟离子仅仅起了引发作用,氟离子不起催化作用的可能。加上3.1种原有理论的研究对于新发现有极大的影响,那么新发现的继续研究也有着重要的意义,因此,新的金属有机化合物反应机理的深入研究也同样具有重要的研究意义。 4.结论 金属有机化学的研究对于我国的科技发展有着重要的意义,其在医药、农业、轻工业等都有广阔的应用前景。深入研究金属有机化合物的结构与性能的关系,不仅为有机化学、结构化学做出贡献,而且对于揭示有机锡化合物的生理活性、催化性能和热稳定性等都具有重要意义。对于寻找新药物、新材料等具有应用价值。 参考文献 [1]唐晋.《我国金属有机化学的研究已进入世界前沿》.化学进展.1999.11.[2]李东.《金属有机化学研究方向及进展》.化学科技导报.2004.5. [3]张兴全.《有机化学发展前景分析》.化工时代.2005.8. [4]赵富民.《关于我国金属有机化学研究中若干问题的讨论》.工业时报2006.1.[5]鲁利军.《金属有机化学概述》.化学材料导航.2005.12. 浅析金属有机化学的研究方向 覃远根 (铜仁学院生化系贵州铜仁554300) 摘要:随着科学技术的不断发展以及交叉学科的不断出现,金属有机化学这一新兴学科也逐渐发展起来。其研究的重点是碳--金属键化合物的形成、性质和应用。文中就金属有机化学的研究方向进行了简要的论述。 Withscientificandtechnologicaldevelopmentandcross-disciplinescontinuetoemerge.MetalOrganicChemistrythisemergingdisciplinesgraduallydeveloping.Thefocusoftheirresearchiscarbon--Keymetalcompoundsform,natureandapplication.Textonmetalorganicchemicalresearchdirectionforabriefdiscussion. 关键词:金属有机化学;研究方向 ●科 ○科教视野○34

相关主题
文本预览
相关文档 最新文档